К.Ф. Павлов, П.Г. Романков
А.А. Носков

Примеры и задачи по курсу процессов и аппаратов химической технологии

Издание десятое, переработанное и дополненное

Под редакцией чл.-корр. АН СССР
П. Г. Романкова

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов химико-технологических специальностей высших учебных заведений

Ленинград. „ХИМИЯ”
Ленинградское отделение
1987
Рецензент: д-р техн. наук проф. В. Н. Кисельников

УДК 66.02 (076.1)

Павлов К. Ф., Романков П. Г., Носков А. А.

Задачи и примеры составлены на основе многолетнего опыта преподавания курса в Ленинградском технологическом институте им. Ленисвекта. В книгу вошли разделы: основы прикладной гидравлики, насосы, вентиляторы и компрессоры, гидромеханические методы разделения теплопередачи в химической аппаратуре, выпаривание и кристаллизация, основы массопередачи, перегонка, ректификация и абсорбция, адсорбция, экстрагирование, сушка умеренное и глубокое охлаждение. В начале каждой главы приведены основные расчетные формулы, необходимые для решения примеров и контрольных задач.

По сравнению с предыдущим 9-м изданием (1981 г.) внесены изменения в главы 2—10, расширен круг примеров решения инженерных задач с помощью ЭВМ.

Для студентов химико-технологических вузов, а также вузов и факультетов химического машиностроения.

Табл 141. Ил. 218 Библиогр. список: 189 назв.

© Издательство «Химия», 1981
© Издательство «Химия», 1987, с изменениями
<table>
<thead>
<tr>
<th>Глава 1. Основы прикладной гидравлики</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные зависимости и расчетные формулы</td>
<td>12</td>
</tr>
<tr>
<td>Примеры</td>
<td>29</td>
</tr>
<tr>
<td>Контрольные задачи</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 2. Насосы. Вентиляторы. Компрессоры</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные зависимости и расчетные формулы</td>
<td>65</td>
</tr>
<tr>
<td>Примеры</td>
<td>71</td>
</tr>
<tr>
<td>Контрольные задачи</td>
<td>80</td>
</tr>
<tr>
<td>Пример расчета центробежного насоса</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 3. Гидромеханические методы разделения. Гидродинамика взвешенного слоя. Перемешивание в жидкой среде</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные зависимости и расчетные формулы</td>
<td>93</td>
</tr>
<tr>
<td>Осаждение</td>
<td>93</td>
</tr>
<tr>
<td>Фильтрование</td>
<td>98</td>
</tr>
<tr>
<td>Центрифугирование</td>
<td>101</td>
</tr>
<tr>
<td>Гидродинамика взвешенного слоя</td>
<td>104</td>
</tr>
<tr>
<td>Перемешивание в жидкой среде</td>
<td>109</td>
</tr>
<tr>
<td>Примеры</td>
<td>110</td>
</tr>
<tr>
<td>Осаждение</td>
<td>110</td>
</tr>
<tr>
<td>Фильтрование</td>
<td>115</td>
</tr>
<tr>
<td>Центрифугирование</td>
<td>121</td>
</tr>
<tr>
<td>Взвешенный слой</td>
<td>127</td>
</tr>
<tr>
<td>Перемешивание в жидкой среде</td>
<td>131</td>
</tr>
<tr>
<td>Контрольные задачи</td>
<td>137</td>
</tr>
<tr>
<td>Пример расчета батарейного циклона</td>
<td>142</td>
</tr>
<tr>
<td>Пример расчета пенного газопромывателя для очистки газа от пыли</td>
<td>143</td>
</tr>
<tr>
<td>Пример расчета барабанного вакуум-фильтра</td>
<td>147</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава 4. Теплопередача в химической аппаратуре</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные зависимости и расчетные формулы</td>
<td>149</td>
</tr>
<tr>
<td>Теплопроводность</td>
<td>149</td>
</tr>
<tr>
<td>Теплотдача</td>
<td>150</td>
</tr>
<tr>
<td>Теплопередача в поверхностных теплообменниках</td>
<td>168</td>
</tr>
<tr>
<td>Теплопередача при непосредственном соприкосновении потоков</td>
<td>170</td>
</tr>
<tr>
<td>Ориентировочные значения коэффициентов теплоотдачи и теплопередачи</td>
<td>171</td>
</tr>
<tr>
<td>Примеры</td>
<td>171</td>
</tr>
<tr>
<td>Контрольные задачи</td>
<td>205</td>
</tr>
<tr>
<td>Примеры расчета теплообменников</td>
<td>213</td>
</tr>
</tbody>
</table>
Курс «Процессы и аппараты химической технологии» является ведущим в общеинженерной подготовке студентов и играет важную роль в освоении ими специальных дисциплин. В своем непрерывном развитии наука о процессах и аппаратах, обобщая теоретические и экспериментальные методы исследования основных процессов, является генератором новых идей, ускоряющих научно-технический прогресс химической технологии. В Постановлении ЦК КПСС об основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года отмечается необходимость приоритетного расширения и углубления фундаментальных исследований, а также таких форм интеграции науки, техники и производства, которые позволяют обеспечить быстрое прохождение научных идей от зарождения до широкого применения на практике. Эти задачи успешно решаются высшей школой при подготовке квалифицированных инженерных кадров в соответствии с последними постановлениями Партии и Правительства «Основные направления перестройки высшего и среднего специального образования в стране».

В освоении учебной дисциплины «Процессы и аппараты химической технологии», являющейся фундаментальной для химико-технологического образования, существенное значение имеют практические занятия по расчетной части курса. С этой целью на кафедре процессов и аппаратов ЛТИ им. Ленсовета было создано настоящее учебное пособие, которое от издания к изданию обновляется. Книга служит естественным дополнением к известному учебнику А. Г. Касаткина, подготовленному кафедрой процессов и аппаратов МХТИ им. Д. И. Менделеева, и к ряду современных монографий по отдельным разделам курса (в соответствии с утвержденной Минвуза СССР программой).

Кроме того, кафедрой процессов и аппаратов ЛТИ им. Ленсовета в развитие курса были созданы монографии «Гидромеханические процессы химической технологии», «Теплообменные процессы химической технологии», «Массообменные процессы (системы с твердой фазой)».

Десятое издание отличается от предыдущего тем, что в него внесены новые расчетные примеры основных типов аппаратов (теплообменников, массообменных аппаратов) с применением ЭВМ.

В подготовке нового издания большая работа была выполнена М. И. Курочкиной. За ценные советы по обновлению информационного материала в отдельных главах этого учебного пособия выражаю благодарность Н. В. Озеровой, А. А. Медведеву и другим преподавателям нашей кафедры.

Выражаю признательность В. Н. Кисельникову за сделанные замечания и высказанные пожелания.

П. Г. Романков
<table>
<thead>
<tr>
<th>Величина</th>
<th>Обозначение</th>
<th>Единицы измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вес</td>
<td>P</td>
<td>Н</td>
</tr>
<tr>
<td>Благосодержание воздуха</td>
<td>x</td>
<td>кг/кг</td>
</tr>
<tr>
<td>Влажность воздуха относительная</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td>Влажность материала</td>
<td>u, u^*</td>
<td>кг/кг</td>
</tr>
<tr>
<td>Время</td>
<td>τ</td>
<td>с, ч</td>
</tr>
<tr>
<td>Высота</td>
<td>H, h</td>
<td>м</td>
</tr>
<tr>
<td>Вязкости коэффициент:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>динамический</td>
<td>μ</td>
<td>$\text{Па} \cdot \text{с}$</td>
</tr>
<tr>
<td>кинематический</td>
<td>ν</td>
<td>$\text{м}^2/\text{с}$</td>
</tr>
<tr>
<td>Давление, парциальное давление</td>
<td>p</td>
<td>Па</td>
</tr>
<tr>
<td>Давление насыщенного пара</td>
<td>P</td>
<td>Па</td>
</tr>
<tr>
<td>Давление смеси газов общее</td>
<td>Π</td>
<td>Па</td>
</tr>
<tr>
<td>Диаметр</td>
<td>D, d</td>
<td>м</td>
</tr>
<tr>
<td>Диффузии коэффициент</td>
<td>D</td>
<td>$\text{м}^2/\text{с}$</td>
</tr>
<tr>
<td>Длина</td>
<td>L, l</td>
<td>м</td>
</tr>
<tr>
<td>Концентрация (доля):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>мольная</td>
<td>x, y</td>
<td></td>
</tr>
<tr>
<td>массовая</td>
<td>\tilde{x}, \tilde{y}</td>
<td></td>
</tr>
<tr>
<td>мольная относительная</td>
<td>X, Y</td>
<td></td>
</tr>
<tr>
<td>массовая относительная</td>
<td>\tilde{X}, \tilde{Y}</td>
<td></td>
</tr>
<tr>
<td>Концентрация объемная:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>мольная</td>
<td>C</td>
<td>$\text{кмоль}/\text{м}^3$</td>
</tr>
<tr>
<td>массовая</td>
<td>\bar{C}</td>
<td>$\text{кг}/\text{м}^3$</td>
</tr>
<tr>
<td>Масса мольная</td>
<td>M</td>
<td>$\text{кг}/\text{моль}$</td>
</tr>
<tr>
<td>Массоотдача коэффициент</td>
<td>β_x, β_y</td>
<td>$\text{кг}/[\text{м}^2 \cdot \text{с} \text{ (ед. дв. силы)}]$; $\text{кмоль}/[\text{м}^2 \cdot \text{с} \text{ (ед. дв. силы)}]$</td>
</tr>
<tr>
<td>Массопередачи коэффициент</td>
<td>K_x, K_y</td>
<td>$\text{кг}/[\text{м}^2 \cdot \text{с} \text{ (ед. дв. силы)}]$; $\text{кмоль}/[\text{м}^2 \cdot \text{с} \text{ (ед. дв. силы)}]$</td>
</tr>
<tr>
<td>Местного сопротивления коэффициент</td>
<td>ζ</td>
<td></td>
</tr>
<tr>
<td>Мощность</td>
<td>N</td>
<td>Вт</td>
</tr>
<tr>
<td>Напор:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>скоростной</td>
<td>$h_{\text{скор}}$</td>
<td>м</td>
</tr>
<tr>
<td>статический</td>
<td>$h_{\text{стат}}$</td>
<td>м</td>
</tr>
<tr>
<td>Объем</td>
<td>V</td>
<td>$\text{м}^3, \text{дм}^3, \text{л}$</td>
</tr>
<tr>
<td>Объем удельный</td>
<td>σ</td>
<td>$\text{м}^3/\text{кг}$</td>
</tr>
<tr>
<td>Объемноого расширения коэффициент</td>
<td>β</td>
<td>K^{-1}</td>
</tr>
<tr>
<td>Величина</td>
<td>Обозначение</td>
<td>Единицы измерения</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Периметр</td>
<td>П</td>
<td>м</td>
</tr>
<tr>
<td>Плотность</td>
<td>ρ</td>
<td>кг/м³</td>
</tr>
<tr>
<td>Площадь поперечного сечения</td>
<td>S, f</td>
<td>м²</td>
</tr>
<tr>
<td>Площадь поверхности</td>
<td>F</td>
<td>м²</td>
</tr>
<tr>
<td>Полезного действия коэффициент</td>
<td>η</td>
<td></td>
</tr>
<tr>
<td>Порозность слоя</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Производительность насоса, вентилятора</td>
<td>Q</td>
<td>м³/с, м³/ч</td>
</tr>
<tr>
<td>Радиус</td>
<td>R, r</td>
<td>м</td>
</tr>
<tr>
<td>Расход:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>массовый</td>
<td>G, L, M, W</td>
<td>кг/с</td>
</tr>
<tr>
<td>объемный</td>
<td>V</td>
<td>м³/с</td>
</tr>
<tr>
<td>Расхода коэффициент</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>Скорость</td>
<td>w</td>
<td>м/с</td>
</tr>
<tr>
<td>Скорость угловая</td>
<td>ω</td>
<td>рад/с</td>
</tr>
<tr>
<td>Температура</td>
<td>T, t, Θ</td>
<td>К, °С</td>
</tr>
<tr>
<td>Температуропроводности коэффициент</td>
<td>a</td>
<td>м²/с</td>
</tr>
<tr>
<td>Теплоты расход</td>
<td>Q</td>
<td>Вт</td>
</tr>
<tr>
<td>Теплоемкость удельная</td>
<td>c</td>
<td>Дж/(кг·К)</td>
</tr>
<tr>
<td>Теплонапряжение, удельная тепловая нагрузка</td>
<td>ρ</td>
<td>Вт/м²</td>
</tr>
<tr>
<td>Теплоотдачи коэффициент</td>
<td>α</td>
<td>Вт/(м²·К)</td>
</tr>
<tr>
<td>Теплопередачи коэффициент</td>
<td>K</td>
<td>Вт/(м²·К)</td>
</tr>
<tr>
<td>Теплопроводности коэффициент</td>
<td>λ</td>
<td>Вт/(м·К)</td>
</tr>
<tr>
<td>Теплота парообразования удельная</td>
<td>r</td>
<td>Дж/кг</td>
</tr>
<tr>
<td>Трения коэффициент</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>Флегмы число</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Холодильный коэффициент</td>
<td>ε</td>
<td></td>
</tr>
<tr>
<td>Частота вращения</td>
<td>n</td>
<td>об/с, с⁻¹</td>
</tr>
<tr>
<td>Ширина</td>
<td>B, b</td>
<td>м</td>
</tr>
<tr>
<td>Энталпия удельная</td>
<td>l, i</td>
<td>Дж/кг</td>
</tr>
</tbody>
</table>
Целевой установкой практических занятий по курсу процессов и аппаратов является обучение студентов методике расчета и проектирования химической аппаратуры путем рассмотрения примеров и решения конкретных задач.

При расчете аппаратов приходится применять различные физические величины, пользоваться данными о физических свойствах веществ (плотность, вязкость, теплопроводность и т. п.). Все эти величины могут быть измерены и выражены в тех или иных единицах.

В СССР с 1 января 1980 г. принята для всех областей науки, техники и народного хозяйства Международная система единиц (СИ), основными единицами которой являются: длины — метр (м), массы — килограмм (кг), времени — секунда (с), силы электрического тока — ампер (А), температуры — Кельвин (K), силы света — кандела (кд), количества вещества — моль. Кроме того, стандартом предусмотрены две дополнительные единицы: единица плоского угла — радиан (рад) и единица телесного угла — стерадиан (ср).

Остальные единицы-производные образуются на базе основных. Размер производных единиц определяется с помощью физических уравнений, выражающих связь между величинами.

Сопоставление важнейших единиц системы СИ с единицами других систем и внесистемными дано в Приложении — табл. LVIII.

Приступая к решению задачи, следует изобразить схему устройства, обозначить на ней все размеры и величины, отметить стрелками направления движения потоков и разобраться в условиях работы установки.

Затем следует выписать все данные задачи, написать основные расчетные уравнения, наметить путь решения, разбив задачу на ряд частных вопросов, выписать нужные численные значения различных физических свойств.

Подставив в расчетные уравнения числовые значения, проверить правильность подстановки, после чего приступить к арифметическим вычислениям.
Ответ следует подвергнуть критике с точки зрения соответствия полученного результата практическим условиям работы рассчитываемой установки или аппарата.

Полезно решить задачу в общем виде и исследовать результаты, выясняя влияние тех или иных факторов, входящих в условия задачи.

Во время групповых занятий студенты должны научиться пользоваться основными справочниками, объединяющими опыт большого числа исследователей и проектировщиков (Справочник химика, Справочник физико-химических и технологических величин Технической энциклопедии, Справочник механика химического завода), а также ГОСТами и каталогами.

Выработка навыков к ведению технического расчета является главной задачей расчетных упражнений по курсу. Погрешность обычного инженерного расчета ~5%.

Применение персонального компьютера или логарифмической линейки является обязательным. Несколько задач следует решить с применением ЭВМ (составить программу) — см. примеры расчетов в гл. 4, 7, 10.

Для более четкой проработки курса целесообразно иметь две тетради: одну для групповых занятий, другую для самостоятельной домашней работы — решения задач и записки эскизов главных аппаратов и их деталей.

Отчетливо изложение, систематический ход вычислений, аккуратность записи — условия, несоблюдение которых ведет к непроизводительной трате времени студента и преподавателя.

В заключение рассмотрим несколько примеров на установление единиц измерения и соотношений между ними.

1. Найти единицу измерения динамического коэффициента вязкости в СИ.

Уравнение Ньютона для силы трения P между параллельно движущимися слоями жидкости имеет вид:

$$ P = \mu F \frac{dv}{dy}, $$

где μ — динамический коэффициент вязкости; F — площадь трения; dv/dy — градиент скорости.

Решив это уравнение относительно μ, получаем следующую единицу измерения μ:

$$ [\mu] = \left[\frac{P}{F \, dv} \right] = \frac{N \cdot m}{m^2 \cdot s} = \frac{N}{m} = \frac{Pa \cdot s}{m^2 \cdot s} = \frac{kg \cdot m}{m^2 \cdot s} = \frac{kg}{m \cdot s}. $$

2. Найти единицу измерения коэффициента теплопроводности в СИ.

Для установления теплового потока Q через однородную плоскую стенку можно написать:

$$ Q = \frac{\lambda}{d} F \Delta t, $$
где λ — коэффициент теплопроводности; δ — толщина стенки; F — поверхность, через которую передается теплота; Δt — разность температур по обе стороны стенки.

Решив это уравнение относительно λ, получим:

$$[\lambda] = \left[\frac{Q}{F \Delta t} \right]_c = \frac{\text{Дж}}{\text{м}^2 \cdot \text{K}} = \frac{\text{Вт}}{\text{м} \cdot \text{K}}.$$

3. Найти соотношение между единицами измерения динамического коэффициента вязкости в системах СИ и СГС:

$$1 \text{ Па} \cdot \text{с} = 1 \frac{\text{кг}}{\text{м} \cdot \text{c}} = \frac{1000 \text{г}}{100 \cdot \text{см} \cdot \text{c}} = 10 \frac{\text{г}}{\text{см} \cdot \text{c}} = 10 \text{П} = 1000 \text{ сП};$$

$$1 \text{ сП} = 10^{-3} \text{Па} \cdot \text{с} = 1 \text{ мПа} \cdot \text{с}.$$

4. Установить соотношение между единицами измерения коэффициента теплопроводности $\text{kкал} / (\text{м} \cdot \text{ч} \cdot \text{оС})$ и $\text{Вт} / \text{м} \cdot \text{К}$:

$$1 \text{ ккал} / (\text{м} \cdot \text{ч} \cdot \text{оС}) = \frac{4190 \text{Дж}}{\text{м} \cdot 3600 \cdot \text{с} \cdot \text{К}} = 1,163 \text{ Вт} / \text{м} \cdot \text{К}.$$

5. Исходя из того, что 1 английский фунт $= 0,454 \text{ кг}$ и 1 $\text{оС} = 1,8 \text{ °F}$, установить соотношение между BTU (britанской тепловой единицей), ккал и Дж; 1 BTU — это количество теплоты, которое нужно затратить, чтобы нагреть 1 фунт воды на 1 оС. Удельная теплоемкость воды в британской системе единиц $c = 1 \text{ BTU} / \text{фунт} \cdot \text{оС}$. Искомое соотношение найдем с помощью известной формулы: $Q = cM (t_2 - t_1)$, где Q — количество теплоты, затраченное на нагревание M кг воды; c — удельная теплоемкость воды; t_1 и t_2 — начальная и конечная температуры.

Из уравнений

$$Q = 1 \text{ BTU} / (\text{фунт} \cdot \text{оС});$$

$$1 \text{ фунт} \cdot 1 \text{оС} = 1 \text{ BTU},$$

следует, что 1 BTU $= 0,252$ ккал.

Так как $1 \text{ ккал} = 4190 \text{ Дж}$, то $1 \text{ BTU} = 0,252 \cdot 4190 \text{ Дж} = 1055 \text{ Дж}.$

6. Выразить коэффициент теплопередачи $K = 50 \frac{\text{ BTU }}{\text{фут}^2 \cdot \text{ч} \cdot \text{оС}}$ в $\text{Вт} / (\text{м}^2 \cdot \text{К})$.

Поскольку 1 BTU $= 1055 \text{ Дж}$; 1 ft $= 0,305$ м; 1 °F $= 0,56$ K, то.

$$K = 50 \frac{1055 \text{Дж}}{(0,305 \text{м})^2 \cdot 3600 \cdot \text{с} \cdot 0,56 \text{K}} = 50 \cdot 5,6 \frac{\text{Дж}}{\text{м}^2 \cdot \text{с} \cdot \text{К}} = 280 \frac{\text{Вт}}{\text{м}^2 \cdot \text{К}}.$$
ГЛАВА 1

ОСНОВЫ ПРИКЛАДНОЙ ГИДРАВЛИКИ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРУМУЛЫ

1. Удельный вес (вес единицы объема) \(\gamma \) и плотность (масса единицы объема) \(\rho \) связаны зависимостью:

\[
\gamma = \rho g,
\]

где \(g = 9.81 \text{ m/s}^2 \) — ускорение свободного падения.

Так как в \text{СИ} за единицу массы (кг) принята масса некоторого эталона, а в технической системе (МКГСС) за единицу силы (кгс) принята вес этого же эталона, то плотность в единицах \text{СИ} (кг/м\(^3\)) численно равняется удельному весу в единицах системы МКГСС (кгс/м\(^3\)).

Относительной плотностью (относительным удельным весом) \(\Delta \) называется отношение плотности (удельного веса) вещества к плотности (удельному весу) воды:

\[
\Delta = \frac{\rho}{\rho_\text{в}} = \frac{\gamma}{\gamma_\text{в}}.
\]

В интервале температур от 0 до 100 °C плотность воды \(\rho_\text{в} \) с достаточной для технических расчетов точностью можно считать равной \(\rho_\text{в} = 1000 \text{ кг/м}^3 \).

Плотность смеси жидкостей, при смешении которых не происходит существенных физико-химических изменений, приближенно можно рассчитать, принимая, что объем смеси равен сумме объемов компонентов:

\[
\frac{1}{\rho_\text{см}} = \frac{x_1}{\rho_1} + \frac{x_2}{\rho_2} + \ldots,
\]

где \(x_1, x_2, \ldots \) — массовые доли компонентов смеси; \(\rho_\text{см}, \rho_1, \rho_2, \ldots \) — плотности смеси и ее компонентов.

По аналогичной формуле

\[
\frac{1}{\rho_0} = \frac{\hat{x}}{\rho_\text{тв}} + \frac{1 - \hat{x}}{\rho_\text{ж}}
\]

рассчитывают плотность суспензии \(\rho_0 \).

Здесь \(\hat{x} \) — массовая доля твердой фазы в суспензии; \(\rho_\text{тв} \) и \(\rho_\text{ж} \) — плотности твердой и жидкой фаз.
2. На основании уравнений Клапейрона *, плотность \(\rho \) любого газа при температуре \(T \) и давлении \(\rho \) может быть рассчитана по формуле:

\[
\rho = \frac{\rho_0}{T_p} \rho = \frac{M}{22,4} \frac{273\rho}{T_p} ,
\]

где \(\rho_0 = M/22,4 \text{ кг/м}^3 \) — плотность газа при нормальных условиях**; \(M \) — мольная масса газа, кг/кмоль; \(T \) — температура, К.

Давление \(\rho \) и \(\rho_0 \) должны быть выражены в одинаковых единицах.

Плотность смеси газов:

\[
\rho_{cm} = y_1\rho_1 + y_2\rho_2 + \ldots ,
\]

где \(y_1, y_2, \ldots \) — объемные доли компонентов газовой смеси; \(\rho_1, \rho_2, \ldots \) — соответствующие плотности компонентов.

3. Давление \(\rho \) столба жидкости высотой \(h \) при плотности жидкости \(\rho \) равняется:

\[
\rho = \rho gh .
\]

Здесь \(\rho \) выражено в Па; \(\rho \) — в кг/м\(^3\); \(g \) — в м/с\(^2\); \(h \) — в м.

Исходя из этого уравнения, получаем следующие соотношения между единицами давления:

1 атм = 760 мм рт. ст. = \(\rho gh = 13600 \cdot 9,81 \cdot 0,76 = 1,013 \cdot 10^5 \) Па =

= 1,033 \cdot 10^4 \text{ мм вод. ст.} = 1,033 \cdot 10^4 \text{ кгс/м}^2 = 1,033 \text{ кгс/см}^2 ;

1 кгс/см\(^2\) = 10^4 \text{ кгс/м}^2 = 9,81 \cdot 10^4 \text{ Па} = 735 \text{ мм рт. ст.} = 10^4 \text{ мм вод. ст.}

4. Основное уравнение гидростатики:

\[
\rho = \rho_0 + \rho gh ,
\]

где \(\rho \) — гидростатическое давление на глубине \(h \) (в м) от поверхности жидкости, Па; \(\rho_0 \) — давление на поверхность жидкости, Па.

Сила давления жидкости на плоскую стенку \(P \) (в Н):.

\[
P = (\rho_0 + \rho gh) F ,
\]

где \(\rho_0 \) — давление на поверхность жидкости, Па; \(h \) — глубина погружения центра тяжести стенки под уровнем жидкости, м; \(\rho \) — плотность жидкости, кг/м\(^3\); \(F \) — площадь поверхности стенки, м\(^2\); \(g = 9,81 \text{ м/с}^2 \) — ускорение свободного падения.

* В уравнении Клапейрона для 1 кмоль газа \(\rho v = RT \) газовая постоянная \(R = \frac{\rho v}{T} = \frac{760 \cdot 133,3 \cdot 22,4}{273} = 8310 \text{ Дж/(кмоль·К)}.\

** Т. е. при \(T_0 = 0 \text{°С} = 273,15 \text{ К} \) в \(\rho_0 = 760 \text{ мм рт. ст.} = 1,013 \cdot 10^5 \text{ Па}.\)
5. Единицы измерения динамического коэффициента вязкости *:

\[[\mu]_{\text{си}} = \frac{Н \cdot с}{м^2} = \text{Па} \cdot с = \frac{кг}{м \cdot с}; \]

\[[\mu]_{\text{МКГСС}} = \frac{кгс \cdot см}{м^2}; \]

\[[\mu]_{\text{СГС}} = \frac{дин \cdot с}{см^2} = \frac{г}{см \cdot с} = \Pi \text{ (пуаз).} \]

Соотношение между обычно применяемыми единицами измерения \(\mu \):

\[1 \text{ сП} = 10^{-3} \text{Па} \cdot с = \frac{1}{9810} \frac{кгс \cdot см}{м^2}. \]

Кинематический коэффициент вязкости в (м²/с) связан с динамическим коэффициентом вязкости \(\mu \) соотношением:

\[\nu = \frac{\mu}{\rho}. \quad (1.9) \]

6. Значения \(\mu \) для жидкостей при различных температурах можно определить по номограмме, приведенной на рис. V (см. Приложение).

При отсутствии экспериментальных данных динамический коэффициент вязкости многих органических жидкостей (при 20 °С) приближенно может быть вычислен по следующей эмпирической формуле:

\[\lg (\lg \mu) = (\Sigma An + \Sigma \rho) \frac{\rho}{10^3 M} — 2,9, \quad (1.10) \]

где \(\mu \) — динамический коэффициент вязкости жидкости при атмосферном давлении и 20 °С, мП; \(\rho \) — плотность жидкости, кг/м³; \(M \) — мольная масса, кг/кмоль; \(A \) — число одноименных атомов в молекуле органического соединения; \(n \) — численное значение атомной константы; \(\rho \) — поправка на групповую тошку атомов и характер связи между ними.

Атомные константы \(n \) и численные значения поправок \(\rho \) приведены в табл. X (см. Приложение).

Для определения \(\mu \) по уравнению (1.10) удобна номограмма (рис. 1, стр. 553), на которой величина \(\lg (\lg \mu) \) обозначена через \(y \). Если \(y \) — величина положительная, следует пользоваться правой шкалой, при отрицательном значении \(y \) — левой. Каждому значению \(y \) соответствует значение \(\mu \) — динамический коэффициент вязкости жидкости при 20 °С.

7. Для определения динамического коэффициента вязкости газов при различных температурах можно использовать номограмму, приведенную на рис. VI.

* Часто динамический коэффициент вязкости сокращенно называют просто вязкостью.
Динамический коэффициент вязкости газовых смесей может быть вычислен по приближенной формуле:

\[
\frac{M_{\text{cm}}}{\mu_{\text{cm}}} = \frac{y_1 M_1}{\mu_1} + \frac{y_2 M_2}{\mu_2} + \ldots, \quad (1.11)
\]

где \(M_{\text{cm}}, M_1, M_2, \ldots\) — мольные массы смеси газов и отдельных компонентов; \(\mu_{\text{cm}}, \mu_1, \mu_2, \ldots\) — соответствующие динамические коэффициенты вязкости; \(y_1, y_2, \ldots\) — объемные доли компонентов в смеси.

Для вычисления \(\mu_{\text{cm}}\) для газов применяется также следующая эмпирическая формула, проверенная на ряде газовых смесей (коксовый газ, генераторный газ и др.) при атмосферном давлении:

\[
\mu_{\text{cm}} = \frac{y_1 \mu_1 \sqrt{M_1 T_{\text{кр}}_1} + y_2 \mu_2 \sqrt{M_2 T_{\text{кр}}_2} + \ldots}{y_1 \sqrt{M_1 T_{\text{кр}}_1} + y_2 \sqrt{M_2 T_{\text{кр}}_2} + \ldots} \quad (1.12)
\]

Здесь \(\mu_\text{cm}\) — динамический коэффициент вязкости смеси при температуре \(T\); \(\mu_1, \mu_2, \ldots\) — динамические коэффициенты вязкости компонентов при температуре \(T\); \(y_1, y_2, \ldots\) — объемные доли компонентов; \(M_1, M_2, \ldots\) — мольные массы компонентов; \(T_{\text{кр}}_1, T_{\text{кр}}_2, \ldots\) — критические температуры компонентов, К.

В табл. XI приведены значения \(\sqrt{T_{\text{кр}} M}\) для различных газов.

Изменение динамического коэффициента вязкости газов с температурой выражается формулой:

\[
\mu_t = \mu_0 \left(\frac{273 + C}{T + C} \right)^{3/2} \cdot T, \quad (1.13)
\]

где \(\mu_0\) — динамический коэффициент вязкости при 0 °C; \(T\) — температура, К; \(C\) — постоянная Сатерленда [13, т. 1] — см. табл. V.

8. Для смеси нормальных (неассоциированных) жидкостей значение \(\mu_{\text{cm}}\) может быть вычислено по формуле:

\[
\lg \mu_{\text{cm}} = x_1 \lg \mu_1 + x_2 \lg \mu_2 + \ldots, \quad (1.14)
\]

где \(\mu_1, \mu_2, \ldots\) — динамические коэффициенты вязкости отдельных компонентов; \(x_1, x_2, \ldots\) — мольные доли компонентов в смеси.

В соответствии с аддитивностью текучести компонентов динамический коэффициент вязкости смеси нормальных жидкостей определяется уравнением:

\[
\frac{1}{\mu_{\text{cm}}} = \frac{x_{\text{в1}}}{\mu_1} + \frac{x_{\text{в2}}}{\mu_2} + \ldots, \quad (1.14a)
\]

где \(x_{\text{в1}}, x_{\text{в2}}, \ldots\) — объемные доли компонентов в смеси.

Динамический коэффициент вязкости разбавленных суспензий \(\mu_0\) может быть рассчитан по формулам: при концентрации твердой фазы менее 10% (об.)

\[
\mu_0 = \mu_\text{ж} (1 + 2,5\varphi); \quad (1.15)
\]

Шрифт: Основной
при концентрации твердой фазы до 30% (об.)

\[\mu_c = \mu_k \frac{0.59}{(0.77 - \varphi)^2}, \]

(1.15a)

Здесь \(\mu_k \) — динамический коэффициент вязкости чистой жидкости; \(\varphi \) — объемная доля твердой фазы в суспензии.

9. Для нахождения динамического коэффициента вязкости жидкости по динамическому коэффициенту вязкости эталонного вещества может быть применено правило линейности однозначных химико-технологических функций, установленное К. Ф. Павловым. На основании правила линейности получаем *

\[\frac{t_{\mu_1} - t_{\mu_2}}{\Delta_{\mu_1} - \Delta_{\mu_2}} = K = \text{const}, \]

(1.16)

где \(t_{\mu_1} \) и \(t_{\mu_2} \) — температуры жидкости; \(\Delta_{\mu_1} \) и \(\Delta_{\mu_2} \) — температуры эталонного вещества, при которых его динамические коэффициенты вязкости равны соответствующим динамическим коэффициентам вязкости жидкости \(\mu_1 \) и \(\mu_2 \).

Для многих жидкостей зависимость между \(\lg \mu \) и \(1/T \) практически линейна:

\[\lg \mu = a + \frac{b}{T}, \]

(1.16a)

gде \(a \) и \(b \) — индивидуальные константы жидкости; \(T \) — температура, К.

Как следует из последнего уравнения, будет линейна и зависимость между логарифмами динамических коэффициентов вязкости двух жидкостей \(A \) и \(B \) (при одинаковых температурах):

\[\frac{\lg \mu_A, t_1 - \lg \mu_A, t_2}{\lg \mu_B, t_1 - \lg \mu_B, t_2} = \text{const}. \]

(1.16b)

При приближенном расчете динамических коэффициентов вязкости жидкостей по правилу линейности результаты будут тем надежнее, чем ближе по своей физико-химической природе две сопоставляемые жидкости (водные растворы солей — вода, предельные углеводороды — гептан и т. п.).

10. Уравнения расхода.

Объемный расход жидкости или газа \(V \) (в м³/с):

\[V = w f. \]

(1.17)

Массовый расход жидкости или газа \(M \) (в кг/с):

\[M = V \rho = w f \rho. \]

(1.18)

Здесь \(f \) — площадь поперечного сечения потока, м²; \(w \) — средняя скорость потока, м/с; \(\rho \) — плотность жидкости или газа, кг/м³.

Для трубопровода круглого сечения уравнение (1.17) принимает вид:

\[V = 0.785 d^2 w, \]

gде \(d \) — внутренний диаметр трубы, м.

* Это соотношение экспериментально было найдено А. Портером.
Таблица 1.1

<table>
<thead>
<tr>
<th>Поток</th>
<th>(w, \text{ м/с})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газы при естественной тяге</td>
<td>2—4</td>
</tr>
<tr>
<td>Газы при атмосферном или близком к нулю давлении в вентиляционных газоходах</td>
<td>5—20</td>
</tr>
<tr>
<td>Жидкости при движении самотеком</td>
<td>0,1—0,5</td>
</tr>
<tr>
<td>Жидкости в напорных трубопроводах</td>
<td>0,5—2,5</td>
</tr>
<tr>
<td>Водяной пар при абсолютно низком давлении (\rho_{абс}):</td>
<td></td>
</tr>
<tr>
<td>(\geq 4,9 \cdot 10^4 \text{ Па} (0,5 \text{ кгс/см}^2))</td>
<td>15—40</td>
</tr>
<tr>
<td>((1,96-4,9) \cdot 10^4 \text{ Па} (0,2-0,5 \text{ кгс/см}^2))</td>
<td>40—60</td>
</tr>
</tbody>
</table>

При заданном расходе \(V \) и принятой скорости \(w \) диаметр трубопровода определяется по уравнению:

\[
d = \sqrt{\frac{V}{0,785w}}. \tag{1.19}
\]

По этому уравнению построена номограмма (рис. IV).

Ориентировочные значения скоростей, принимаемых при расчетах внутризаводских трубопроводов, приведены в табл. 1.1.

Уравнение неразрывности (сплошности) для несжимаемой жидкости, протекающей по трубопроводу переменного сечения:

\[
V = w_1 f_1 = w_2 f_2 = w_3 f_3 = \ldots \tag{1.20}
\]

11. Основные критерии гидродинамического подобия потоков, протекающих по трубам и каналам.

Критерий Рейнольдса, характеризующий гидродинамический режим и являющийся мерой отношения сил инерции и внутреннего трения в потоке:

\[
Re = \frac{w d \rho / \mu}{w d / v}, \tag{1.21}
\]

где \(w \) — средняя скорость потока, м/с; \(d \) — диаметр трубопровода, м; \(\rho \) — плотность жидкости, кг/м\(^3\); \(\mu \) — динамический коэффициент вязкости, Па·с; \(v \) — кинематический коэффициент вязкости, м\(^2\)/с.

Для потоков, проходящих по прямым трубам, характерны следующие значения критерия Рейнольдса:

- Ламинарное течение: \(Re \ll 2300 \)
- Переходная область: \(2300 \ll Re \ll 10000 \)
- Развитое турбулентное течение: \(Re \gg 10000 \)

Для потоков, проходящих по изогнутым трубам (гмееевикам), критическое значение \(Re_{кр} \) выше, чем в прямых трубах, и зависит от отношения \(d/D \), где \(d \) — внутренний диаметр трубы змеевика, \(D \) — диаметр витков змеевика. Эта зависимость представлена на рис. 1.1.

Для потоков некруглого поперечного сечения в выражение для \(Re \) подставляется эквивалентный диаметр, равный укругленному гидравлическому радиусу.

17
Гидравлический радиус \(r_t \) представляет собой отношение площади перечного сечения потока \(I \) к омываемому потоком (смоченному) периметру \(\Pi \):

\[
r_t = I / \Pi.
\]
(1.22)

Для трубы круглого сечения, сплошь заполненной жидкостью:

\[
r_t = \frac{\pi d^2}{4 \pi d} = \frac{d}{4}.
\]
(1.23)

Следовательно, для потоков некруглого сечения вместо диаметра можно применять эквивалентный диаметр:

\[
d_e = 4 r_t = 4I / \Pi.
\]
(1.24)

Критери́й Фруда, являющийся мерой отношения сил инерции и тяжести в потоке:

\[
Fr = \frac{w^2}{gd}.
\]
(1.25)

gде \(g \) — ускорение свободного падения, \(\text{m/s}^2 \).

Критери́й Эйлера, являющийся мерой отношения сил давления и инерции в потоке:

\[
Eu = \frac{\Delta p}{\rho w^2},
\]
(1.26)
где \(\Delta p \) — разность давлений (потеря давления, затраченного на преодоление гидравлического сопротивления), \(\text{Па} \).

12. Уравнение Бернулли для невязкой (идеальной) несжимаемой жидкости:

\[
z_1 + \frac{p_1}{\rho g} + \frac{w_1^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{w_2^2}{2g}.
\]
(1.27)

Для вязкой (реальной) несжимаемой жидкости:

\[
z_1 + \frac{p_1}{\rho g} + \frac{w_1^2}{2g} - h_\Pi = z_2 + \frac{p_2}{\rho g} + \frac{w_2^2}{2g}.
\]
(1.27а)

Здесь \(z \) — геометрический (высотный) напор, \(\text{м} \); \(p/\rho g \) — пьезометрический (статический) напор, \(\text{м} \); \(w^2/(2g) \) — скоростной (динамический) напор, \(\text{м} \); \(h_\Pi \) — напор, потерянный на преодоление сопротивлений, \(\text{м} \).

13. Зависимость между средней скоростью \(w \) и максимальной (осевой) скоростью \(w_{\text{макс}} \) в трубопроводе:

а) при ламинарном режиме \(w = 0,5 w_{\text{макс}} \);

б) при турбулентном режиме отношение \(w/w_{\text{макс}} \) зависит от величины критерия \(Re = w_{\text{макс}} \rho d / \mu \) (рис. 1.2).

Приближенно при турбулентном режиме \(w = (0,8 \div 0,9) w_{\text{макс}} \). *

* При больших значениях Re отношение \(w/w_{\text{макс}} \) может быть и выше 0,9.
14. Скорость истечения жидкости \(w \) (в м/с) из малого отверстия в дне или в стенке сосуда при постоянном уровне жидкости в сосуде:

\[
w = \phi \sqrt{2gH},
\]
(1.28)
где \(\phi \) — коэффициент скорости, безразмерный; \(g \) — ускорение свободного падения, м/с²; \(H \) — высота уровня жидкости над центром отверстия, м.

Если давление на поверхности жидкости в сосуде \((\rho_0, \text{Па}) \) и давление в пространстве, куда вытекает струя \((\rho, \text{Па}) \), неодинаковы, то в формулу (1.28) вместо \(H \) надо подставить величину

\[
H' = H + \frac{\rho_0 - \rho}{\rho g},
\]
где \(\rho \) — плотность вытекающей жидкости, кг/м³.

Объемный расход жидкости \(V \) (в м³/с), вытекающей через отверстие площадью \(f_0 \) (в м²), при постоянном уровне жидкости в сосуде и при \(\rho_0 = \rho \) составляет:

\[
V = \alpha f_0 \sqrt{2gH}.
\]
(1.29)
Здесь \(\alpha \) — безразмерный коэффициент расхода, представляющий собой произведение коэффициента скорости \(\phi \) и коэффициента сжатия струи \(\epsilon \):

\[
\alpha = \phi \epsilon.
\]
(1.30)

15. Время опорожнения \(\tau \) (в с) открытого сосуда, имеющего постоянную площадь поперечного сечения \(f \), через отверстие площадью \(f_0 \) может быть подсчитано по уравнению:

\[
\tau = \frac{2f \sqrt{H}}{\alpha f_0 \sqrt{2g}},
\]
(1.31)
где \(H \) — начальный уровень жидкости над отверстием, м.

16. Измерение расхода жидкости или газа нормальной диафрагмой (рис. 1.3).
Объемный расход жидкости или газа \(V \) (в м³/с):

\[
V = \alpha k f_0 \sqrt{2 \frac{\Delta \rho}{\rho}} = \alpha k f_0 \sqrt{2gH \frac{\rho_m - \rho}{\rho}}.
\]
(1.32)
где \(\alpha \) — коэффициент расхода нормальной диафрагмы в гладком (нешероховатом) трубопроводе (табл. XV); \(k \) — поправочный множитель, учитывающий шероховатость стенок трубопровода (средние значения \(k \) для трубопроводов приведены в табл. XVI; для гидравлически гладких трубопроводов \(k = 1 \); \(f_0 = 0,785d_0^2 \) — площадь отверстия диафрагмы, м²; \(d_0 \) — диаметр отверстия, м; \(H \) — разность уровней жидкости в дифманометре, присоединенном к диафрагме, м; \(\rho_m \) — плотность жидкости в дифманометре, кг/м³; \(\rho \) — плотность жидкости (или газа), протекающей по трубопроводу, кг/м³.
Так как коэффициент расхода диафрагмы α зависит от $Re = \frac{wd}{\nu}$, а значение Re заранее неизвестно, то при измерении расхода V следует принять по табл. XV среднее значение α для данного m. Затем, вычислив V, определяют значение Re, уточняют величину α и, если нужно, корректируют расчет.

17. Измерение расхода жидкости или газа с помощью пневмометрической трубки Пито — Прандтля (рис. 1.4).

Трубку Пито — Прандтля устанавливают точно по оси трубопровода и при помощи присоединенного к ней дифманометра находят величину $\Delta p = H \left(\rho_m - \rho \right) g = \Delta p_{ср}$. Затем рассчитывают максимальную (осевую) скорость потока $w_{макс} = \sqrt{2gH \left(\rho_m - \rho \right) / \rho}$, определяют величину $Re = \frac{w_{макс} \Delta p}{\mu}$ и по графику (рис. 1.2) находят отношение $w/w_{макс}$, из которого вычисляют среднюю скорость w.

Расход жидкости или газа определяют по формуле (1.17): $V = wf$, где f — площадь поперечного сечения трубопровода, m^2.

18. Мощность N (в кВт), потребляемая двигателем насоса (или вентилятора), рассчитывается по формуле:

$$N = \frac{V \Delta p}{1000\eta} = \frac{V \rho g H_H}{1000\eta}.$$ \hspace{1cm} (1.33)

Здесь V — объемный расход жидкости или газа, $m^3/с$; Δp — повышение давления, сообщаемое насосом (вентилятором) перекачиваемому потоку и равное полному гидравлическому сопротивлению сети*, Па; H_H — напор, создаваемый

* Сетью называется та система трубопроводов и аппаратов, через которую насос (вентилятор) прокачивает жидкость (газ). Давление, полученное жидкостью от насоса, полностью расходуется на преодоление всех гидравлических сопротивлений сети.
насосом, m; ρ — плотность жидкости, kg/m^3; $g = 9,81 m/c^2$ — ускорение свободного падения; η — общий к. п. д. насосной (вентиляционной) установки — см. формулу (2.4).

При перекачивании жидкостей насосами уравнение (1.33) справедливо при любых Δp, а для газов лишь при $\Delta p < 0,981 \times 10^4$ Па, или 0,1 кгс/см2 (вентиляторы). Если для газов $\Delta p \geq 0,981 \cdot 10^4$ Па (газодувки, компрессоры), то расход энергии подсчитывается по термодинамическим формулам — см. гл. 2.

При расчете по уравнению (1.33) мощности, потребляемой насосом или вентилятором, величину Δp, равную полному гидравлическому сопротивлению сети, подсчитывают как сумму следующих слагаемых:

$$\Delta p = \Delta p_{ck} + \Delta p_{tr} + \Delta p_{m. c} + \Delta p_{pod} + \Delta p_{dop},$$

где Δp_{ck} — затрата давления на создание скорости потока на выходе из сети (скорость в пространстве всасывания равна нулю); Δp_{tr} — потеря давления на преодоление сопротивления трения; $\Delta p_{m. c}$ — потеря давления на преодоление местных сопротивлений; $\Delta p_{pod} = \rho gh_{pod}$ — затрата давления на подъем жидкости; $\Delta p_{dop} = \rho_2 - \rho_1$ — разность давлений в пространстве нагнетания (ρ_2) и в пространстве всасывания (ρ_1).

19. Затрата давления на создание скорости потока:

$$\Delta p_{ck} = \frac{w^2 \rho}{2},$$

где w — скорость потока в трубе, m/c; ρ — плотность жидкости (газа), kg/m^3.

20. Потеря давления на трение в прямых трубах и каналах. А. И зо т е р м и ч е с к и й п о т о к (рис. 1.5 и 1.6).

Температура протекающей по трубе жидкости (газа) постоянна. Расчетная формула:

$$\Delta p_{tr} = \lambda \frac{L}{d_9} \frac{w^2 \rho}{2},$$

или в критериальной форме (для данной шероховатости стенки трубы):

$$Eu = C Re^{0.7} \Gamma.$$

В этих формулах λ — коэффициент трения, безразмерный (его значение в общем случае зависит от режима течения и шероховатости стенки трубы ϵ); d_9 — эквивалентный диаметр, m (для трубы круглого сечения $d_9 = d$); L — длина трубы, m; w — скорость потока, m/c; ρ — плотность жидкости или газа, kg/m^3; $Eu = \Delta p_{tr} / (\rho w^2)$; $Re = \frac{w d_9 \rho}{\mu}$; $\Gamma = L / d_9$.

Значение коэффициента трения λ определяют по данным рис. 1.5 * и 1.6 или по нижеследующим формулам.

1. Ламинарное течение ($Re < 2300$). Коэффициент λ не зависит от шероховатости стенки трубы, а зависит только от Re:

$$\lambda = 64/Re;$$

2. При турбулентном течении.
Рис. 1.5. Зависимость коэффициента трения λ от критерия Re и степени шероховатости d_* / ε:

$\lambda = A / Re$.

Значения A для сечений различной формы приведены в табл. XIV.

При изотермическом ламинарном течении жидкостей и газов по трубам потеря давления на трение может быть рассчитана также по формуле Гагена — Пуазейля:

$$\Delta p_{tr} = 32 \frac{\omega \mu L}{d^3}.$$

(1.39)
Рис. 1.6. Зависимость отношения $Eu/\Gamma = \lambda/2$ от критерия Re и относительной шероховатости e/d_{0}.
11. Турбулентное течение \((\text{Re} \gg 2300)\). 1. Гидравлически гладкие трубы (стеклянные, медные, свинцовые):

\[
\lambda = 0,316 / \text{Re}^{0,25}.
\]
(1.40)

Формула (1.40) действительна при \(\text{Re} < 100 000\).

2. Гидравлически шероховатые трубы (стальные, чугунные).

Безразмерной геометрической характеристикой гидравлически шероховатых труб кроме отношения \(L/d_3\) является относительная шероховатость, т. е. отношение средней высоты выступов (бугорков) \(e\) на стенках трубы к ее эквивалентному диаметру \(d_3\):

\[
e = e/d_3.
\]
(1.41)

Применяется также и обратная величина \((d_3/e)\).

Ориентировочные средние значения шероховатости стенок труб \(e\) (в мм) приведены в табл. XII.

Формула для расчета коэффициента трения \(\lambda\) в шероховатых трубах

\[
\frac{1}{\sqrt[3]{\lambda}} = -2 \log \left[\frac{e}{3,7} + \left(\frac{6,81}{\text{Re}} \right)^{0,9} \right]
\]
(1.42)

применяется и для автомодельной области, если второе слагаемое в квадратных скобках приравнять нулю.

Б. Н е и з о т е р м и ч е с к и й п о т о к.

При неизотермическом течении, когда протекающая по трубе жидкость нагревается или охлаждается (температура стенки трубы отличается от температуры жидкости), следует правые части формул (1.38) и (1.40) умножать на безразмерные поправочные коэффициенты \(x\) [4.1]:

для ламинарного режима

\[
x = \left(\frac{\text{Pr}_{ct}}{\text{Pr}_{жк}} \right)^{1/3} \left[1 + 0,22 \left(\frac{\text{Gr}_{жк}\text{Pr}_{жк}}{\text{Re}_{жк}} \right)^{0,15} \right];
\]
(1.43)

для турбулентного режима в технически гладких трубах

\[
x = \left(\frac{\text{Pr}_{ct}}{\text{Pr}_{жк}} \right)^{1/3},
\]
(1.44)

где \(\text{Re}_{жк}, \text{Pr}_{жк}, \text{Gr}_{жк}\) — критерии Рейнольдса, Прандтля и Грасгофа (см. стр. 151), вычисленные для средней температуры жидкости; \(\text{Pr}_{ct}\) — критерий Прандтля, вычисленный для жидкости при температуре стенки трубы.

Так как для газов значение критерия \(\text{Pr}\) с изменением температуры практически остается постоянным, то поправочный коэффициент \(x\) по формуле (1.44) для газов равен единице.

С повышением температуры у капельных жидкостей значения критерия \(\text{Pr}\) уменьшаются (рис. X111), поэтому поправочный коэффициент \((\text{Pr}_{ct}/\text{Pr}_{жк})^{1/3}\) при охлаждении жидкости \((t_{ct} < t_{жк})\) больше единицы, а при нагреве жидкости \((t_{ct} > t_{жк})\) меньше единицы.

21. Потеря давления на трение в изогнутой трубе (змеевике) \(\Delta p_{3м}\) больше, чем в прямой трубе \(\Delta p_{пр}^\psi\):

\[
\Delta p_{3м} = \Delta p_{пр}^\psi.
\]
(1.45)
Безразмерный поправочный коэффициент $\psi \gg 1$ вычисляют по формуле:
\[\psi = 1 + 3.54 \frac{d}{D}, \]
(1.46)
где d — внутренний диаметр трубы; D — диаметр витка спирального ограждения (см. рис. 1.1).

22. Потеря давления на преодоление местных сопротивлений (колена, диафрагмы, запорные приспособления, внезапные расширения или сужения и т. п.).
Потеря давления в каждом местном сопротивлении является суммой двух потерь: на трение и дополнительной потери, вызванной изменением направления или площади поперечного сечения потока. Так как при расчете сопротивления трения $\Delta p_{т}p_{тp}$ учитывают всю длину трубопровода L (включающую местные сопротивления), то $\Delta p_{м.с}$ в уравнении (1.34) представляет собой сумму этих дополнительных потерь давления.
Расчет потерь давления на местные сопротивления осуществляется по формуле:
\[\Delta p_{м.с} = \sum \xi \frac{w^2 \rho}{2}, \]
(1.47)
где ξ — коэффициент местного сопротивления, безразмерный (его значения для некоторых местных сопротивлений приведены в табл. X11).

Иногда применяется другой способ расчета, по которому потеря давления в местном сопротивлении приравнивается гидравлическому сопротивлению прямой трубы эквивалентной длины:
\[\Delta p_{м.с} = \lambda \frac{L_{a}}{d} \frac{w^2 \rho}{2} = \lambda n \frac{w^2 \rho}{2}. \]
(1.48)
Здесь $L_{a} = nd$ — эквивалентная длина прямой трубы, имеющей такое же гидравлическое сопротивление, как и данное местное сопротивление; n — коэффициент (безразмерный), значения которого приводятся в справочниках (например, для вентиля нормального $n = 100 \div 120$, для вентиля прямоугольного $n = 10 \div 20$).

23. Если сеть представляет собой трубопровод постоянного поперечного сечения, то скорость жидкости (газа) постоянна по длине трубопровода и полное гидравлическое сопротивление сети Δp_{c} в соответствии с уравнением (1.34) будет равно
\[\Delta p_{c} = \frac{w^2 \rho}{2} \left(1 + \frac{\lambda L}{d_3} + \Sigma \xi \right) + \rho g h_{ннд} + (p_2 - p_1) \]
(1.49)
или при втором способе расчета потеря на местные сопротивления:
\[\Delta p_{с} = \frac{w^2 \rho}{2} \left[1 + \frac{\lambda (L + \Sigma L_{а})}{d_3} \right] + \rho g h_{ннд} + (p_2 - p_1). \]
(1.50)

24. Гидравлическое сопротивление пучков труб при поперечном омывании их потоком.
Таблица 1.2

<table>
<thead>
<tr>
<th>φ^0</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0,95</td>
<td>0,83</td>
<td>0,69</td>
<td>0,53</td>
<td>0,38</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Коридорные пучки:

$$
Eu = b \left(3 + 4,5m\right) \left(\frac{s_1}{d}\right)^{-0,23} Re^{-0,26}.
$$

(1.51)

Шахматные пучки:

при $\frac{s_1}{d} < \frac{s_2}{d}$

$$
Eu = b \left(2 + 3,3m\right) Re^{-0,28}.
$$

(1.52)

при $\frac{s_1}{d} > \frac{s_2}{d}$

$$
Eu = b \left(2,7 + 1,7m\right) Re^{-0,23}.
$$

(1.53)

В этих формулах b — поправочный коэффициент, зависящий от угла атаки φ (угол между осью трубы и направлением движения потока) и определяемый по табл. 1.2; m — число рядов труб в пучке в направлении движения потока; d — наружный диаметр трубы; s_1 и s_2 — поперечный и продольный шаги.

Скорость потока подсчитывается по самому узкому сечению пучка; значения физико-химических свойств берут для средней температуры потока. Критерий Re рассчитывается по наружному диаметру трубы.

25. Гидравлическое сопротивление кожухотрубчатых теплообменников.

Для трубного пространства теплообменника, а также для межтрубного пространства без поперечных перегородок (см. рис. 1.21):

$$
\Delta \rho = \lambda \frac{NL}{d_s} \frac{w^2 \rho}{2} + \sum \zeta \frac{w^2 \rho}{2},
$$

(1.54)

где L — длина одного хода, m; n — число ходов. Остальные обозначения те же, что и в предыдущих формулах.

Для коэффициентов местных сопротивлений ζ в кожухотрубчатых теплообменниках принимают следующие значения:

Трубное пространство

Входная или выходная камера	1,5
Поворот на 180° между ходами или секциями	2,5
Вход в трубы или выход из них	1,0

Межтрубное пространство

Вход в межтрубное пространство или выход из него	1,5
Поворот на 180° через перегородку в межтрубном пространстве	1,5
Поворот на 90° в межтрубном пространстве	1,0
При наличии поперечных перегородок в межтрубном пространстве (см. рис. 4.4) гидравлическое сопротивление в нем определяют по формулам (1.51) — (1.53) *

Скорости жидкости (газа) в штуцерах обычно близки к скоростям в трубах или в межтрубном пространстве. Если же скорость в штуцерах больше, то потери давления при входе в теплообменник и выходе из него рассчитывают по скорости в штуцерах.

26. Гидравлическое сопротивление скрубберных насадок.

Сопротивление слоя сухой (неорощаемой) насадки высотой H:

$$\Delta p_{сух} = \lambda \frac{H}{d_o} \frac{w_r^2 \rho}{2},$$

где λ — коэффициент сопротивления при прохождении газа через слой насадки, безразмерный; H — высота слоя насадки, м; d_o — эквивалентный диаметр, м; w_r — скорость газа в свободном сечении насадки (действительная), м/с; ρ — плотность газа, кг/м3.

Эквивалентный диаметр можно выразить через характеристики насадки — свободный объем $V_{св}$ м3/м3 (численно равный свободному сечению в м2/м2) и удельную поверхность σ м2/м3:

$$d_o = 4f/\Pi = 4V_{св}/\sigma.$$

Действительная скорость газа w_r связана с фиктивной скоростью w (отнесенной к полному поперечному сечению аппарата) зависимостью:

$$w_r = w/V_{св}.$$

По данным Н. М. Жаворонкова, для неупорядоченной насадки из колец (навалом):

$$\text{при } Re_r < 40 \lambda = 140/Re_r;$$

$$\text{при } Re_r > 40 \lambda = 16/Re_r^{0.2},$$

где $Re_r = w_r d_o / \mu = 4w_r \rho / (\mu \sigma)$.

Расчет гидравлического сопротивления орошаемых насадок более сложен — см. формулы и графики, приведенные в [6.1 и 6.3].

27. Гидравлическое сопротивление тарельчатых колонных аппаратов.

Сопротивление барботажной тарелки $\Delta \rho$ рассчитывают как сумму трех слагаемых:

$$\Delta \rho = \Delta p_{сух} + \Delta \rho_o + \Delta \rho_{tg},$$

* Применяется также формула

$$\varepsilon = 3m/Re^{0.2},$$

где m — число рядов труб в направлении движения потока.
Здесь $\Delta \rho_{сух} = \text{сопротивление сухой тарелки; } \Delta \rho_{г} = \text{сопротивление, вызываемое силами поверхностного натяжения;} $ $\Delta \rho_{гн} = \text{сопротивление газожидкостного слоя на тарелке.}$

Сопротивление сухой тарелки:

$$\Delta \rho_{сух} = \zeta \frac{w_{0}^{2}}{2}, \tag{1.61}$$

где $w_{0} = \text{скорость газа в прорезях колпачка или в отверстиях тарелки, м/с; }\rho_{г} = \text{плотность газа, кг/м}^{3}; \zeta = \text{коэффициент сопротивления, равный:}$

Для колпачковых тарелок	4,5—5,0	
Для ситчатых тарелок:	со свободным сечением отверстий 7—10%	1,82	
		11—25%	1,45
Для решетчатых провальных тарелок	1,4—1,5	

Сопротивление, вызываемое силами поверхностного натяжения:

$$\Delta \rho_{г} = 4\sigma/d_{a}, \tag{1.62}$$

Здесь $\sigma = \text{поверхностное натяжение, Н/м; }d_{a} = \text{эквивалентный диаметр отверстия, м. Для колпачковых тарелок }d_{a} = 4f/\Pi (f = \text{площадь свободного сечения прорези, }\Pi = \text{периметр прорезей}), \text{для ситчатых и диарчатых провальных тарелок }d_{a} = \text{диаметру отверстия, а для решетчатых провальных тарелок — удвоенной ширине щели.}$

Сопротивление газожидкостного слоя (при тех скоростях газа, которые применяются в тарельчатых массообменных колоннах — см. гл. 6 и 7):

а) на колпачковой тарелке

$$\Delta \rho_{гн} = 1,3k\rho_{ж} \left(1 + \frac{e}{2} + \Delta h\right)g. \tag{1.63}$$

где $g = \text{ускорение свободного падения, м/с}^{2}; k = \text{относительная плотность газожидкостного слоя (пены) [при расчетах принимают приближенно } k = 0,5]; \rho_{ж} = \text{плотность жидкости, кг/м}^{3}; l = \text{расстояние от верхнего края прорезей до сливного порога, м (рис. 1.7); }e = \text{высота прорези; }m; \Delta h = \text{высота уровня жидкости над сливным порогом, м; }$

б) на ситчатой тарелке

$$\Delta \rho_{гн} = 1,3gk\rho_{ж} \left(h_{н} + \Delta h\right), \tag{1.64}$$

где $h_{н} = \text{высота сливного порога, м (см. рис. 7.18).}$

Величина Δh определяется по формуле истечения через водослив с учетом плотности пены:

$$\Delta h = \left(\frac{V_{ж}}{1,85\Pi k}\right)^{2/3}, \tag{1.65}$$

где $V_{ж} = \text{объемный расход жидкости, м}^{3}/\text{с; }\Pi = \text{периметр слива, м; }k = 0,5$ (см. выше).
ПРИМЕРЫ

Пример 1.1. Относительный удельный вес нефти 0,89. Определить плотность нефти в СИ и в системе МКГСС.

Решение. 1) СИ. Согласно уравнению (1.2), \(\Delta = \rho / \rho_\beta = \gamma / \gamma_\beta \), поэтому

\[\rho = \Delta \rho_\beta = 0,89 \cdot 1000 = 890 \text{ кг/м}^3. \]

2) МКГСС:

\[\gamma = \Delta \gamma_\beta = 0,89 \cdot 1000 = 890 \text{ кгс/м}^3. \]

По уравнению (1.1)

\[\rho = \frac{\gamma}{g} = \frac{890}{9,81} = 90,6 \text{ кгс.с}^2/\text{м}^4. \]

Пример 1.2. Определить в СИ плотность диоксида азота при \(\rho_{\text{изб}} = 10 \text{ кгс/см}^2 \) и \(t = 20 \text{°C} \). Атмосферное давление 760 мм рт. ст. (1,03 кгс/см\(^2\); 101,3 кПа).

Решение. По уравнению (1.5)

\[\rho = \frac{M}{22,4} \frac{273\rho}{T \rho_0} = \frac{46 \cdot 273 \cdot 11,03}{22,4 \cdot 293 \cdot 1,03} = 20,5 \text{ кг/м}^3. \]

Пример 1.3. Определить плотность воздуха при вакууме (т. е. разрежении) 440 мм рт. ст. (58,6 кПа) и температуре — 40 °C. Атмосферное давление в данном случае принять равным 750 мм рт. ст. (99,97 кПа).

Решение. Мольная масса воздуха (79% азота и 21% кислорода по объему):

\[M = 0,79 \cdot 28 + 0,21 \cdot 32 = 28,8 \text{ кг/кмоль}. \]

По формуле (1.5)

\[\rho = \frac{M}{22,4} \frac{273\rho}{T \rho_0} = \frac{28,8 \cdot 273 (750 - 440)}{22,4 \cdot 233 \cdot 760} = 0,615 \text{ кг/м}^3. \]

Пример 1.4. По трубам одноходового кожухотрубчатого теплообменника (число труб \(n = 100 \), наружный диаметр труб 20 мм, толщина стенки 2 мм) проходит воздух при средней температуре 50 °C и давлении (по манометру) 2 кгс/см\(^2\) со скоростью 9 м/с. Барометрическое давление 740 мм рт. ст. Определить: а) массовый расход воздуха; б) объемный расход воздуха при рабочих условиях; в) объемный расход воздуха при нормальных условиях.

Решение. Плотность воздуха при нормальных условиях \(\rho_0 = 1,293 \text{ кг/м}^3 \) (табл. V).

Рабочее давление (абсолютное):

\[\rho = \rho_{\text{бар}} + \rho_{\text{ман}} = 740 - 133,3 + 98 100 \cdot 2 = 294 800 \text{ Па}, \]

или

\[\rho = \rho_{\text{бар}} + \rho_{\text{ман}} = 740 + 735 \cdot 2 = 2210 \text{ мм рт. ст.} \]

Соотношение между единицами измерения см. табл. LVIII.

Плотность воздуха при рабочих условиях:

\[\rho = \rho_0 \frac{p T_0}{p_0 T} = 1,293 \frac{294 800 \cdot 273}{101 300 (273 + 50)} = 3,18 \text{ кг/м}^3. \]
\[\rho = \rho_0 \frac{pT_0}{p_0T} = 1.293 \frac{2210 \cdot 273}{760 (273 + 50)} = 3.18 \text{ кг/м}^3. \]

Массовый расход воздуха по уравнению (1.18):

\[M = \frac{V\rho}{\omega \rho} = \omega n \cdot 0.785 d^2 \rho = 9.100 \cdot 0.785 \cdot 0.016 \cdot 3.18 = 0.57 \text{ кг/с.} \]

Объемный расход воздуха при рабочих условиях:

\[V = M/\rho = 0.57/3.18 = 0.18 \text{ м}^3/\text{с.} \]

Объемный расход воздуха, приведенный к нормальным условиям:

\[V_0 = M/\rho_0 = 0.57/1.293 = 0.44 \text{ м}^3/\text{с.} \]

Пример 1.5. В открытом резервуаре находится жидкость с относительной плотностью 1.23. Манометр, присоединенный в некоторой точке к стенке резервуара, показывает давление \(p_{абс} = 0.31 \text{ кгс/см}^2 \). На какой высоте над данной точкой находится уровень жидкости в резервуаре?

Решение. Высота уровня жидкости в резервуаре над точкой присоединения манометра определяется уравнением (1.7):

\[h = \frac{p - p_0}{\rho g}. \]

По условию: \(p - p_0 = 0.31 \text{ кгс/см}^2 = 0.31 \cdot 10^4 \cdot 9.81 \text{ Па.} \)

Плотность жидкости: \(\rho = 1.23 \cdot 1000 = 1230 \text{ кг/м}^3. \)

Отсюда

\[h = \frac{0.31 \cdot 10^4 \cdot 9.81}{1230 \cdot 9.81} = 2.52 \text{ м.} \]

Пример 1.6. Вакууметр на барометрическом конденсаторе показывает вакуум, равный 60 см рт. ст. Барометрическое давление 748 mm рт. ст. Определить: а) абсолютное давление в конденсаторе в Па и в кгс/см^2; б) на какую высоту \(H \) поднимается вода в барометрической трубе (рис. 1.8).

Решение. Абсолютное давление в конденсаторе:

\[p = 748 - 600 = 148 \text{ мм рт. ст.} = 148 \cdot 133.3 = 19700 \text{ Па; } \]

\[p = \frac{19700}{9.81 \cdot 10^4} = 0.201 \text{ кгс/см}^2. \]

Высоту столба воды в барометрической трубе найдем из уравнения:

\[p_{абс} = p + H \rho g. \]

Откуда

\[H = \frac{p_{абс} - p}{\rho g} = \frac{600 \cdot 133.3}{1000 \cdot 9.81} = 8.16 \text{ м.} \]

Рис. 1.8 (к примеру 1.6).
Пример 1.7. К двум точкам горизонтального трубопровода присоединен U-образный стеклянный дифманометр, заполненный ртутью. Разность уровней ртути в дифманометре \(h = 26 \) мм. Какова разность давлений в этих точках, если по трубопроводу проходит: а) вода; б) воздух при \(20^\circ\) С и атмосферном давлении?

Решение. Из условия равенства давлений на уровне \(a - a \) слева и справа (рис. 1.9)

\[
p_1 + h_1 \rho g = p_2 + h_2 \rho g + h \rho_m g
\]

находим, заменяя \(h_2 \) через \((h_1 - h) \):

\[
p_1 - p_2 = h (\rho_m - \rho) g,
\]

где \(\rho \) — плотность жидкости в трубопроводе (и в присоединительных трубках); \(\rho_m \) — плотность жидкости в дифманометре.

По условию задачи \(h = 0,026 \) м, \(\rho_m = 13600 \) кг/м\(^3\).

а) Для воды:

\[
\rho = 1000 \text{ кг/м}^3,
\]

\[
p_1 - p_2 = 0,026 (13600 - 1000) 9,81 = 3220 \text{ Па}.
\]

б) Для воздуха:

\[
\rho = \frac{29.273}{22.4.293} = 1,2 \text{ кг/м}^3;
\]

\[
p_1 - p_2 = 0,026 (13600 - 1,2) 9,81 \approx 0,026 \times 13600 \times 9,81 = 3470 \text{ Па}.
\]

Из последнего равенства следует, что при измерении разности давлений в газовых потоках жидкостными дифференциальными манометрами поправкой на плотность газа можно пренебречь, так как плотность газа (при давлениях, близких к атмосферному) очень мала по сравнению с плотностью жидкости.

Пример 1.8. Колокол мокрого газохранилища (газгольдера) для азота диаметром 6 м весит с дополнительным балластом 2900 кгс (рис. 1.10). Пренебрегая потерей в весе погруженной в воду части колокола, определить избыточное давление газа в наполненном газохранилище.

Решение. Площадь горизонтальной проекции колокола:

\[
0,785 \times 6^2 = 28,2 \text{ м}^2.
\]

Рис. 1.10 (к примеру 1.8).
Давление в газохранилище:
\[\rho_{изб} = \frac{2900 \cdot 9,81}{28,2} \approx 1010 \text{ Па}, \]
или
\[\frac{1010}{9,81 \cdot 10^4} \approx 0,01 \text{ кгс/см}^2. \]

Пример 1.9. Определить кинематический коэффициент вязкости диоксида углерода при \(t = 30 \text{ °С} \) и \(\rho_{абс} = 5,28 \text{ кгс/см}^2 \).

Решение. Пренебрегая зависимостью динамического коэффициента вязкости от давления, находим по графику (рис. VI) для диоксида углерода при 30 °С: \(\mu = 0,015 \text{ сП} = 0,015 \cdot 10^{-3} \text{ Па·с} \)
Определяем плотность диоксида углерода:
\[\rho = \frac{44 \cdot 273 \cdot 5,28}{22,4 \cdot 303 \cdot 1,033} = 9,05 \text{ кг/м}^3. \]

Кинематический коэффициент вязкости:
\[\nu = \frac{\mu}{\rho} = \frac{0,015 \cdot 10^{-3}}{9,05} = 1,66 \cdot 10^{-6} \text{ м}^2/\text{s}. \]

Пример 1.10. Предполагая отсутствие экспериментальных данных, вычислить приближенно динамический коэффициент вязкости нитробензола (C₆H₅NO₂) при 20 °C.

Решение. Воспользуемся эмпирической зависимостью (1.10) Mольная масса нитробензола 123 кг/кмоль; плотность 1200 кг/м³ (табл. IV). Вычисляем сумму атомных констант \(\sum An \) (табл. X)
\[\sum An = 6 \cdot 50,2 + 5 \cdot 2,7 + 1 \cdot 37 + 2 \cdot 29,7 = 411,1. \]
Вычисляем сумму структурных поправок \(\sum p \) по пунктам 1, 3 и 16 табл. X:
\[\sum p = 3 \cdot (-15,5) + 1 \cdot (-21,0) + 1 \cdot (-17,0) + 1 \cdot (-16,4) = -100,9. \]
Тогда
\[K = \sum An + \sum p = 411,1 - 100,9 = 310,2. \]
Далее
\[\lg (\lg \mu) = K \frac{\rho}{10^3 M} - 2,9 = 310,2 \frac{1200}{10^3 \cdot 123} - 2,9 = 0,126. \]

По номограмме (рис. I) находим \(\mu = 2,15 \text{ сП} = 2,15 \cdot 10^{-3} \text{ Па·с} \)
что совпадает с экспериментальными данными (рис. V).

Пример 1.11. Определить динамический коэффициент вязкости топочных газов, имеющих состав: CO₂ — 16%, O₂ — 5%, N₂ — 79% (по объему). Температура газов 400 °C, давление \(\rho_{абс} = 1 \text{ кгс/см}^2 \)

Решение. По номограмме (рис. VI) находим динамические коэффициенты вязкости отдельных компонентов смеси. При 400 °C \(\mu_{CO_2} = 0,035, \mu_{O_2} = 0,039 \) и \(\mu_{N_2} = 0,0335 \text{ мПа·с} \).

Расчет динамического коэффициента вязкости смеси сделаем по формуле (1.11):
\[\frac{M_{см \, \mu}}{\mu_{см \, \mu}} = \frac{0,16 \cdot 44}{0,035} + \frac{0,05 \cdot 32}{0,039} + \frac{0,79 \cdot 28}{0,0335} = 902. \]
Мольная масса смеси

\[M_{ см } = 0,16 \cdot 44 + 0,05 \cdot 32 + 0,79 \cdot 28 = 30,8 \text{ кг/кмоль.} \]

Динамический коэффициент вязкости смеси:

\[\mu_{ см } = 30,8 \cdot 902 = 0,034 \text{ мПа} \cdot \text{с} = 0,034 \cdot 10^{-3} \text{ Па} \cdot \text{с.} \]

Пример 1.12. Определить кинематический коэффициент вязкости жидкости, имеющей состав: 70% (мол.) кислорода и 30% (мол.) азота при 84 К и \(\rho_{абс} = 1 \text{ кгс/см}^2 \) (≈ 0,1 МПа).

П р е ш е н и е. Считая, что жидкое кислород и азот принадлежат к классу нормальных жидкостей, динамический коэффициент вязкости смеси вычислим по формуле (1.14). При 84 К для жидкого кислорода \(\mu_1 = 22,6 \cdot 10^{-5} \text{ Па} \cdot \text{с}, \) а для жидкого азота \(\mu_2 = 11,8 \times 10^{-5} \text{ Па} \cdot \text{с.} \) Тогда

\[\lg \mu_{ см } = x_1 \lg \mu_1 + x_2 \lg \mu_2 = 0,7 \lg (22,6 \cdot 10^{-5}) + 0,3 \lg (11,8 \cdot 10^{-5}) = 6,2694, \]

откуда \(\mu_{ см } = 18,6 \cdot 10^{-5} \text{ Па} \cdot \text{с.} \)

Массовые доли компонентов в смеси:

\[\bar{x}_1 = \frac{0,7 \cdot 32}{0,7 \cdot 32 + 0,3 \cdot 28} = 0,727; \quad \bar{x}_2 = \frac{0,3 \cdot 28}{0,7 \cdot 32 + 0,3 \cdot 28} = 0,273. \]

Плотность жидкого кислорода \(\rho_1 = 1180 \text{ кг/м}^3, \) жидкого азота \(\rho_2 = 780 \text{ кг/м}^3. \) Плотность смеси по уравнению (1.3):

\[\rho_{ см } = \frac{1}{(0,727/1180) + (0,273/780)} = 1030 \text{ кг/м}^3. \]

Кинематический коэффициент вязкости смеси:

\[\nu_{ см } = \mu_{ см }/\rho_{ см } = 18,6 \cdot 10^{-5}/1030 \approx 0,18 \cdot 10^{-6} \text{ м}^2/\text{с.} \]

Пример 1.13. Вычислить динамический коэффициент вязкости суспензии бензидина в воде, если в чан загружено на 10 м³ воды и тонна бензидина. Температура суспензии 20 °C, относительная плотность твердой фазы 1,2.

П р е ш е н и е. Объем твердой фазы:

\[V = \frac{G}{\rho} = \frac{1000}{1,2 \cdot 1000} = 0,833 \text{ м}^3. \]

Объемная концентрация твердой фазы в суспензии:

\[\varphi = \frac{0,833}{10 + 0,833} = 0,077 \text{ м}^3/\text{м}^3. \]

При 20 °C динамический коэффициент вязкости воды равен 1 мПа с, или 1 сП (табл. VI). Динамический коэффициент вязкости суспензии по формуле (1.15):

\[\mu_{с} = \mu_{в} (1 + 2,5\varphi) = 1 (1 + 2,5 \cdot 0,077) = 1,19 \text{ сП} = 1,19 \cdot 10^{-3} \text{ Па} \cdot \text{с.} \]

По формуле (1.15a):

\[\mu_{с} = \mu_{в} \cdot \frac{0,59}{(0,77 - \varphi)^2} = \frac{1 \cdot 0,59}{(0,77 - 0,077)^2} = 1,23 \text{ сП} = 1,23 \cdot 10^{-3} \text{ Па} \cdot \text{с.} \]

2 Навлон К. Ф. и др. 33
Пример 1.14. Известно, что динамический коэффициент вязкости хлорбензола при 20 °C равен 0,9 сП, а при 50 °C 0,6 сП. Найти, пользуясь правилом линейности, динамический коэффициент вязкости хлорбензола при 70 °C.

Решение. В качестве эталонной жидкости возьмем воду. Находим температуры эталонной жидкости, при которых ее динамический коэффициент вязкости равен 0,9 и 0,6 сП.

Для воды динамический коэффициент вязкости 0,9 сП соответствует температуре 25 °C, а 0,6 сП — температура 45 °C (табл. VI). Следовательно, константа уравнения (1.16)

$$K = \frac{\mu_2 - \mu_1}{\Theta_{\mu_2} - \Theta_{\mu_1}} = \frac{50 - 20}{45 - 25} = \frac{30}{20} = 1,5.$$

Далее находим температуру воды, при которой ее динамический коэффициент вязкости равен динамическому коэффициенту вязкости хлорбензола при 70 °C, из уравнения

$$1,5 = \frac{70 - 20}{\Theta_{\mu_2} - 25},$$
откуда $\Theta_{\mu_2} = 58,4$ °C. При этой температуре находим для воды $\mu_2 = 0,48$ сП. Следовательно, динамический коэффициент вязкости хлорбензола при 70 °C равен 0,48 сП.

Если для сравнения обратимся непосредственно к номограмме (рис. V), то найдем $\mu = 0,46$ сП = $0,46 \cdot 10^{-3}$ Па·с.

Пример 1.15. Динамический коэффициент вязкости некоторой жидкости составляет:

<table>
<thead>
<tr>
<th>t, °C</th>
<th>μ, Па·с</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>0,554</td>
</tr>
<tr>
<td>28</td>
<td>0,934</td>
</tr>
<tr>
<td>25</td>
<td>1,42</td>
</tr>
<tr>
<td>20</td>
<td>2,09</td>
</tr>
</tbody>
</table>

Определить динамический коэффициент вязкости этой жидкости при $t = 16$ °C.

Решение. Воспользуемся правилом линейности, взяв в качестве стандартной жидкости глицерин. Зависимость динамического коэффициента вязкости глицерина от температуры $\mu_{\text{гл}} = f(\Theta)$ дана на рис. 1.11 (кривая AB). По этой кривой находим температуру глицерина Θ:

<table>
<thead>
<tr>
<th>$\mu_{\text{гл}}$, Па·с</th>
<th>Θ, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,554</td>
<td>32</td>
</tr>
<tr>
<td>0,934</td>
<td>26</td>
</tr>
<tr>
<td>1,42</td>
<td>21</td>
</tr>
<tr>
<td>2,09</td>
<td>16</td>
</tr>
</tbody>
</table>

Построив зависимость температуры жидкости t от температуры

Рис. 1.11 (к примеру 1.15).
глицерина Θ при одинаковых значениях вязкости, получаем прямую \(BG \). Далее находим, как показано пунктиром, что искомый динамический коэффициент вязкости жидкости при \(t = 16^\circ C \), равный динамическому коэффициенту вязкости глицерина при \(Θ = 11^\circ C \), составляет 3,46 Па·с.

Пример 1.16. Теплообменник изготовлен из стальных труб диаметром 76 × 3 мм *. По трубам проходит газ под атмосферным давлением. Требуется найти необходимый диаметр труб при работе с тем же газом, но под давлением \(p_{аз} = 5 \) кгс/см², если требуется скорость газа сохранить прежней при том же массовом расходе газа и том же числе труб.

Решение. Под давлением \(p_{аз} = 5 \) кгс/см² (≈0,5 МПа) плотность газа в соответствии с формулой (1.5) будет в 6 раз больше, чем при атмосферном давлении. Так как массовый расход газа

\[G = V \rho = w \rho \]

должен быть сохранен неизменным, то

\[w_1 n_1 \cdot 0,785d_1^2 \rho_1 = w_2 n_2 \cdot 0,785d_2^2 \rho_2. \]

Подставляя \(w_2 = w_1 \), \(n_2 = n_1 \), \(\rho_2 = 6 \rho_1 \), \(d_1 = 0,07 \) м, получаем: \(0,07^2 = 6d_2^2 \), откуда

\[d_2 = \sqrt{0,07^2/6} = 0,0286 \text{ м} \approx 29 \text{ мм.} \]

Пример 1.17. Определить режим течения жидкости в межтрубном пространстве теплообменника типа «труба в трубе» (рис. 1.12) при следующих условиях: внутренняя труба теплообменника имеет диаметр 25 × 2 мм, наружная 51 × 2,5 мм; массовый расход жидкости 3730 кг/ч, плотность жидкости 1150 кг/м³, динамический коэффициент вязкости 1,2 × 10⁻³ Па·с.

Решение. Скорость жидкости из уравнения расхода:

\[\omega = \frac{V}{j} = \frac{3730}{1150 \cdot 3600 \cdot 0,785(0,046^2 - 0,025^2)} = 0,77 \text{ м/с.} \]

Эквивалентный диаметр кольцевого сечения по формуле (1.24):

\[d_3 = \frac{4j}{\Pi} = \frac{4\pi (D^2 - d^2)}{4\pi (D + d)} = D - d = 0,046 - 0,025 = 0,021 \text{ м,} \]

где \(D \) — внутренний диаметр наружной трубы, м; \(d \) — наружный диаметр внутренней трубы, м.

Динамический коэффициент вязкости жидкости \(\mu = 1,2 \times 10^{-3} \) Па·с. Критерий Рейнольдса:

\[Re = \frac{w \rho}{\mu} = \frac{0,77 \cdot 0,021 \cdot 11\cdot 0}{1,2 \cdot 10^{-3}} = 15500. \]

* Первое число обозначает наружный диаметр трубы, второе — толщину стенки.

Рис. 1.12 (к примеру 1.17).
Следовательно, режим турбулентный.

Пример 1.18. Найти критическую скорость в прямой трубе диаметром 51 × 2,5 мм: а) для воздуха при 20 °C и \(\rho_{або} = 0,1 \) МПа; б) для нефтяного масла, имеющего \(\mu = 35 \) мПа·с и относительную плотность 0,963.

Решение. Критическая скорость будет иметь место при \(\text{Re}_{kr} = 2300 \); следовательно, из уравнения (1.21)

\[
\omega_{kr} = \frac{2300\mu}{d \rho}
\]

а) Для воздуха:

\[
\omega_{kr} = \frac{2300 \cdot 0,018 \cdot 10^{-3}}{0,046 \cdot 1,2} = 0,75 \text{ м/с,}
\]

где 0,018 — динамический коэффициент вязкости воздуха при 20 °C (по рис. VI), мПа·с; 1,2 кг/м³ — плотность воздуха при 20 °C и \(\rho_{або} = 0,1 \) МПа по формуле (1.5).

б) Для нефтяного масла:

\[
\omega_{kr} = \frac{2300 \cdot 35 \cdot 10^{-3}}{0,046 \cdot 963} = 1,8 \text{ м/с.}
\]

Пример 1.19. На трубопроводе с внутренним диаметром 200 мм имеется плавный переход на диаметр 100 мм (рис. 1.13). По трубопроводу подается 1700 м³/ч (при нормальных условиях) метана при 30 °C. Открытый в атмосферу U-образный водяной манометр, установленный на широкой части трубопровода перед сужением, показывает избыточное давление в трубопроводе, равное 40 мм вод. ст. Каково будет показание такого же манометра на узкой части трубопровода? Сопротивлениями пренебречь. Атмосферное давление 760 мм рт. ст.

Решение. Считая приближенно плотность метана на участке трубопровода между точками присоединения манометров постоянной (что проверим в конце расчета), составляем уравнение Бернулли для несжимаемой жидкости:

\[
\frac{p_1}{\rho g} + \frac{\omega_1^2}{2g} = \frac{p_2}{\rho g} + \frac{\omega_2^2}{2g},
\]

откуда находим:

\[
p_1 - p_2 = \frac{\omega_2^2 - \omega_1^2}{2} \rho.
\]

Определяем скорости метана в сечениях I и II, принимая, что давление в трубопроводе приближительно равняется атмосферному:

\[
w_1 = \frac{1700 \cdot 303}{3600 \cdot 273 \cdot 0,785 \cdot 0,2^2} = 16,7 \text{ м/с.}
\]

По уравнению (1.20)

\[
w_2 = n_1 \frac{f_2}{f_2} = 16,7 \left(\frac{200}{100} \right)^2 = 66,8 \text{ м/с.}
\]

Рис. 1.13 (к примеру 1.19).
Вычисляем плотность метана:

\[\rho = \frac{MT_0}{22,4T} = \frac{16,273}{22,4 \cdot 303} = 0,645 \text{ кг}/\text{м}^3. \]

Находим разность давлений:

\[p_1 - p_2 = \frac{(w_2^3 - w_1^3)}{2} \rho = \frac{(66,8^3 - 16,7^3)}{2} \rho = 1354 \text{ Па}, \]

или \(1354/9,81 = 138 \text{ мм вод. ст.} \), откуда

\[p_3 = p_1 - 138 = 40 - 138 = -98 \text{ мм вод. ст.}, \]

т. е. давление в сечении II будет меньше, чем в I, на 138 мм вод. ст., и манометр в сечении II будет показывать вакуум, равный 98 мм вод. ст. (961 Па).

Абсолютное давление в сечении I:

\[10330 + 40 = 10370 \text{ мм вод. ст.} = 1,037 \text{ кгс}/\text{см}^2 = 0,1017 \text{ МПа}; \]

в сечении II:

\[10330 - 98 = 10232 \text{ мм вод. ст.} = 1,023 \text{ кгс}/\text{см}^2 = 0,1003 \text{ МПа}. \]

Принимая при вычислении скоростей и плотности метана постоянство давления в трубопроводе, мы допустили погрешность, не превышающую

\[\frac{1,037 - 1,023}{1,023} \times 100 \approx 1,4 \%. \]

Пример 1.20. На рис. 1.14 изображен так называемый сосуд Мариотта, представляющий собой закрытый резервуар, из которого жидкость может вытекать через трубку A. Трубка B вверху открыта в атмосферу. При вытекании по трубке A жидкости из резервуара в его верхней части образуется вакуум, причем через трубку B засасывается атмосферный воздух. Вследствие этого в резервуаре на уровне H над трубкой A давление всегда будет равно атмосферному, независимо от количества жидкости в резервуаре, и истечение жидкости будет происходить под постоянным напором до тех пор, пока уровень ее не опустится ниже H. По указанным на рис. 1.14 размерам (в мм) определить скорость течения воды и время, за которое уровень ее снизится от начального (1400 мм) до величины H = 300 мм. Коэффициент скорости \(\varphi = 0,82 \). Коэффициент сжатия струи \(\varepsilon = 1 \).

Р е ш е н и е. По формуле (1.28) при \(\rho_0 = \rho \):

\[w = \varphi \sqrt{2gH} = 0,82 \sqrt{2 \cdot 9,81 \cdot 0,3} = 1,98 \text{ м}/\text{с}. \]

Рис. 1.14 (к примеру 1.20).
Объем воды, который вытечет из сосуда при снижении уровня от 1400 до 300 мм, составляет:

\[V = 0,785 \cdot 0,8^2 (1,4 - 0,3) = 0,553 \text{ м}^3. \]

Время истечения:

\[\tau = \frac{0,553}{0,785 \cdot 0,025^2 \cdot 1,98} = 569 \text{ с} \approx 9,5 \text{ мин.} \]

Пример 1.21. Цилиндрический бак диаметром 1 м наполнен водой на высоту 2 м. Отверстие для истечения в дне имеет диаметр 3 см. Определить время, необходимое для опорожнения бака.

Решение. Воспользуемся формулой (1.31):

\[\tau = \frac{2f \sqrt{H}}{\alpha t_0 \sqrt{2g}}, \]

где \(f \) — площадь сечения сосуда, м\(^2\); \(t_0 \) — площадь отверстия, м\(^2\); \(H \) — начальная высота уровня, м; \(\alpha \) — коэффициент расхода (для отверстий с незакругленными краями можно принять \(\alpha = 0,61 \)).

Подставляя заданные величины в формулу, находим:

\[\tau = \frac{2 \cdot 0,785 \cdot 1 \cdot 4 \sqrt{2}}{0,61 \cdot 0,785 \cdot 0,03 \sqrt{2 \cdot 9,81}} = 1180 \text{ с} \approx 20 \text{ мин.} \]

Пример 1.22. По горизонтальному гидравлически гладкому трубопроводу с внутренним диаметром 152 мм протекает вода при температуре 20 °C со средней скоростью 1,3 м/с. В трубопроводе установлена нормальная диафрагма, диаметр отверстия которой равен 83,5 мм. Определить показание ртутного дифманометра диафрагмы (см. рис. 1.3).

Решение. Расход воды:

\[V = \omega f = 1,3 \cdot 0,785 \cdot 0,152^2 = 0,0236 \text{ м}^3/с. \]

Критерий Рейнольдса:

\[Re = \frac{\omega d}{v} = \frac{1,3 \cdot 0,152}{1,01 \cdot 10^{-6}} = 195 000, \]

где \(v \) — кинематический коэффициент вязкости воды при 20 °C (табл. XXXIX), м\(^2\)/с.

Определяем коэффициент расхода диафрагмы \(\alpha \), который зависит от величины критерия \(Re \) и от значения \(m = (d_o/d)^3 = (83,5/152)^3 \approx 0,3 \). По табл. XV находим \(\alpha \approx 0,635 \).

Исходя из формулы (1.32) и принимая \(k = 1 \), получаем:

\[\sqrt{H} = \frac{V}{\alpha t_0 \sqrt{2g \frac{\rho_m - \rho}{\rho}}} = \frac{0,0236}{0,635 \cdot 0,785 \cdot 0,0835 \sqrt{2 \cdot 9,81 \frac{13 600 - 1000}{1000}}} = 0,432, \]

откуда \(H = 0,188 \text{ м} = 188 \text{ мм.} \)

Пример 1.23. Показание водяного дифманометра трубки Пито — Прандтля (см. рис. 1.4), установленной по оси горизон-
тального воздухопровода, составляет 13 мм. Определить расход воздуха, если температура его 40 °C, диаметр трубопровода 159×6 мм, а перед трубкой имеется прямой участок длиной 7 м. Давление воздуха атмосферное.

Решение. Плотность воздуха при 40 °C:
\[\rho = 1,293 \frac{(273/313)}{1} = 1,13 \text{ кг/м}^3. \]

Максимальная (осевая) скорость воздуха определяется из выражения:
\[w_{\text{макс}} = \sqrt{2 \Delta \rho_{\text{эл}}/\rho} = \sqrt{2 \cdot 13 \cdot 9,81/1,13} = 15,07 \text{ м/с.} \]

Этой скорости соответствует значение критерия Рейнольдса
\[\text{Re} = \frac{w_{\text{макс}} d \rho}{\mu} = \frac{15,07 \cdot 0,147 \cdot 1,13}{0,019 \cdot 10^{-3}} = 132000. \]

Длина прямого участка стабилизации потока до трубки Пито — Прандтля должна быть не менее 40 диаметров: 40⋅0,147 = 5,9 м. Это условие соблюдено, так как имеется прямой участок трубопровода протяженностью 7 м. По рис. 1.2 для Re = 132000 отношение средней скорости к максимальной w/w_{\text{макс}} ≈ 0,85.

Средняя скорость:
\[w = 0,85 \cdot 15,07 = 12,8 \text{ м/с.} \]

Расход воздуха:
\[V = 0,785 \cdot 0,147^2 \cdot 12,8 = 0,217 \text{ м}^3/\text{с} = 780 \text{ м}^3/\text{ч.} \]

Пример 1.24. Дымовые газы из печной установки, расположенной в Ленинграде, отводятся через дымовую трубу высотой 19 м. Состав газов: CO\(_2\) = 12,7%, O\(_2\) = 4,9%, N\(_2\) = 77,5%, H\(_2\)O = 4,9% (по объему). Площадь поперечного сечения дымовой трубы равна площади поперечного сечения горизонтального газохода. Средняя температура газов в газоходе и дымовой трубе 250 °C. Найти скорость газов, если сумма коэффициентов сопротивлений газохода и дымовой трубы:
\[\frac{\lambda_t L_t}{d_3} + \frac{\lambda_t H}{d} + \Sigma \xi = 27,3, \]
где \(\lambda_t \) и \(\lambda_t \) — коэффициенты трения; \(L_t \) — длина газохода; \(d_3 \) — эквивалентный диаметр газохода; \(d \) — внутренний диаметр дымовой трубы; \(H \) — высота трубы; \(\Sigma \xi \) — сумма коэффициентов местных сопротивлений.

Решение. Плотность газа при нормальных условиях:
\[\rho_0 = \frac{M}{22,4} = \frac{1}{22,4} (44 \cdot 0,127 + 32 \cdot 0,049 - 28 \cdot 0,775 + 18 \cdot 0,049) = 1,328 \text{ кг/м}^3. \]

Плотность газа при 250 °C:
\[\rho_t = \rho_0 \frac{T_0}{T} = 1,328 \frac{273}{273 + 250} = 0,693 \text{ кг/м}^3. \]
В летних условиях средняя температура воздуха в Ленинграде 17,5 °C (табл. XL). Плотность воздуха при этой температуре

$$\rho_в = 1,293 \frac{273}{273 + 17,5} = 1,216 \text{ кг/м}^3.$$

По уравнению Бернулли (при плоскости отсчета, проведенной на уровне газохода):

$$\rho_\text{бар} + \frac{\rho_г u^2}{2} = \rho_\text{бар} + \frac{\rho_г u^2}{2} + \rho_г gH + \Delta \rho_\text{пот},$$

где $\rho_\text{бар}$ — барометрическое давление на уровне горизонтального газохода; $\rho_\text{бар}$ — барометрическое давление у верхнего края дымовой трубы; u — скорость газа; H — высота дымовой трубы; $\Delta \rho_\text{пот}$ — суммарные потери давления (суммарное сопротивление газохода и дымовой трубы).

В левой части уравнения Бернулли рассматривается сечение, проведенное через начало газохода, в правой — через верхний край дымовой трубы.

Барометрическое давление на уровне горизонтального газохода:

$$\rho_\text{бар} = \rho_\text{бар} + \rho_г gH.$$

Подставляя это значение в уравнение Бернулли и получаем:

$$\Delta \rho_\text{пот} = (\rho_в - \rho_г) gH.$$

Сопротивление газохода и дымовой трубы:

$$\Delta \rho_\text{пот} = \left(\frac{L_г}{d_0} + \frac{L H}{d} + \Sigma \zeta \right) \frac{\rho_г u^2}{2} = 27,3 \frac{\rho_г u^2}{2}.$$

Следовательно,

$$27,3 \frac{\rho_г u^2}{2} = (\rho_в - \rho_г) gH.$$

Подставляем численные значения:

$$27,3 \frac{0,693 u^2}{2} = (1,216 - 0,693) 9,81 \cdot 19.$$

Отсюда находим скорость газа в газоходе и дымовой трубе в летних условиях:

$$u = 3,2 \text{ м/с.}$$

Аналогично может быть подсчитана скорость газа в зимних условиях (для Ленинграда средняя температура —7,7 °C). В зимних условиях $u = 3,5 \text{ м/с.}$

Пример 1.25. Определить потерю давления на трение в змеевике (рис. 1.15), по которому проходит вода со скоростью 1 м/с. Змеевик сделан из бывшей в употреблении стальной трубы диаметром 43 × 2,5 мм. Диаметр витка змеевика 1 м. Число витков 10. Средняя температура воды 30 °C.

Решение. Потерю давления на трение находим по формуле (1.36) для прямой трубы, а затем вводим поправочный коэффи-
циент для змеевика по формуле (1.46). Предварительно определяем режим течения. Динамический коэффициент вязкости воды при 30 °C равен 0,8 мПа·с (табл. VI). Критерий Рейнольдса:

\[
Re = \frac{\omega dp}{\mu} = \frac{1 \cdot 0,038 \cdot 1000}{0,8 \cdot 10^{-3}} = 47500.
\]

Для цельнотянутой стальной трубы с незначительной коррозией \(e = 0,2 \) мм (табл. XII). Тогда отношение \(d_9/e = 38/0,2 = 190 \). По графику (рис. 1.5) при \(Re = 47500 \) и \(d_9/e = 190 \) находим \(\lambda = 0,0316 \). Приближенно длина змеевика равна:

\[
L = \pi Dn = 3,14 \cdot 1 \cdot 10 = 31,4 \text{ м.}
\]

Потеря напора на преодоление трения в прямой трубе:

\[
\Delta p_{np} = \lambda \frac{L}{d} \frac{\rho \omega^2}{2} = 0,0316 \frac{31,4}{0,038} \frac{1000 \cdot 12}{2} = 13100 \text{ Па.}
\]

По формуле (1.46) находим поправочный коэффициент:

\[
\psi = 1 + 3,54 \frac{d}{D} = 1 + 3,54 \frac{0,038}{1} = 1,134.
\]

Следовательно, для змеевика:

\[
\Delta p_{zm} = \Delta p_{np} \psi = 13100 \cdot 1,134 = 14800 \text{ Па = 1510 мм вод. ст.}
\]

Пример 1.26. 50 т/ч нитробензола при 20 °C перекачиваются насосом из бака с атмосферным давлением в реактор, где поддерживается избыточное давление 0,01 МПа (рис. 1.16). Трубопровод выполнен из стальных труб диаметром 89 × 4 мм с незначительной коррозией. Длина всего трубопровода, включая местные сопротивления, 45 м. На трубопроводе установлены: диафрагма (\(d_0 = 51,3 \text{ мм} \)), две задвижки и четыре отвода под углом 90° с радиусом изгиба 160 мм. Высота подъема жидкости 15 м. Найти мощность, потребляемую насосом, приняв общий к. п. д. его равным 0,65.

Решение. Массовый расход нитробензола:

\[
M = 30000/3600 = 8,34 \text{ кг/с.}
\]

Объемный расход:

\[
V = M/\rho = 8,34/1200 = 0,00695 \text{ м}^3/\text{с,}
\]

где \(\rho = 1200 \text{ кг/м}^3 \) — плотность нитробензола (табл. IV).

Рис. 1.16 (к примеру 1.26)
Скорость нитробензола:

\[w = \frac{V}{f} = \frac{0,00695}{0,785 \cdot 0,081^2} = 1,35 \text{ м/с.} \]

Критерий Рейнольдса:

\[\text{Re} = \frac{uw \rho}{\mu} = \frac{1,35 \cdot 0,081 \cdot 1200}{2,1 \cdot 10^{-3}} = 62500, \]

где \(\mu \) — динамический коэффициент вязкости нитробензола (рис. V).

Определяем коэффициент трения. По табл. XII шероховатость стальных труб с незначительной коррозией \(e = 0,2 \) мм. По рис. 1.5 для \(d/e = 0,081/0,0002 = 405 \) и \(\text{Re} = 62500 \) находим \(\lambda = 0,0257 \).

Коэффициенты местных сопротивлений, взятые из табл. XIII, сводим в таблицу:

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>(\Sigma \zeta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вход жидкости из бака в трубопровод (труба с острыми краями)</td>
<td>0,5</td>
</tr>
<tr>
<td>Диафрагма (m = (51,3/81)^2 = 0,4)</td>
<td>8,25</td>
</tr>
<tr>
<td>Задвижка (\zeta = 0,5)</td>
<td>2 \cdot 0,5 = 1,0</td>
</tr>
<tr>
<td>Отвод (при (\varphi = 90^\circ) и (R_0/d = 160/81 \approx 2)): [\zeta = \lambda B = 1 \cdot 0,15 = 0,15]</td>
<td>4 \cdot 0,15 = 0,6</td>
</tr>
</tbody>
</table>

\[\Sigma \zeta = 10,35 \]

Общее гидравлическое сопротивление трубопровода (сети) по уравнению (1.49):

\[\Delta p = \frac{\rho u^2}{2} \left(1 + \frac{\lambda L}{d} + \Sigma \zeta \right) + \rho g h_{\text{под}} + \Delta p_{\text{дон}} = \]

\[= \frac{1200 \cdot 1,35^2}{2} \left(1 + \frac{0,0257 \cdot 45}{0,081} + 10,35 \right) + 1200 \cdot 9,81 \cdot 15 + + 0,1 \cdot 9,81 \cdot 10^4 = 215 000 \text{ Па.} \]

Потребляемая насосом мощность по уравнению (1.33):

\[N = \frac{V \Delta p}{1000 \eta} = \frac{0,00695 \cdot 215 000}{1000 \cdot 0,65} = 2,3 \text{ кВт.} \]

Пример 1.27. Воздух с температурой 50 °C подается вентилятором в установку, где имеется избыточное давление 35 мм вод. ст. Трубопровод выполнен из стальных труб диаметром 102 × 6 мм с незначительной коррозией. Длина всего трубопровода, включая местные сопротивления, 70 м. На трубопроводе установлены диафрагма \((d_o = 49,3 \text{ мм}) \), две задвижки и четыре отвода под углом 90° с радиусом изгиба 300 мм. Электродвигатель вентилятора потребляет мощность 1,35 кВт; к. п. д. электродвигателя
\[\eta_0 = 0,95. \text{ Показание водяного дифманометра, присоединенного к диафрагме, 400 мм. Определить к. п. д. вентилятора.} \]

Решение. Плотность воздуха при 50 °C:

\[\rho = \rho_0 \left(\frac{T_0}{T} \right) = 1,293 \left(\frac{273}{323} \right) = 1,09 \text{ кг/м}^3. \]

Коэффициент расхода диафрагмы определяем по табл. XV. При \(m = (49,3/90)^2 \approx 0,3 \) принимаем среднее значение \(\alpha \approx 0,64. \)

Расход воздуха по формуле (1.32) при \(k = 1 \) (табл. XVI):

\[V = \alpha \rho_0 \sqrt{2gH (\rho_m - \rho)}/\rho = 0,64 \cdot 0,785 \cdot 0,0493^2 \cdot 2 \cdot 9,81 \cdot 0,4 (988 - 1,09)/1,09 = = 0,103 \text{ м}^3/\text{с.} \]

Скорость воздуха в трубопроводе:

\[w = \frac{V}{0,785d^2} = \frac{0,103}{0,785 \cdot 0,09^2} = 16,2 \text{ м/с.} \]

Критерий Рейнольдса, определяемый по диаметру трубопровода:

\[\text{Re} = \frac{wd\rho}{\mu} = \frac{16,2 \cdot 0,09 \cdot 1,09}{0,0198 \cdot 10^{-3}} = 81000. \]

Динамический коэффициент вязкости воздуха \(\mu = 0,0196 \times 10^{-3} \text{ Па} \cdot \text{с} \) определен по рис. VI.

Проверяем принятое значение \(\alpha. \) По табл. XV для \(m = 0,3 \) и \(\text{Re} = 81000 \) находим \(\alpha = 0,637 \) что практически совпадает с принятым значением.

Определяем коэффициент трения. По табл. XII средняя шероховатость стальных труб с незначительной коррозией \(e = 0,2 \text{ мм.} \) По рис. 1.5 для \(d/e = 90/0,2 = 450 \) и \(\text{Re} = 81000 \) находим \(\lambda \approx 0,025. \)

Коэффициенты местных сопротивлений, взятые из табл. XIII, сводим в табличку:

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>(\Sigma \zeta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вход воздуха в трубопровод (труба с закругленными краями)</td>
<td>0,2</td>
</tr>
<tr>
<td>Диафрагма (m = 0,3)</td>
<td>18,2</td>
</tr>
<tr>
<td>Задвижка (\zeta = 0,5)</td>
<td>2 \cdot 0,5 = 1,0</td>
</tr>
<tr>
<td>Отвод (при (\phi = 90^\circ) и (R_0/d = 300/90 = 3,3):</td>
<td>4 \cdot 0,13 = 0,52</td>
</tr>
<tr>
<td>[\zeta = AB = 1 \cdot 0,13 = 0,13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(19,92 \approx 20)</td>
</tr>
</tbody>
</table>

Общее гидравлическое сопротивление трубопровода (сети):

\[\Delta \rho = \frac{\rho w^2}{2} \left(1 + \frac{\lambda L}{d} + \Sigma \zeta \right) + \Delta \rho_{доп} = = \frac{1,09 \cdot 16,2^2}{2} \left(1 + \frac{0,025 \cdot 70}{0,09} + 20 \right) + 35 \cdot 9,81 = 6030 \text{ Па.} \]
К. п. д. вентилятора: \[\eta_\text{вент} = \frac{V \Delta p}{1000 \eta_\alpha N} = \frac{0,103 \cdot 6030}{1000 \cdot 0,95 \cdot 1,35} \approx 0,48. \]

Пример 1.28. Жидкость, имеющая плотность 1200 кг/м³ и динамический коэффициент вязкости 2 мПа·с, из бака с постоянным уровнем \(l \) самотеком поступает в реактор 2 (рис. 1.17). Определять, какое максимальное количество жидкости (при полностью открытом кране) может поступать из бака в реактор. Уровень жидкости в баке находится на 6 м выше ввода жидкости в реактор. Трубопровод выполнен из алюминиевых труб с внутренним диаметром 50 мм. Общая длина трубопровода, включая местные сопротивления, 16,4 м. На трубопроводе имеются три колена и кран. В баке и реакторе давление атмосферное.

Решение. Напишем уравнение Бернулли для установившегося потока жидкости, взяв первое сечение по уровню жидкости в баке, а второе — по концу трубопровода на выходе потока в реактор:

\[z_1 + \frac{p_1}{\rho g} + \frac{\omega_1^2}{2g} - h_\text{пот} = z_2 + \frac{p_2}{\rho g} + \frac{\omega_2^2}{2g}. \]

Так как \(p_1 = p_2 \) и \(\omega_1 \ll \omega_2 \), то

\[z_1 - z_2 = \frac{\omega_2^2}{2g} + h_\text{пот} = \frac{\omega_2^2}{2g} + h_\text{тр} + h_\text{м. о} \]

или

\[H \rho g = \frac{\omega_2^2 \rho}{2} \left(1 + \lambda \frac{L}{d} + \Sigma e\right). \quad (a) \]

Напор \(H \rho g \) расходуется на все гидравлические сопротивления трубопровода.
В последнем уравнении две неизвестные величины: \(\omega \) и \(\lambda \).
Решение может быть найдено путем последовательных приближений.
По табл. ХII для алюминиевых технически гладких труб принимаем шероховатость \(e = 0,06 \) мм. Тогда \(d/e = 50/0,06 = 840 \). Зададимся (с последующей проверкой) величиной \(\lambda = 0,022 \).
Коэффициенты местных сопротивлений, взятые из табл. XIII, сводим в табличку:

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>Σ ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вход жидкости в трубопровод</td>
<td>0,5</td>
</tr>
<tr>
<td>Кран</td>
<td>2,0</td>
</tr>
<tr>
<td>Колено (ζ = 1,1)</td>
<td>3·1,1 = 3,3</td>
</tr>
<tr>
<td></td>
<td>5,8</td>
</tr>
</tbody>
</table>

Исходное уравнение (a) принимает вид:

\[6 \cdot 1200 \cdot 9,81 = \frac{1200\omega^2}{2} \left(1 + \frac{0,022 \cdot 16,4}{0,05} + 5,8 \right), \]

откуда \(\omega = 2,9 \) м/с.

Расход жидкости (при полностью открытом кране):

\[V = \frac{\omega}{l} = 2,9 \cdot 0,785 \cdot 0,05^2 = 0,0057 \text{ м}^3/\text{с} = 20,5 \text{ м}^3/\text{ч}. \]

Проверим значение \(\lambda \). Имеем:

\[\text{Re} = \frac{\omega d_p \rho}{\mu} = \frac{2,9 \cdot 0,05 \cdot 1200}{2 \cdot 10^{-3}} = 87000. \]

По рис. 1.5 для \(\text{Re} = 87000 \) и \(d/e = 840 \) находим \(\lambda = 0,022 \), что совпадает с принятым значением.

Пример 1.29. Минеральное масло в количестве 40 м³/ч перекачивается по трубопроводу диаметром 108 \times 4 \text{ мм} в бак, помещенный на высоте 20 м. Длина горизонтального участка трубопровода 430 м.

Вычислить необходимую мощность насоса, если перекачка производится: a) при 15 °C и б) при 50 °C. При этих температурах относительная плотность масла составляет 0,96 и 0,89, динамический коэффициент вязкости 3,43 и 0,187 Па·с, соответственно.

Экономично ли подогревать до 50 °C масло перед перекачкой, если 1 кВт·ч электроэнергии стоит 4 коп., а 1 т греющего (отбросного) пара (\(p_{або} = 0,1 \text{ МПа} \)) 2 руб. и если общий к. п. д. насосной установки равен 0,5?

Решение. Скорость масла:

\[\omega = \frac{40}{0,785 \cdot 0,1^2 \cdot 3600} = 1,414 \text{ м/с}. \]

Критерий Рейнольдса:

при 15 °C

\[\text{Re} = \frac{0,1 \cdot 1,414 \cdot 960}{3,43} = 39; \]

при 50 °C

\[\text{Re} = \frac{0,1 \cdot 1,414 \cdot 890}{0,187} = 670. \]
Следовательно, в обоих случаях имеет место ламинарный режим.
Потерю давления на трение определяем по формуле (1.39): при 15 °C
\[
\Delta p_{\text{тр}} = \frac{32 \times (430 + 20) \times 1.414 \times 3.43}{0.1^3} = 7010000 \text{ Па}, \text{ или } 71.5 \text{ кгс/см}^2;
\]
при 50 °C
\[
\Delta p_{\text{тр}} = 7010000 \times \frac{0.187}{3.43} = 383000 \text{ Па}, \text{ или } 3.9 \text{ кгс/см}^2.
\]
Затраты давления на подъем жидкости [формула (1.34)]: при 15 °C
\[
\Delta p_{\text{под}} = 20 \times 960 \times 0.81 = 188400 \text{ Па}, \text{ или } 1.92 \text{ кгс/см}^2;
\]
при 50 °C
\[
\Delta p_{\text{под}} = 20 \times 890 \times 0.81 = 174600 \text{ Па}, \text{ или } 1.78 \text{ кгс/см}^2.
\]
Затраты давления на создание скорости [формула (1.35)]:
\[
\Delta p_{\text{сж}} = 960 \times 1.414^2 / 2 = 960 \text{ Па}.
\]
Этой величиной в данном случае пренебрежем так же, как и потерей давления на преодоление местных сопротивлений.
Тогда необходимая мощность по формуле (1.33): при 15 °C
\[
N = \frac{40 \times (7010000 + 188400)}{3600 \times 1000 \times 0.5} = 160 \text{ кВт};
\]
при 50 °C
\[
N = \frac{40 \times (383000 + 174600)}{3600 \times 1000 \times 0.5} = 12.3 \text{ кВт}.
\]
Следовательно, при перекачке холодного масла требуется дополнительный расход мощности 160 — 12.3 = 147.7 кВт. В условиях задачи стоимость дополнительной электроэнергии на перекачку составит: 147.7 \times 0.04 = 5.9 \text{ руб.}/ч
Расход теплоты на подогрев масла от 15 до 50 °C при удельной теплоемкости масла \(c = 1.68 \times 10^3 \text{ Дж/(кг \cdot К)} \):
\[
Q = \frac{40 \times 960 \times 1.68 \times 10^3 \times (50 - 15)}{3600} = 625000 \text{ Вт}.
\]
Удельная теплота конденсации отбросного пара (\(\rho_{\text{абс}} = 0.1 \text{ МПа} \)) \(r = 2260 \times 10^3 \text{ Дж/кг} \).
Расход пара на подогрев масла:
\[
D = \frac{Q}{r} = \frac{625000}{2260 \times 10^3} = 0.276 \text{ кг/с} \approx 1000 \text{ кг/ч}.
\]
Стоимость 1 т пара 2 руб. Следовательно, предварительный подогрев масла при данной стоимости пара и электроэнергии безусловно выгоден.
Пример 1.30. Вывести обобщенную расчетную формулу для коэффициента трения в трубах по следующим экспериментальным данным.
<table>
<thead>
<tr>
<th>Жидкость</th>
<th>(\omega, \text{м/с})</th>
<th>(\omega^2, \text{(м/с)}^2)</th>
<th>(\Delta p, \text{Па})</th>
<th>(\lambda = \frac{\Delta p}{A\omega^2})</th>
<th>Жидкость</th>
<th>(\omega, \text{м/с})</th>
<th>(\omega^2, \text{(м/с)}^2)</th>
<th>(\Delta p, \text{Па})</th>
<th>(\lambda = \frac{\Delta p}{A\omega^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефть</td>
<td>0,85</td>
<td>0,723</td>
<td>738</td>
<td>0,0522</td>
<td>Вода</td>
<td>0,11</td>
<td>0,0121</td>
<td>105</td>
<td>0,0433</td>
</tr>
<tr>
<td></td>
<td>1,21</td>
<td>1,46</td>
<td>1300</td>
<td>0,0458</td>
<td></td>
<td>0,16</td>
<td>0,0256</td>
<td>201</td>
<td>0,0392</td>
</tr>
<tr>
<td></td>
<td>1,54</td>
<td>2,37</td>
<td>2060</td>
<td>0,0445</td>
<td></td>
<td>0,22</td>
<td>0,0484</td>
<td>238</td>
<td>0,0348</td>
</tr>
<tr>
<td></td>
<td>1,91</td>
<td>3,65</td>
<td>3020</td>
<td>0,0424</td>
<td></td>
<td>0,26</td>
<td>0,0676</td>
<td>455</td>
<td>0,0337</td>
</tr>
<tr>
<td></td>
<td>2,32</td>
<td>5,38</td>
<td>4050</td>
<td>0,0386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. При перекачке нефти относительной плотности 0,9 по стальному трубопроводу с внутренним диаметром 300 мм на прямом участке длиной 13 м были получены следующие величины потери давления в зависимости от скорости нефти:

<table>
<thead>
<tr>
<th>Скорость, м/с</th>
<th>. . .</th>
<th>0,85</th>
<th>1,21</th>
<th>1,54</th>
<th>1,91</th>
<th>2,32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Потеря давления, Па</td>
<td>. . .</td>
<td>738</td>
<td>1300</td>
<td>2060</td>
<td>3020</td>
<td>4050</td>
</tr>
</tbody>
</table>

2. Аналогичные экспериментальные данные для воды при перекачивании ее по прямому стальному трубопроводу с внутренним диаметром 60 мм, длиной 24 м:

<table>
<thead>
<tr>
<th>Скорость, м/с</th>
<th>. . .</th>
<th>0,11</th>
<th>0,16</th>
<th>0,22</th>
<th>0,26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Потеря давления, Па</td>
<td>. . .</td>
<td>105</td>
<td>201</td>
<td>238</td>
<td>455</td>
</tr>
</tbody>
</table>

Решение. Вычислим значения коэффициентов трения \(\lambda \) для нефти и воды по формуле (1.36).

Предварительно определим постоянные (в наших опытах) величины \(A = \frac{L\rho}{2d} \). Для нефти: \(A = 13 \cdot 900/(2 \cdot 0,3) = 19500 \). Для воды: \(A = 24 \cdot 1000/(2 \cdot 0,06) = 200000 \).

Дальнейший расчет сведен в табл. 1.3.

Как следует из табл. 1.3, коэффициент трения \(\lambda \) уменьшается с возрастанием скорости потока.

Если нарисовать зависимости коэффициента трения от скорости на график (рис. 1.18), получим две различные кривые. На логарифмической сетке, т.е. в координатах \(\lg \omega - \lg \lambda \), получаются две прямые линии, приближенные уравнения которых:

для нефти

\[\lg \lambda = -1,31 - 0,25 \lg \omega \]

или \(\lambda = 0,049 \omega^{-0,25} \);

для воды

\[\lg \lambda = -1,65 - 0,3 \lg \omega \]

или \(\lambda = 0,0224 \omega^{-0,3} \).

Таким образом, мы получили две различные

Рис. 1.18 (к примеру 1.30):

1 — нефть; 2 — вода.
эмпирические формулы, каждая из которых действительна лишь в тех условиях, при которых она была получена Последняя формула, например, пригодна для вычисления коэффициента трения только для воды при протекании ее по трубе внутренним диаметром 60 мм со скоростью 0,1—0,3 м/с (и при той же температуре воды, при которой проводились опыты).
Получить по имеющимся экспериментальным данным для нефти и воды общую расчетную формулу, пригодную не только для нефти или воды, но также и для других жидкостей при других скоростях, других диаметрах труб и других температурах, можно с помощью теории подобия.
Для потери давления на трение в трубах теория подобия дает зависимость (1.37) в критериальной форме:

$$
\text{Eu} = \varphi (\text{Re}, \Gamma).
$$

Для труб с данной шероховатостью стенок в турбулентной (дозвуковой) области коэффициент трения \(\lambda \) зависит только от величины критерия \(\text{Re} \) — см. уравнения (1.38), (1.40) (1.42):

$$
\lambda = f (\text{Re}).
$$

Следовательно, для получения общепринятого уравнения мы должны найти зависимость коэффициента трения не от скорости, как это было сделано выше, а от критерия \(\text{Re} \).
Значения кинематического коэффициента вязкости при опытах были: для нефти \(\nu = 0,8 \cdot 10^{-4} \text{м}^2/\text{с} \), для воды \(\nu = 10^{-6} \text{м}^2/\text{с} \).
В табл. 1.4 сопоставлены значения \(\text{Re} \) и \(\lambda \), вычисленные по вышеприведенным экспериментальным данным.
Если построить график зависимости \(\lambda \) от \(\text{Re} \), то получим одну кривую, на которую укладываются все точки для нефти и воды.
В логарифмических координатах получим прямую линию (рис. 1.19). На этом графике по оси абсцисс отложены величины \(x = \lg \text{Re} - 3,5 \), а по оси ординат — величины \(y = \lg \lambda + 2 \).
Уравнение полученной прямой линии:

$$
\lg \lambda + 2 = -0,254 (\lg \text{Re} - 3,5) + 0,71; \ lg \lambda = -0,0254 \times \lg \text{Re} - 0,4, \text{откуда } \lambda = 0,398/\text{Re}^{0,254}.
$$

Таблица 1.4

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>(\nu, \text{м}/\text{с})</th>
<th>(\text{Re} = \frac{\nu d}{\nu})</th>
<th>(\lambda)</th>
<th>(\lg \text{Re})</th>
<th>(\lg \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нефть</td>
<td>0,85</td>
<td>3 190</td>
<td>0,0522</td>
<td>3,50</td>
<td>2,72</td>
</tr>
<tr>
<td></td>
<td>1,21</td>
<td>4 530</td>
<td>0,0458</td>
<td>3,66</td>
<td>2,66</td>
</tr>
<tr>
<td></td>
<td>1,54</td>
<td>5 780</td>
<td>0,0445</td>
<td>3,76</td>
<td>2,65</td>
</tr>
<tr>
<td></td>
<td>1,91</td>
<td>7 160</td>
<td>0,0424</td>
<td>3,85</td>
<td>2,63</td>
</tr>
<tr>
<td></td>
<td>2,32</td>
<td>8 700</td>
<td>0,0386</td>
<td>3,94</td>
<td>2,59</td>
</tr>
<tr>
<td>Вода</td>
<td>0,11</td>
<td>6 600</td>
<td>0,0438</td>
<td>3,82</td>
<td>2,64</td>
</tr>
<tr>
<td></td>
<td>0,16</td>
<td>9 600</td>
<td>0,0392</td>
<td>3,98</td>
<td>2,59</td>
</tr>
<tr>
<td></td>
<td>0,22</td>
<td>13 200</td>
<td>0,0348</td>
<td>4,12</td>
<td>2,54</td>
</tr>
<tr>
<td></td>
<td>0,26</td>
<td>15 600</td>
<td>0,0337</td>
<td>4,19</td>
<td>2,53</td>
</tr>
</tbody>
</table>
Полученная формула и представляет собой общую зависимость, которой можно пользоваться для расчета коэффициента трения в трубах не только для нефти и воды, но и для любых других жидкостей в пределах значений критерия Re = 3000 ÷ 16 000. Следует добавить, что эта формула пригодна лишь для труб с такой же относительной шероховатостью стенок, какая была при опытах.

Так как экспериментальные данные укладываются на одну прямую (рис. 1.19), то можно считать, что относительная шероховатость стенок e/d в опытах с нефтью и с водой была примерно одинаковой.

Эту относительную шероховатость можно найти, если на график (рис. 1.5 или 1.6) нанести экспериментальные данные из табл. 1.3 и 1.4, представив их в виде λ = f (Re) или Eu/Γ = f (Re).

Пример 1.31. Для экспериментального изучения в лабораторных условиях некоторого производственного процесса изготовлена геометрическая модель промышленного аппарата в масштабе 1 : 10. В производственном аппарате рабочее вещество — горячий воздух (100 ⁰C, атмосферное давление), двигающийся со скоростью 3 м/с. В лабораторной модели предполагается применить в качестве рабочего вещества воздух атмосферного давления с температурой 22 ⁰C.

Возможно ли при этих условиях получить полное гидродинамическое подобие промышленного аппарата и модели, и какова должна быть скорость воздуха в модели?

Решение. Для соблюдения гидродинамического подобия необходимо при подобных граничных условиях равенство критериев Рейнольдса и Фруда (критерий Эйлера в данном случае не является определяющим) в модели и в производственном аппарате, т. е. должно быть:

\[Re_1 = Re_2; \quad \frac{\mu_1 l_1 \rho_1}{\mu_1} = \frac{\mu_2 l_2 \rho_2}{\mu_2}, \quad (a) \]

\[Fr_1 = Fr_2; \quad \frac{\omega_1}{g l_1} = \frac{\omega_2}{g l_2}. \quad (b) \]

В этих уравнениях индекс «1» относится к промышленному аппарату, индекс «2» — к модели.
Имеем:

\[w_1 = 3 \text{ м/с; } l_2 = 0,1l_1; \]
\[\rho_1 = 1,293 (273/373) = 0,945 \text{ кг/м}^3; \]
\[\rho_2 = 1,293 (273/295) = 1,19 \text{ кг/м}^3; \]
\[\mu_1 = 0,0215 \text{ мПа} \cdot \text{с; } \mu_2 = 0,0185 \text{ мПа} \cdot \text{с.} \]

Подставляя эти значения в уравнение (а), находим:

\[3l_1 \cdot 0,945/0,0215 = w_2 \cdot 0,1l_1 \cdot 1,19/0,0185, \]
откуда

\[w_2 = \frac{3 \cdot 0,945 \cdot 0,0185}{0,1 \cdot 0,0215 \cdot 1,19} = 20,5 \text{ м/с.} \]

Подстановка в уравнение (б) дает:

\[3l_1/l_1 = w_2/(0,1l_1), \]
откуда

\[w_2 = \sqrt{0,9} = 0,946 \text{ м/с.} \]

Полученные результаты показывают, что соблюдение полного гидродинамического подобия, т. е. одновременного подобия сил трения и сил тяжести, в модели и в промышленном аппарате при заданных условиях невозможно. Придается ограничиться приближенным моделированием процесса, как это в большинстве случаев на практике и делается, т. е. ограничиться соблюдением только одного условия (либо Re = idem, либо Fr = idem) в зависимости от того, какое из этих условий является более существенным. Если, например, в нашем случае большее значение имеют силы трения, т. е. критерий Re, то скорость воздуха в модели должна быть взята 20,5 м/с.

Выясним, при каких условиях возможно получение одновременного подобия сил трения и сил тяжести в модели и в промышленном аппарате.

Из условия \(\text{Re} = \text{idem}, \) т. е. \(w_1l_1/v_1 = w_2l_2/v_2, \) где \(v \) — кинематический коэффициент вязкости, следует, что \(w_1/w_2 = v_1l_2/(v_2l_1). \)

Из условия \(\text{Fr} = \text{idem}, \) т. е. \(w_2^2/(g l_1) = w_2^2/(g l_2), \) находим:

\[w_1/w_2 = (l_1/l_2)^{1/2}. \]

Оба условия \((\text{Re} = \text{idem} \text{ и Fr = idem})\) будут соблюдены, если

\[v_1l_2/(v_2l_1) = (l_1/l_2)^{1/2}, \text{ т. е. } v_1/v_2 = (l_1/l_2)^{3/2}. \]

Последнее равенство и выражает требуемое условие одновременного подобия сил трения и сил тяжести.

Пример 1.32. Найти диаметр трубопровода для транспортирования водорода при массовом расходе его 120 кг/ч. Длина трубопровода 1000 м. Допускаемое падение давления \(\Delta p = 110 \text{ мм вод. ст.} \) (1080 Па). Плотность водорода 0,0825 кг/м³. Коэффициент трения \(\lambda = 0,03. \)
Решение. В длинных магистральных газопроводах давление расходуется главным образом на преодоление трения, поэтому приравниваем заданную потерю давления $\Delta p = \Delta p_{тр}$.
Так как скорость потока — величина неизвестная, то выразим ее через объемный расход V и искомый диаметр трубопровода, а затем подставим в уравнение (1.36):

$$\omega = \frac{V}{0,785d^2}.$$

Тогда

$$\Delta p = \frac{\lambda L}{d} \frac{V^2\rho}{2 \cdot 0,785^2d^4}.$$

Решая это уравнение относительно диаметра, получаем:

$$d = C \sqrt[5]{\frac{LV^2\rho}{\Delta p}},$$

где $C = \sqrt[5]{\frac{\lambda}{0,785^2 \cdot 2}}$. В нашем случае

$$C = \sqrt[5]{\frac{0,03}{0,785^2 \cdot 2}} = 0,48.$$

Секундный объемный расход водорода:

$$V = \frac{120}{0,0825 \cdot 3600} = 0,405 \text{ м}^3/\text{с}. $$

Так как $\Delta p = 110 \cdot 9,81 = 1080 \text{ Па}$, то

$$d = 0,48 \sqrt[5]{\frac{0,0825 \cdot 0,405^2 \cdot 1000}{1080}} = 0,2 \text{ м.}$$

Пример 1.33. Определить начальное давление газа, достаточное для передачи его по трубопроводу на расстояние 100 км, при следующих условиях: расход газа 5000 кг/ч, плотность газа 0,65 кг/м3 (при нормальных условиях), средняя температура газа 18 °C. Диаметр трубопровода 0,3 м, коэффициент трения $\lambda = 0,0253$. Давление газа при выходе из трубопровода должно быть $p_{абс} = 1,5 \text{ кгс/см}^2$ (~0,15 МПа).

Решение. Как и в предыдущем примере, считаем, что давление в трубопроводе расходуется лишь на преодоление трения. В случае дальних газопроводов формулу (1.36) для определения потери давления на трение следует применять, исходя из дифференциального выражения, так как плотность и скорость газа по длине трубопровода меняются *:

$$-dp = \frac{\lambda}{d} \frac{\omega^2\rho}{2} dL,$$

* Знак минус поставлен потому, что с возрастанием длины трубопровода давление в нем падает.
где переменная плотность ρ и скорость w — функции давления газа, падающего по мере продвижения его по трубопроводу. Однако произведение $\omega \rho$, т. е. массовая скорость потока, остается по длине трубопровода постоянным.

Выразим ρ и w через соответствующие характеристики газа при нормальных условиях

$$\rho = \rho_0 \frac{p T_0}{\rho_0 T}; \quad w = w_0 \frac{p_0 T}{\rho T_0}$$

и подставив их в уравнение для потери давления:

$$-d\rho = \frac{\lambda}{2d} \frac{\rho_0 \rho T_0}{\rho_0 T} \frac{w_0^2 p_0^2 T^2}{\rho^2 T_0^2} dL.$$

Принимая температуру T постоянной по длине трубопровода, сведем все постоянные величины в общий коэффициент:

$$C = \frac{\lambda_0 \omega_0^3 \rho_0 T}{2T_0}.$$

Тогда

$$-p \, d\rho = C \, dL.$$

Интегрируя это уравнение в соответствующих пределах

$$\int_{p_{\text{нач}}}^{p_{\text{кон}}} p \, d\rho = C \int_0^L dL,$$

получаем:

$$\frac{1}{2} (p_{\text{нач}}^2 - p_{\text{кон}}^2) = CL \quad \text{или} \quad p_{\text{нач}}^2 - p_{\text{кон}}^2 = 2CL.$$

В условиях задачи скорость газа при 0 °C и 760 мм рт. ст. составляет:

$$w_0 = \frac{15000}{0,65 \cdot 3600 \cdot 0,785 \cdot 0,3^2} = 30 \text{ м/с}.$$

Следовательно,

$$C = \frac{0.0253 \cdot 0,65 \cdot 30^2 \cdot 101 \cdot 300 \cdot 291}{2 \cdot 0,3 \cdot 273} = 266 \cdot 10^4.$$

Подставим заданные и найденные величины в полученное уравнение: $p_{\text{нач}}^2 - (14.7 \cdot 10^4)^2 = 2 \cdot 266 \cdot 10^4 \cdot 10^6$. Отсюда находим, что начальное давление газа в сети должно быть:

$$p_{\text{нач}} = 71 \cdot 10^4 \text{ Па}, \text{ или} 7,3 \text{ кгс/см}^2.$$

Пример 1.34. Определить экономически наивыгоднейший диаметр трубопровода для транспортировки 6000 м³/ч (считая при 0 °C и 760 мм рт. ст.) метана на расстояние 4 км. К. п. д. нагнетателя с электродвигателем 0,5. Стоимость электроэнергии 4 коп.

* Коэффициент трения λ является постоянным по длине трубопровода так же, как и критерий Re, поскольку $\omega \rho = \omega_{\rho_0} = \text{const.}$
за 1 кВт·ч. Стоимость амортизации трубопровода 2,4 руб. в год на 1 м длины и 1 м диаметра. Стоимость ремонта (эксплуатации) трубопровода 1,8 руб. в год на 1 м длины и 1 м диаметра.

Решение. Примем ориентировочно, что коэффициент трения $\lambda = 0,03$ и что потери на местные сопротивления составляют 10% от потерь на трение.

Сделаем расчет для условной температуры 30 °C, принимая (с последующей проверкой), что падение давления в трубопроводе невелико и среднее давление приближенно можно считать равным атмосферному.

Объемный расход метана:

$$ V = \frac{6000 \cdot 303}{3600 \cdot 273} = 1,85 \text{ м}^3/\text{с.} $$

Тогда

$$ w = \frac{V}{0,785d^2} = \frac{1,85}{0,785d^2} = \frac{2,36}{d^2} \text{ м}/\text{с.} $$

Пренебрегая затратой давления на создание скорости, получаем по формуле (1.34) для горизонтального газопровода при $\Delta p_{доп} = 0$:

$$ \Delta p = \Delta p_{тп} + \Delta p_{м. с} = 1,1 \Delta p_{тп}, $$

t. е.

$$ \Delta p = \frac{1,1 \lambda L w^2 \rho}{d \cdot 2} = \frac{1,1 \cdot 0,03 \cdot 4000 \cdot 2,36^2 \cdot 0,64}{d \cdot 2d^2} = \frac{235}{d^8} \text{ Па,} $$

gде плотность метана

$$ \rho = \frac{16 \cdot 273}{22,4 \cdot 303} = 0,64 \text{ кг/м}^3. $$

В соответствии с принятым допущением подсчитаем расходуемую нагнетателем мощность при $\Delta p \ll 0,1 \text{ кгс/см}^2$ по формуле (1.33):

$$ N = \frac{V \Delta p}{1000 \eta} = \frac{1,85 \cdot 235}{1000 \cdot 0,5d^6} = \frac{0,87}{d^4} \text{ кВт.} $$

1 кВт·год стоит 0,04·24·330 = 316 руб., принимая 330 рабочих дней в году.

Таким образом, годовая стоимость электроэнергии в зависимости от диаметра трубопровода может быть выражена формулой

$$ \Theta = 0,87 \cdot 316/d^4 = 275/d^5 \text{ руб.}/\text{год.} $$

Подобным же образом выразим годовую стоимость амортизации трубопровода

$$ A = 2,4Ld = 2,4 \cdot 4000d = 9600d \text{ руб.}/\text{год.} $$

и ремонта (эксплуатации) его:

$$ P = 1,8Ld = 7200d \text{ руб.}/\text{год.} $$
Суммарная годовая стоимость как функция диаметра выражается уравнением:

$$\Theta + A + P = (275/d^9) + 16,800d \text{ руб.} / \text{год.}$$

Для отыскания минимума берем производную и приравниваем ее нулю:

$$\frac{d}{dd} (\Theta + A + P) = -5 \cdot 275d^{-9} + 16,800 = 0.$$

Вторая производная положительна.

Из последнего уравнения находим: $$d = 0,66 \text{ м. Это и будет экономически наивыгоднейший диаметр газопровода.}$$

Проверим величину \(\Delta p\) в трубопроводе диаметром 0,66 мм:

$$\Delta p = 235/d^9 = 235/0.66^6 = 1890 \text{ Па, или 0,0193 кгс/см}^2,$$

т. е. меньше 0,1 кгс/см², как и было принято выше.

Пример 1.35. При тепловом расчете теплообменника для нагрева некоторого раствора был выбран по каталогу четырехходовой кожухотрубчатый теплообменник (рис. 1.20), в котором раствор проходит по трубному пространству со скоростью 0,3 м/с. Определить гидравлическое сопротивление трубного пространства.

Характеристика теплообменника: общее число труб 90, трубы стальные диаметром 38×2 мм с незначительной коррозией, высота трубного пространства 2 м, штуцеры для раствора имеют диаметр 159×4,5 мм. Средняя температура раствора 47,5 °C, динамический коэффициент вязкости 0,83 мПа·с, плотность 1100 кг/м³.

Решение. Критерий Рейнольдса для раствора:

$$Re = \frac{\omega d \rho}{\mu} = \frac{0,3 \cdot 0,034 \cdot 1100}{0,83 \cdot 10^{-3}} = 13500.$$

В этом примере требуется определить потерю давления для неизотермического турбулентного потока. Но поскольку здесь мы имеем нагревающийся поток капельной жидкости, то приближенно рассчитываем гидравлическое сопротивление как для потока изотермического, делая при этом ошибку в сторону преувеличения потери давления, т. е. в сторону запаса. Для расчета применяем формулу (1.54).

Определяем потерю давления на преодоление трения в трубах.

По табл. XI1 для стальных труб с незначительной коррозией шероховатость \(e = 0,2 \text{ мм. При этом } d/e = 34/0,2 = 170. \) По рис. 1.5 для \(Re = 13500\) и \(d/e = 170\) находим \(\lambda = 0,035.\)

Рис. 1.20 (к примеру 1.35).
Скоростное давление в трубах:
\[\Delta p_{сг} = \rho w^2/2 = 1100 \cdot 0,3^2/2 = 49,5 \text{ Па}. \]

Потеря давления на преодоление трения в трубах:
\[\Delta p_{тр} = \lambda (nL/d) \Delta p_{сг} = 0,035 (4 \cdot 2/0,034) 49,5 = 407 \text{ Па}, \]
где \(n = 4 \) — число ходов по трубному пространству.

Определяем потери давления на преодоление местных сопротивлений теплообменника (рис. 1.20) по следующей табличке:

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>(\varepsilon)</th>
<th>(\sum \varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Входная и выходная камера</td>
<td>1,5</td>
<td>1,5(\cdot 2 = 3)</td>
</tr>
<tr>
<td>Вход в трубы и выход из них</td>
<td>1</td>
<td>1(\cdot 8 = 8)</td>
</tr>
<tr>
<td>Поворот на 180° из одной секции в другую</td>
<td>2,5</td>
<td>2,5(\cdot 3 = 7,5)</td>
</tr>
</tbody>
</table>

Скорость раствора в штуцерах:
\[w_ш = w (n d_{тр}^2 / d_ш^2) = 0,3 (90 : 4 \cdot 0,034^2 / 0,15^2) = 0,346 \text{ м/с.} \]

Скоростное давление в штуцерах:
\[\Delta p_{сг} = \rho w^2/2 = 1100 \cdot 0,346^2/2 = 66 \text{ Па}. \]

Скорость в штуцере больше скорости в трубах, поэтому потери давления для входной и выходной камер находим по скорости в штуцерах, а потери при входе и выходе из труб и при поворотах из одной секции в другую — по скорости в трубах:
\[\Delta p_{М. о} = 3 \cdot 66 + (8 + 7,5) 49,5 = 966 \text{ Па}. \]

Общее гидравлическое сопротивление трубного пространства теплообменника:
\[\Delta p = 407 + 966 = 1373 \text{ Па = 140 мм вод. ст.} \]

Пример 1.36. По межтрубному пространству кожухотрубчатого теплообменника (рис. 1.21) параллельно осям труб проходит анилин со скоростью 0,5 м/с. Теплообменник состоит из 19 стальных труб диаметром 26×2,5 мм, длиной 2,7 м. Внутренний диаметр кожуха 200 мм. Средняя шероховатость труб \(e = 0,2 \text{ мм.} \) Анилин в теплообменнике охлаждается водой от 100 до 40 °C.

Определить потерю давления на трение для анилина: а) считая поток изотермическим; б) для неизотермического потока при средней температуре стенки труб 25 °C.

Решение. а) Для изотермического потока потерю давления на трение рассчитываем по формуле (1.36) при средней температуре анилина, равной \((100 + 40)/2 = 70 \text{ °C.} \)
Рис. 1.21 (к примеру 1.36).

Эквивалентный диаметр межтрубного пространства теплообменника:

\[d_e = \frac{4f_1}{\Pi} = \frac{D^2 - nd^2}{D + nd} = \frac{200^2 - 19.26^2}{200 + 19.26} = 39.2 \text{ мм}, \]

где \(D \) — внутренний диаметр кожуха, мм; \(d \) — наружный диаметр трубы, мм; \(n \) — число труб.

Определяем значение критерия Рейнольдса:

\[Re = \frac{w \rho \mu}{\nu} = \frac{0.5 \cdot 0.0392 \cdot 1.040 \cdot 1.4 \cdot 10^{-8}}{1.4 \cdot 10^{-8}} = 14600. \]

Здесь 1040 кг/м³ — плотность анилина; 1,4 \(\cdot \) 10\(^{-8}\) Па·с — динамический коэффициент вязкости анилина при 70 °C (рис. V).

Коэффициент трения определяем по рис. 1.5. Для \(Re = 14600 \) и \(d/e = 39.2/0.2 = 196 \) находим \(\lambda = 0.034 \).

Потеря давления на трение:

\[\Delta \rho = \frac{\lambda L}{d} \frac{w^2 \rho}{2} = \frac{0.034 \cdot 2 \cdot 7 \cdot 0.5^2 \cdot 1.040}{0.0392 \cdot 2} = 304 \text{ Па.} \]

б) Если поток неизотермический (температура стенки отличается от температуры жидкости), то значение \(\Delta \rho_{тр} \) для изотермического потока необходимо умножить на поправочный коэффициент, который определяем, как и для гидравлически гладких труб, по уравнению (1.44):

\[x = (\text{Pr}_{ct}/\text{Pr}_{mb})^{1/3}, \]

где \(\text{Pr}_{ct} \) — критерий Прандтля для протекающей жидкости при температуре стенки трубы; \(\text{Pr}_{mb} \) — критерий Прандтля для протекающей жидкости при ее средней температуре.

Значения критерия Прандтля для анилина находим по номограмме (рис. XIII): для \(t_{ct} = 25 \text{ °C} \) \(\text{Pr} = 47 \), для \(t_{mb} = 70 \text{ °C} \) \(\text{Pr} = 16.5 \).

Потеря давления на трение для неизотермического (охлаждаемого) турбулентного потока анилина:

\[\Delta \rho_{тр} = 304 (47/16.5)^{1/3} = 430 \text{ Па,} \]

что значительно выше, чем для потока изотермического.

Пример 1.37. Для определения коэффициента продольного перемешивания \(E_r \) в насадочной колонне для газовой фазы были проведены опыты по получению выходной кривой отклика на импульсный (мгновенный) ввод индикатора в газовой поток на входе в колонну. Высота слоя насадки 6 м. Скорость газа в колонне (фактическая) 0.8 м/с. Полученные результаты приведены в табл. 1.5 и на рис. 1.22. Найти величину \(E_r \).
Решение.
Находим среднее время пребывания в колонне частиц (струек) газового потока:

$$\tau_{cp} = \int_0^\infty C \, dt / \int_0^\infty C \, dt.$$

Вычисляем интегралы по формуле трапеций:

$$\int_0^\infty C \, dt \approx \int_0^{12} C \, dt \approx n \Delta t \left(\frac{C_n + C_0}{2} + \sum_{i=1}^{n-1} C_i \right) =$$

$$= 1 (0,0003 + 29,86) = 29,86 \text{ г} \cdot \text{с} / \text{м}^3;$$

$$\int_0^\infty C \, dt \approx \int_0^{12} C \, dt \approx n \Delta t \left(\frac{C_n \tau_n}{2} + \sum_{i=1}^{n-1} \tau_i C_i \right) =$$

$$= 1 (0,0036 + 179,7) = 179,7 \text{ г} \cdot \text{с}^2 / \text{м}^3;$$

$$\tau_{cp} = 179,7 / 29,86 = 6,018 \text{ с.}$$

Определяем дисперсию

$$\sigma^2 = \int_0^\infty \tau^2 C \, dt / \int_0^\infty C \, dt;$$

$$\int_0^\infty \tau^2 C \, dt \approx \int_0^{12} \tau^2 C \, dt \approx n \Delta t \left(\frac{\tau_n^2 C_n}{2} + \right.$$

$$+ \left. \sum_{i=1}^{n-1} \tau_i^2 C_i \right) = 1 (0,0432 + 1118) =$$

$$= 1118 \text{ г} \cdot \text{с}^3 / \text{м}^3;$$

$$\sigma^2 = 1118 / 29,86 = 1,230 \text{ с}^2.$$

В безразмерных единицах:

$$\sigma^2_0 = \sigma^2 / \tau_{cp}^2 = 1,230 / 36,22 = 0,03396.$$

Рис. 1.22 (к примеру 1.37).
Находим значение модифицированного критерия Пекле для продольного перемещивания $Re = \frac{\omega H}{E_p}$ из уравнения

$$\alpha_0 = \frac{2}{Pe^2} (Re - 1) e^{-Pe}.$$

Решая это уравнение методом последовательных приближений, имеем:

$$Re = 57,8.$$

Находим действительную скорость газа в колонне:

$$\omega = \frac{H}{\tau_0} = \frac{6}{6,018} = 0,997 \text{ м/с.}$$

Коэффициент продольного перемещивания:

$$E_p = \frac{\omega H}{Re} = 0,997 \cdot 6/57,8 = 0,103 \text{ м³/с.}$$

КОНТРОЛЬНЫЕ ЗАДАЧИ

1.1. Найти мольную массу и плотность водяного газа при $t = 90 ^\circ C$ и $p_{абс} = 1,2$ кгс/см² ($\sim 0,12$ МПа). Состав водяного газа: H₂ – 50 %, CO – 40 %, N₂ – 5 %, CO₂ – 5 % (по объему).

1.2. Определить плотность диоксида углерода при $t = 85 ^\circ C$ и $p_{абс} = 2$ кгс/см² ($\sim 0,2$ МПа). Атмосферное давление 760 мм рт. ст.

1.3. Состав продуктов горения 1 кг коксового газа (в кг): CO₂ – 1,45; N₂ – 8,74; H₂O – 1,92. Найти объемный состав продуктов горения.

1.4. Разрезание в осушительной башне сернокислотного завода измеряется U-образным тягомером, наполненным серной кислотой плотностью 1800 кг/м³. Показание тягомера 3 см. Каково абсолютное давление в башне, выражаемое в Па, если барометрическое давление составляет 750 мм рт. ст.?

1.5. Манометр на трубопроводе, заполненном жидкостью, показывает давление 0,18 кгс/см². На какую высоту h над точкой присоединения манометра поднимается в открытом пьезометре жидкость, находящаяся в трубопроводе, если эта жидкость: а) вода, б) четыреххлористый углерод (рис. 1.23)?

1.6. Высота уровня мазута в резервуаре 7,6 м (рис. 1.24). Относительная плотность мазута 0,96. На высоте 800 мм от дна в резервуаре имеется круглый лаз диаметром 760 мм, крышка которого прикрепляется болтами диаметром 10 мм. Принимая для болтов допустимое напряжение на разрыв 700 кгс/см², определить необходимое число болтов. Определить также давление мазута на дно резервуара.

1.7. На малый поршень диаметром 40 мм ручного гидравлического пресса (рис. 1.25) действует сила 589 Н (60 кгс). Пренебрегая потерями, определить силу, действующую на прессуемое тело, если диаметр большого поршня 300 мм.

* Ответы к контрольным задачам даны на стр. 495.
1.8. Динамический коэффициент вязкости жидкости при 50 °C равняется 30 мПа·с. Относительная плотность жидкости 0,9. Определить кинематический коэффициент вязкости.

1.9. Найти динамический коэффициент вязкости при 20 °C и атмосферном давлении азото-водородной смеси, содержащей 75% водорода и 25% азота (по объему).

1.10. Известно, что динамический коэффициент вязкости льняного масла при 30 °C равняется 0,331 П, а при 50 °C 0,176 П. Чему будет равен динамический коэффициент вязкости этого масла при 90 °C? (Воспользоваться правилом линейности, приняв за стандартную жидкость, например, 100%-ный глицерин).

1.11. Холодильник состоит из 19 труб диаметром 20×2 мм (рис. 1.21). В трубное пространство холодильника поступает вода по трубопроводу диаметром 57×3,5 мм. Скорость воды в трубопроводе 1,4 м/с. Вода идет снизу вверх. Определить скорость воды в трубах холодильника.

1.12. По трубам теплообменника, состоящего из 379 труб диаметром 16×1,5 мм, проходит азот в количестве 6400 м³/ч (считая при 0 °C и 760 мм рт. ст.) под давлением $p_{абс} = 3$ кгс/см² (~0,3 МПа). Азот входит в теплообменник при 120 °C, выходит при 30 °C. Определить скорость азота в трубах теплообменника на входе и на выходе.

1.13. Холодильник состоит из двух концентрических стальных труб диаметром 29×2,5 мм и 54×2,5 мм. По внутренней трубе протекают 3,73 т/ч рассола плотностью 1150 кг/м³. В межтрубном пространстве проходит 160 кг/ч газа под давлением $p_{абс} = 3$ кгс/см² (~0,3 МПа) при средней температуре...
0 °C. Плотность газа при 0 °C и 760 мм рт. ст. равна 1,2 кг/м³. Найти скорости газа и жидкости в холодильнике.

1.14. Определить необходимый диаметр наружной трубы в условиях предыдущей задачи, если газ поедет под атмосферным давлением, но при той же скорости и при том же массовом расходе.

1.15. Вычислить в общей форме гидравлический радиус при заполненном сечении для кольцевого сечения, квадрата, прямоугольника и равностороннего треугольника.

1.16. Определить эквивалентный диаметр межтрубного пространства кожухотрубчатого теплообменника (рис. 1.21), состоящего из 61 трубы диаметром 38×2,5 мм. Внутренний диаметр кожуха 625 мм.

1.17. Определить режим течения воды в кольцевом пространстве теплообменника типа «труба в трубе» (рис. 1.12). Наружная труба — 96×3,5 мм, внутренняя — 57×3 мм, расход воды 3,6 м³/ч, средняя температура воды 20 °C.

1.18. Определить режим течения этилового спирта: а) в прямоугольной трубе диаметром 40×2,5 мм; б) в змеевике, свитом из той же трубы. Диаметр витка змеевика 570 мм. Скорость спирта 0,13 м/с, средняя температура 52 °C.

1.19. Определить местную скорость по оси трубопровода диаметром 57×3,5 мм при протекании по нему уксусной кислоты в количестве 200 дм³/ч при 38 °C.

1.20. В середине трубопровода с внутренним диаметром 320 мм установлена трубка Пито—Прандтля (рис. 1.4), дифференциальный манометр которой, заполненный водой, показывает разность уровней \(H = 5,8 \) мм. По трубопроводу проходит под атмосферным давлением сухой воздух при 21 °C. Определить массовый расход воздуха.

1.21. Из отверстия диаметром 10 мм в дне открытого бака, в котором поддерживается постоянный уровень жидкости высотой 900 мм, вытекает 750 дм³ жидкости в 1 ч. Определить коэффициент расхода. Через сколько времени опорожнится бак, если прекратить подачу в него жидкости? Диаметр бака 800 мм.

1.22. В напорный бак с площадью поперечного сечения 3 м² притекает вода. В дне бака имеется спускное отверстие. При установившемся течении расход через отверстие равен притоку и уровень воды устанавливается на высоте 1 м. Если прекратить приток воды, уровень ее будет понижаться и через 100 с бак опорожнится. Определить приток воды в бак.

1.23. По горизонтальному трубопроводу с внутренним диаметром 200 мм прокачивает минеральное масло относительной плотности 0,9. В трубопроводе установлена диафрагма (рис. 1.3) с острыми краями (коэффициент расхода 0,61). Диаметр отверстия диафрагмы 76 мм. Ртутный дифманометр, присоединенный к диафрагме, показывает разность уровней 102 мм. Определить скорость масла в трубопроводе и его расход.
1.24. На трубопроводе диаметром 160 × 5 мм установлен расходомер "труба Вентури" (рис. 1.26), внутренний диаметр узкой части которой равен 50 мм. По трубопроводу проходит этан под атмосферным давлением при 25 °C. Показание водяного дифманометра трубы Вентури H = 32 мм. Определить массовый расход этана, проходящего по трубопроводу (в кг/ч), приняв коэффициент расхода 0,97.

1.25. Определить потерю давления на трение при протекании воды по латунной трубе диаметром 19 × 2 мм, длиной 10 м. Скорость воды 2 м/с. Температура 55 °C. Принять шероховатость трубы e = 0,005 мм.

1.26. Определить потерю давления на трение в свинцовом змеевике, по которому протекает 60%-ная серная кислота со скоростью 0,7 м/с при средней температуре 55 °C. Принять максимальную шероховатость свинцовых труб по табл. XI. Внутренний диаметр трубы змеевика 50 мм, диаметр витка змеевика 800 мм, число витков 20. Длину змеевика определить приближенно по числу витков и их диаметру.

1.27. По стальному трубопроводу внутренним диаметром 200 мм, длиной 1000 м передается водород в количестве 120 кг/ч. Среднее давление в сети 1530 мм рт. ст. Температура газа 27 °C. Определить потерю давления на трение.

1.28. Найти потерю давления на трение для пара в стальном паропроводе длиной 50 м, диаметром 108 × 4 мм. Давление пара ρабо = 6 кгс/см² (~0,6 МПа), скорость пара 25 м/с.

1.29. Как изменится потеря давления на трение в газопроводе, по которому проходит азот, если при постоянном массовом расходе азота: а) увеличить давление (абсолютное) подаваемого азота с 1 до 10 кгс/см² при неизменной температуре; б) повысить температуру азота от 0 до 80 °C при неизменном давлении.

1.30. По водопроводной трубе проходит 10 м³/ч воды. Сколько воды в 1 к пропустит труба удвоенного диаметра при той же потере напора на трение? Коэффициент трения считать постоянным. Течение турбулентное.

1.31. По прямому горизонтальному трубопроводу длиной 150 м необходимо подавать 10 м³/ч жидкости. Допускаемая потеря напора 10 м. Определить требуемый диаметр трубопровода, приняв коэффициент трения λ = 0,03.

1.32. Как изменится потеря давления на трение, если при неизменном расходе жидкости уменьшить диаметр трубопровода
вдвоем? Задачу решить в двух вариантах: а) считая, что оба режима (старый и новый) находятся в области ламинарного течения; б) считая, что оба режима находятся в автомодельной области.

1.33. Жидкость относительной плотности 0,9 поступает самотеком из напорного бака, в котором поддерживается атмосферное давление, в ректификационную колонну (рис. 1.27). Давление в колонне 0,4 кгс/см² (~40 кПа) по манометру \(\rho_{\text{изм}} \). На какой высоте \(x \) должен находиться уровень жидкости в напорном баке над местом ввода в колонну, чтобы скорость жидкости в трубе была 2 м/с. Напор, теряемый на трение и местные сопротивления, 2,5 м. Применить уравнение Бернулли.

1.34. 86% раствор глицерина спускается из напорного бака 1 в аппарат 2 по трубе диаметром 29×2 мм (рис. 1.28). Разность уровней раствора 10 м. Общая длина трубопровода 110 м. Определить расход раствора, если относительная плотность его 1,23, а динамический коэффициент вязкости 97 мПа·с. Местными сопротивлениями пренебречь. Режим течения принять ламинарным (с последующей проверкой). Уровень раствора в баке считать постоянным.

1.35. 20 т/ч хлорбензола при 45 °C перекачиваются насосом из реактора 1 в напорный бак 2 (рис. 1.29). В реакторе над жидкостью поддерживается разрежение 200 мм рт. ст. (26,66 кПа), в напорном баке атмосферное давление. Трубопровод выполнен из стальных труб с незначительной коррозией диаметром 76 × 4 мм, общей длиной 26,6 м. На трубопроводе установлены 2 крана, диафрагма \(d_{\theta} = 48 \) мм и 5 отводов под углом 90° \(R_{\theta}/d = 3 \). Хлорбензол перекачивается на высоту \(H = 15 \text{ м}. \)
Найти мощность, потребляемую насосом, приняв общий к. п. д. насосной установки 0,7.

1.36. Кожухотрубчатый теплообменник (рис. 1.21) состоит из 187 стальных труб с незначительной коррозией (e = 0,2 мм) диаметром 18×2 мм, длинной 1,9 м. Кожух выполнен из трубы 426×12 мм. По межтрубному пространству параллельно оси труб проходит 3000 м³/ч азота (считая при нормальных условиях) под атмосферным давлением при средней температуре —10 °C. Диаметр входного и выходного штуцера 250 мм. Определить гидравлическое сопротивление межтрубного пространства.

1.37. В теплообменнике типа "труба в трубе" (рис. 1.12), состоящем из двух концентрических труб (внутренней диаметром 44,5×3,5 мм и наружной диаметром 89×5 мм), охлаждается от 70 до 30 °C толуол в количестве 1900 кг/ч. Тoluол проходит по кольцевому пространству между наружной и внутренней трубой; по внутренней трубе протекает охлаждающая вода, нагревающаяся от 14 до 21 °C. Определить потерю давления на трение на 1 м длины трубы для толуола и для воды, принимая, что стальные трубы имеют незначительную коррозию. Средняя температура стенки внутренней трубы 25 °C.

1.38. Привести формулу (1.39) к критериальному виду.

1.39. Какой должен быть взят геометрический масштаб модели, если в промышленном аппарате рабочая жидкость — нефть, а в модели — вода, кинематический коэффициент вязкости которой в 50 раз меньше, чем у нефти? Какую скорость надо дать воде в модели, если скорость нефти в промышленном аппарате 1 м/с?
Моделируются одновременно силы трения и силы тяжести.

1.40. Определить мощность, расходуемую при перекачке насоса 4,6 м³/ч холодильного рассола (25% раствор CaCl₂) из холодильной установки в конденсатор, расположенный над ректификационной колонной. Высота подъема 16 м, динамический коэффициент вязкости рассола 9,5 мПа·с, плотность 1200 кг/м³, диаметр трубопровода 32×2,5 мм, общая длина 80 м. Стальные трубы имеют незначительную коррозию. На линии установлены 6 отводов под углом 90° (R₀/d = 4) и 4 прямооточных вентиля. Общий к. п. д. насоса с электродвигателем 0,5.

1.41. По горизонтальному трубопроводу перекачивается жидкость. Во сколько раз возрастет расход энергии на перекачку, если через трубу будет проходить удвоенное количество жидкости? Коэффициент трения считать постоянным, Δрₗ₀ = 0.

1.42. По стальному трубопроводу внутренним диаметром 75 мм требуется перекачивать 25 м³/ч жидкости плотностью 1200 кг/м³, с динамическим коэффициентом вязкости 1,7 мПа·с. Конечная точка трубопровода выше начальной на 24 м. Длина трубопровода 112 м. На нем установлены 2 прямооточных вентиля и 5 прямоугольных отводов с радиусом изгиба 300 мм. Трубы имеют незначительную коррозию. Найти потребляемую мощность, если общий к. п. д. насосной установки 0,6.
1.43. Вода при 10 °C подается из реки насосом в открытый резервуар (рис. 1.30). Верхняя точка на 50 м выше уровня воды в реке. Трубопровод стальной с незначительной коррозией, внутренний диаметр его 80 мм, расчетная длина (собственная длина плюс эквивалентная длина местных сопротивлений) 165 м. Насос подает 575 дм³/мин.

Какова расходуемая насосом мощность, если к. п. д. насосной установки 0,55?

1.44. По прямому воздухопроводу прямоугольного сечения 400×600 мм, сделанному из кровельной стали, надо подавать 14 400 кг/ч воздуха при 27 °C и атмосферном давлении. Длина воздухопровода 60 м. Найти требуемую мощность электродвигателя, если его к. п. д. 0,95, а к. п. д. вентилятора 0,4.

1.45. По трубопроводу с внутренним диаметром 100 мм подается диоксид углерода под давлением 2 кгс/см² (по манометру) при средней температуре 75 °C с массовой скоростью 30 кг/(м²·с). Шероховатость трубы ε = 0,7 мм. Определить гидравлическое сопротивление горизонтального трубопровода при длине его 90 м и при наличии четырех колен под углом 90° и задвижки. Определить также мощность, потребляемую газодувкой для перемещения диоксида углерода, если ее к. п. д. составляет 50 %.

1.46. 40%-ный этиловый спирт спускается из бака по трубе диаметром 33,5×2,8 мм. На трубе имеются кран и 2 колена под углом 90°. Общая длина трубопровода 49 м. Определить скорость спирта в трубопроводе (при разности высот 7,2 м). Коэффициент трения принять приближенно равным 0,025. Найти скорость спирта, проверить значение коэффициента трения. Температура спирта 35 °C.

1.47. По трубопроводу диаметром 26,8×2,5 мм стекает нитробензол с температурой 44 °C. Начальная точка трубопровода выше конечной на 200 мм. Длина горизонтальной части трубопровода 242 м. Учесть только сопротивление трения. Найти массовый расход нитробензола и проверить принятый режим его движения.

1.48. В аппарат, работающий под давлением $p_{abc} = 0,2$ МПа, надо подавать насосом воду из открытого резервуара по трубопроводу внутренним диаметром 70 мм. Верхняя точка трубопровода выше уровня воды в резервуаре на 5 м. Расчетная длина трубопровода (собственная длина плюс эквивалентная длина местных сопротивлений) 350 м. Коэффициент трения $λ = 0,03$. Найти зависимость между расходом воды, протекающей по трубопроводу, и потерей давления на преодоление всех сопротивлений трубопровода (найти уравнение характеристики сети).
1.49. Центробежный насос имеет следующую паспортную характеристику:

Расход воды, м³/ч 12 18 24 30
Создаваемый напор, м 38 36 32 26

Сколько воды будет подавать этот насос, если поставить его работать на сеть контрольной задачи 1.48? (Найти рабочую точку).

1.50. Вентилятор подает воздух, засасывая его из атмосферы. Подача вентилятора 12 500 м³/ч. Какое массовое количество воздуха подает вентилятор зимой \(t = -15 ^\circ C \) и летом \(t = 30 ^\circ C \)?

1.51. Определить давление, развиваемое вентилятором, который подает воздух из атмосферы при температуре 18 °C в простоянстве с избыточным давлением 43 мм вод. ст. Потери давления в трубопроводе 275 Па, скорость воздуха в нем 11,5 м/с.

1.52. Какое абсолютное давление (в кгс/см²) должен иметь воздух, подаваемый в монтаж (рис. 1.31) для подъема серной кислоты относительной плотности 1,78 на высоту 21 м? Гидравлическими потерями пренебречь.

1.53. Скорость струи на выходе из диффузора горизонтального водоструйного насоса (см. рис. 2.10) 2,35 м/с. Вода выходит из диффузора под атмосферным давлением. Диаметр выходного отверстия диффузора 62 мм, диаметр отверстия сопла (сечение \(I \)) 30 мм. Пренебрегая потерями, определить теоретическую высоту \(H \) на которую может быть поднята откачиваемая вода из открытого резервуара.

1.54. Определить гидравлическое сопротивление слоя сухой насадки высотой 3 м, состоящей из керамических колец 15×15×2 мм. Через насадку просасывается воздух при 20 °C и атмосферном давлении со скоростью 0,4 м/с (скорость фиктивная).

Глава 2

НАСОСЫ. ВЕНТИЛЯТОРЫ. КОМПРЕССОРЫ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Полный напор, развиваемый насосом (рис. 2.1), определяется уравнением

\[
H = \frac{p_2 - p_1}{\rho g} + H_\rho + h_n,
\]

идентичным уравнению (1.49).
Рис. 2.1. Схема установки центробежного насоса.

Здесь H — полный напор, развиваемый насосом, в метрах столба перекачиваемой жидкости; p_2 и p_1 — давление в пространстве нагнетания и в пространстве всасывания, Па; ρ — плотность перекачиваемой жидкости, кг/м^3; H_r — геометрическая высота подъема жидкости, м; h_n — напор, затрачиваемый на создание скорости и на преодоление трения и всех местных сопротивлений во всасывающей и нагнетательной линиях, м; $g = 9.81 \text{ м/с}^2$ — ускорение свободного падения.

Этот же полный напор H может быть рассчитан и по другому уравнению:

$$H = \frac{p_n - p_{bc}}{\rho g} + H_0 + \frac{w_n^2 - w_{bc}^2}{2}, \quad (2.2)$$

где p_n — давление в нагнетательном трубопроводе на выходе жидкости из насоса, Па; p_{bc} — давление во всасывающем трубопроводе на входе жидкости в насос, Па; H_0 — вертикальное расстояние между точками измерения давлений p_n и p_{bc}, м; w_n — скорость жидкости в нагнетательном трубопроводе, м/с; w_{bc} — скорость жидкости во всасывающем трубопроводе, м/с.

Если скорости w_n и w_{bc} близки и расстояние H_0 мало, то уравнение (2.2) упрощается:

$$H \approx \frac{p_n - p_{bc}}{\rho g}. \quad \text{(2.2a)}$$

Формулы (2.1) и (2.2) получаются из уравнения Бернулли, составленного для соответствующих сечений потока. Формула (2.2) применяется при испытании действующих насосов, а формула (2.1) — при проектировании насосных установок.

2. Мощность N (в кВт), потребляемая двигателем насоса:

$$N = \frac{Q \rho g H}{1000\eta}. \quad (2.3)$$

Здесь Q — объемная производительность (подача) насоса *, $\text{м}^3/\text{с}$; ρ — плотность перекачиваемой жидкости, кг/м^3; $g = 9.81 \text{ м/с}^2$ — ускорение свободного падения; H — полный напор, развиваемый насосом, в метрах столба перекачиваемой жидкости; η — общий к. п. д. насосной установки, представляющий собой произведение к. п. д. насоса η_n, к. п. д. передачи η_p и к. п. д. двигателя η_d: $\eta = \eta_n \eta_p \eta_d$. \quad \text{(2.4)}$

С запасом на возможные перегрузки двигатель к насосу устанавливается несколько большей мощности $N_{уст}$, чем потребляемая мощность:

$$N_{уст} = \beta N. \quad (*)$$

* В учебниках по насосным и вентиляторным установкам объемный расход жидкости (газа), подаваемой насосом (вентилятором), обычно обозначают через Q.

66
<table>
<thead>
<tr>
<th>N, кВт</th>
<th>β</th>
<th>N, кВт</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>2—1,5</td>
<td>5—50</td>
<td>1,2—1,15</td>
</tr>
<tr>
<td>1—5</td>
<td>1,5—1,2</td>
<td>>50</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Таблица 2.2

<table>
<thead>
<tr>
<th>Температура, $^\circ$C</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>м вод. ст.</td>
<td>0,09</td>
<td>0,12</td>
<td>0,24</td>
<td>0,43</td>
<td>0,75</td>
<td>1,25</td>
<td>2,02</td>
<td>3,17</td>
<td>4,82</td>
<td>7,14</td>
<td>10,33</td>
</tr>
<tr>
<td>кПа</td>
<td>0,88</td>
<td>1,18</td>
<td>2,36</td>
<td>4,22</td>
<td>7,36</td>
<td>12,26</td>
<td>19,82</td>
<td>31,1</td>
<td>47,3</td>
<td>70,04</td>
<td>101,3</td>
</tr>
</tbody>
</table>

Коэффициент запаса мощности β берется в зависимости от величины N (табл. 2.1).

3. Теоретическая высота всасывания поршневого насоса $H_{\text{вс}}$ (в м) определяется выражением (рис. 2.2):

$$H_{\text{вс}} \leq A - h_t - \Sigma h,$$

(2.5)

где A — атмосферное давление; h_t — давление насыщенного пара всасываемой жидкости при температуре перекачивания t; Σh — потери высоты всасывания, включающие затрату энергии на сообщение скорости потоку жидкости и преодоление ипгрании столба жидкости во всасывающем трубопроводе, а также на преодоление трения и местных сопротивлений во всасывающей линии; с увеличением частоты вращения (числа оборотов) насоса Σh возрастает.

Все величины: A, h_t, Σh — выражены в метрах столба перекачиваемой жидкости.

Атмосферное давление A зависит от высоты места установки насоса над уровнем моря (табл. XIX).

Давление насыщенного пара всасываемой жидкости h_t определяется ее температурой. Для воды зависимость величины h_t от температуры представлена в табл. 2.2.

Практически для определения допускаемой высоты всасывания (в м) при перекачивании воды поршневыми насосами рекомендуется пользоваться данными табл. XX.

Рис. 2.2. Схема поршневого насоса.
4. Производительность поршневого насоса \(Q \) (в \(m^3/c \)):

a) простого действия и дифференциального

\[
Q = \eta_v \frac{Fsn}{60};
\]

(2.6)

б) двойного действия

\[
Q = \eta_v \frac{(2F - f) sn}{60}.
\]

(2.7)

Здесь \(\eta_v \) — коэффициент подачи, величина которого в среднем составляет 0,8—0,9; \(F \) — рабочая площадь (площадь поперечного сечения) поршня (плунжера), \(m^2 \); \(f \) — площадь поперечного сечения штока; \(m^2 \); \(s \) — ход поршня, \(m \); \(n \) — частота вращения, т. е. число двойных ходов поршня в 1 мин.

5. Напор и производительность центробежного насоса при данной частоте вращения зависят друг от друга. Если на график этой зависимости, называемой характеристикой насоса, нанести кривую характеристики сети (рис. 2.3), то пересечение обеих кривых даст так называемую рабочую точку, определяющую напор и производительность насоса при работе его на данную сеть.

К. п. д. центробежного насоса меняется при изменении напора и производительности.

При изменении в небольших пределах частоты вращения \(n \) центробежного насоса изменения его подачи \(Q \), напора \(H \) и потребляемой мощности \(N \) определяются следующими соотношениями:

\[
\frac{Q_1}{Q_2} = \frac{n_1}{n_2}; \quad \frac{H_1}{H_2} = \left(\frac{n_1}{n_2} \right)^2; \quad \frac{N_1}{N_2} = \left(\frac{n_1}{n_2} \right)^3.
\]

(2.8)

Высота всасывания центробежного насоса \(H_{bc} \) (в м) рассчитывается по формуле:

\[
H_{bc} \leq A - h_t - h_{p, bc} - h_{nav},
\]

где \(A \) — атмосферное давление; \(h_t \) — давление насыщенного пара всасываемой жидкости; \(h_{p, bc} \) — гидравлическое сопротивление всасывающей линии, включая затрату энергии на сообщение скорости потоку жидкости; \(h_{nav} \) — кавитационная поправка (уменьшение высоты всасывания во избежание кавитации), зависящая от производительности насоса \(Q \) (в \(m^3/c \)) и частоты вращения \(n \) (в об/мин); \(h_{nav} = 0,00125 \left(Qn^2 \right)^{0,67} \).

Все величины: \(A, h_t, h_{p, bc}, h_{nav} \) — выражены в метрах столба перекачиваемой жидкости.

6. Давление (точнее — повышение давления), создаваемое вентилятором * при подаче воздуха (рис. 2.4):

\[
\Delta p = (p_2 - p_1) + (\Delta p_{bc} + \Delta p_{mb}) + \frac{w^2 p}{2}
\]

(2.9)

* Это давление в учебниках по вентиляционным установкам иногда называют полным напором вентилятора и обозначают буквой \(H \).
\[\Delta p = \left(\rho_{\text{ст. п}} + \frac{\psi_1^2 \rho}{2} \right) - \left(\rho_{\text{ст. во}} + \frac{\psi_{\text{ве}}^2 \rho}{2} \right), \] (2.10)

где \(p_1 \) — давление в пространстве, из которого вентилятор забирает воздух, Па; \(p_2 \) — давление в пространстве, куда вентилятор подает воздух, Па; \(\Delta p_{\text{ве}} \) и \(\Delta p_{\text{н}} \) — потери давления во всасывающей и нагнетательной линиях, Па; \(\psi \) — скорость воздуха на выходе из сети, м/с; \(\rho_{\text{ст. п}} \) и \(\rho_{\text{ст. во}} \) — статические давления непосредственно после вентилятора и до него, Па; \(\psi_1 \) и \(\psi_{\text{ве}} \) — скорости воздуха в нагнетательном и всасывающем трубопроводах, м/с; \(\rho \) — плотность воздуха, кг/м³.

Уравнение (2.9) идентично уравнению (2.1) для насоса и уравнению (1.49). Уравнение (2.10) идентично уравнению (2.2) для насосов.

Если вентилятор подает не воздух, а другой газ, отличающийся по плотности от окружающего воздуха, то в предыдущих формулах \(\rho \) — плотность газа, а в правой части уравнения (2.9) добавляется величина:

\[\Delta p_{\text{вод}} = (\rho - \rho_{\text{возд}}) gz. \]

Здесь \(z \) — разность высот мест нагнетания и всасывания, м.

Мощность \(N \) (в кВт), расходуемая вентиляторной установкой:

\[N = \frac{Q \Delta p}{1000 \eta}, \] (2.11)

где \(Q \) — подача вентилятора, м³/с; \(\Delta p \) — повышение давления, создаваемое вентилятором, Па; \(\eta = \eta_p \eta_r \eta_d \) — общий к. п. д. вентиляционной установки — см. уравнение (2.4).

7. Так же как и для центробежного насоса, графическая характеристика центробежного вентилятора меняет свое положение при изменении частоты вращения. При этом зависимость между старыми и новыми параметрами работы центробежного

Рис. 2.4. Схема вентилятора.

Рис. 2.5. Характеристика центробежного вентилятора.
вентилятора при изменении частоты вращения в небольших пределах определяется формулой (2.8).

На рис. 2.5 показана примерная характеристика центробежного вентилятора при разных частотах вращения.

8. Теоретическая величина работы \(L_{ad} \) (в Дж/кг), затрачиваемой одноступенчатым компрессором при адиабатическом (изоэнтропическом) сжатии 1 кг газа, может быть подсчитана по формуле:

\[
L_{ad} = \frac{k}{k-1} p_1 v_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} - 1 \right] = \frac{k}{k-1} RT_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} - 1 \right] \tag{2.12}
\]

или

\[
L_{ad} = i_2 - i_1. \tag{2.13}
\]

Температура газа в конце процесса адиабатического сжатия определяется уравнением:

\[
\frac{T_2}{T_1} = \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}}. \tag{2.14}
\]

В этих формулах \(k \) — показатель адабаты, равный отношению \(c_p/c_v \); \(p_1 \) и \(p_2 \) — начальное и конечное давление газа, Па; \(v_1 \) — удельный объем газа при начальных условиях, т.е. при давлении \(p_1 \) и температуре \(T_1 \), м\(^3\)/кг; \(i_1 \) и \(i_2 \) — начальная и конечная энталпия (теплосодержание) газа, Дж/кг; \(R \) — газовая постоянная, равная 8310/\(M \) Дж/(кг·К); \(M \) — мольная масса газа.

Мощность \(N \) (в кВт), потребляемая двигателем одноместного компрессора, сжимающего \(G \) кг газа в 1 ч от начального давления \(p_1 \) до конечного давления \(p_2 \), рассчитывается по формуле:

\[
N = \frac{G L_{ad}}{3600 \cdot 1000 \eta} = \frac{G (i_2 - i_1)}{3600 \cdot 1000 \eta}, \tag{2.15}
\]

где \(\eta \) — общий к. п. д. компрессорной установки.

9. Производительность \(Q \) (в м\(^3\)/с) поршневого компрессора простого действия определяется по уравнению:

\[
Q = \lambda \frac{F s n}{60}, \tag{2.16}
\]

где \(\lambda \) — коэффициент подачи, безразмерный; \(F \) — площадь поршня, м\(^2\); \(s \) — длина хода поршня, м; \(n \) — частота вращения, об/мин.

Коэффициент подачи:

\[
\lambda = (0,8 + 0,95) \lambda_0.
\]

Здесь \(\lambda_0 \) — объемный к. п. д. компрессора, равный:

\[
\lambda_0 = 1 - e_0 \left[\left(\frac{p_2}{p_1} \right)^m - 1 \right], \tag{2.17}
\]

где \(e_0 \) — отношение объема вредного (мертвого) пространства цилиндра к объему, описываемому поршнем; \(m \) — показатель политропы расширения сжатого газа, оставшегося во вредном пространстве.

70
10. Теоретическая величина работы \(L_{ад} \) (в Дж/кг), затрачиваемой многоступенчатым компрессором при адабатическом сжатии 1 кг газа от начального давления \(p_1 \) до конечного давления \(p_{кон} \), определяется по формуле:

\[
L_{ад} = n p_1 v_1 \left(\frac{k}{k-1} \left(\frac{p_{кон}}{p_1} \right)^{\frac{k-1}{k}} - 1 \right) = n R T_1 \left(\frac{k}{k-1} \left(\frac{p_{кон}}{p_1} \right)^{\frac{k-1}{k}} - 1 \right) \tag{2.18}
\]

или

\[
L_{ад} = \Delta t_1 + \Delta t_2 + \cdots + \Delta t_n. \tag{2.19}
\]

Здесь \(n \) — число ступеней сжатия; \(\Delta t_1, \Delta t_2, \ldots \) — разности энталпий газа для 1, 2, ..., ступени [формула (2.13)].

Потребляемая многоступенчатым компрессором мощность рассчитывается по формуле (2.15). Для воздушных компрессоров иногда пользуются также уравнением:

\[
N = \frac{1,69 G L_{м3}}{3600 \cdot 1000} = \frac{1,69 G R T_1 \ln \frac{p_{кон}}{p_1}}{3600 \cdot 1000}, \tag{2.20}
\]

где \(N \) — мощность, кВт; 1,69 — установленный практический коэффициент, учитывающий отличие действительного процесса сжатия воздуха в компрессоре от изоэнтропического.

Производительность многоступенчатого поршневого компрессора определяется производительностью первой ступени.

Пренебрегая потерей давления между ступенями, приближенно число ступеней сжатия \(n \) находят из уравнения:

\[
x^n = \frac{p_{кон}}{p_1}, \tag{2.21}
\]

откуда

\[
n = \frac{\ln \frac{p_{кон}}{p_1}}{\ln x},
\]

где \(x \) — степень сжатия в одной ступени.

При мер 2.1. Манометр на нагнетательном трубопроводе насоса (см. рис. 2.1), перекачивающего 8,4 м³ воды в 1 мин, показывает давление 3,8 кгс/см² (≈ 0,38 МПа). Вакуумметр на всасывающем трубопроводе показывает вакуум (разрежение) 21 см рт. ст. (≈ 28 кПа). Расстояние по вертикали между местом присоединения манометра и местом присоединения вакуумметра 410 мм. Диаметр всасывающего трубопровода 350 мм, нагнетательного — 300 мм. Определить напор, развиваемый насосом.

Решение. Применяем формулу (2.2).
Скорость воды во всасывающем трубопроводе:

\[
\omega_{\text{вс}} = \frac{8,4}{8,4 \cdot 0,785 \cdot 0,35^2} = 1,45 \, \text{м/с}.
\]

Скорость воды в нагнетательном трубопроводе:

\[
\omega_{\text{n}} = \frac{8,4}{60 \cdot 0,785 \cdot 0,3^2} = 1,98 \, \text{м/с}.
\]

Давление в нагнетательном трубопроводе (принимая атмосферное давление равным 1,013 \cdot 10^3 \, \text{Па}, или 760 \, \text{мм рт. ст.}):

\[
\rho_{\text{n}} = (3,8 + 1,013) \cdot 91 \cdot 10^4 \approx 474 \cdot 10^4 \, \text{Па}.
\]

Давление во всасывающем трубопроводе:

\[
\rho_{\text{вс}} = (0,76 - 0,21) \cdot 133,3 \cdot 1000 = 73 \cdot 300 \, \text{Па}.
\]

Напор, развиваемый насосом:

\[
H = \frac{474 \cdot 10^4 - 73 \cdot 300}{1000 \cdot 9,81} + 0,41 + \frac{1,98^2 - 1,45^2}{2 \cdot 9,81} = \\
= 40,8 + 0,41 + 0,09 = 41,3 \, \text{м вод. ст.}
\]

Пример 2.2. Поршневой насос, делающий 150 об/мин, должен перекачивать воду, нагретую до 60 °C. Предварительные подсчеты показали, что затрачена энергия на создание скорости, инерционные потери и гидравлические сопротивления всасывающей линии составляют в сумме 6,5 м вод. ст. Среднее атмосферное давление в месте установки насоса 736 мм рт. ст. На какой высоте над уровнем воды должен быть установлен насос?

Решение. Величина \(A = h_t - \sum h \) [формула (2.5)] в данном случае равняется:

\[
\frac{0,736 \cdot 13 \cdot 600}{1000} - 2,02 - 6,5 = 1,48 \, \text{м},
\]

где \(h_t = 2,02 \, \text{м} \) взято из табл. 2.2.

Следовательно, теоретическая высота всасывания не может быть больше 1,48 м. Практически, по данным табл. XX, высота всасывания в этом случае (\(n = 150 \, \text{об/мин} \)) равна нулю, т. е. насос должен быть установлен ниже уровня жидкости («под заливом»).

Пример 2.3. Поршневой насос двойного действия (рис. 2.6) подает 22,8 м³/ч жидкости. Частота вращения насоса 65 об/мин, диаметр плунжера 125 мм, диаметр штока 35 мм, радиус кривошипа 136 мм. Определить коэффициент подачи насоса.

Решение. Объем, вытесняемый плунжером за один оборот:

\[
(2F - f) s = (2 \cdot 0,785 \cdot 0,125^2 - 0,785 \cdot 0,035^2) \cdot 0,272 = 0,00637 \, \text{м³},
\]

где 0,272 м — длина хода плунжера, равная удвоенному радиусу кривошипа.

Теоретическая подача насоса при 65 об/мин:

\[
0,00637 \cdot 65 = 0,413 \, \text{м³/мин}.
\]
Действительная подача:
\[22,8/60 = 0,38 \text{ м}^3/\text{мин}. \]
Коэффициент подачи:
\[\eta_0 = 0,38/0,413 = 0,92. \]

Пример 2.4. Поршневым насосом простого действия (см. рис. 2.2) с диаметром поршня 160 мм и ходом поршня 200 мм необходимо подавать 430 дм³/мин жидкости относительной плотности 0,93 из сборника в аппарат, давление в котором \(p_взб = 3,2 \text{ кгс}/\text{см}^2 \) (~0,32 МПа). Давление в сборнике атмосферное. Геометрическая высота подъема 19,5 м. Полная потеря напора во всасывающей линии 1,7 м, в нагнетательной — 8,6 м. Какую частоту вращения надо дать насосу и какой мощности электродвигатель установить, если принять коэффициент подачи насоса 0,85 и коэффициенты полезного действия: насоса 0,8, передачи и электродвигателя по 0,95?

Решение. Из формулы (2.6) находим:
\[n = \frac{Q \cdot 60}{\eta_0 F_S}. \]
В нашем случае:
\[Q = \frac{430}{1000 \cdot 60} = 0,00717 \text{ м}^3/с; \]
\[F_S = 0,785 \cdot 0,16 = 0,0201 \text{ м}^2; \]
\[n = \frac{0,00717 \cdot 60}{0,85 \cdot 0,0201 \cdot 0,2} = 126 \text{ об/мин}. \]

Напор, развиваемый насосом, определяем по формуле (2.1):
\[H = \frac{3,2 \cdot 9,81 \cdot 10^4}{930 \cdot 9,81} + 19,5 + 10,3 = 64,2 \text{ м}. \]

Мощность, потребляемую электродвигателем насоса, рассчитываем по формуле (2.3):
\[N = \frac{0,43 \cdot 930 \cdot 9,81 \cdot 64,2}{60 \cdot 1000 \cdot 0,72} = 5,82 \text{ кВт}, \]
где 0,72 — общий к. п. д. насосной установки
\[\eta = \eta_м \eta_п \eta_д = 0,8 \cdot 0,95 \cdot 0,95 = 0,72. \]

В соответствии с данными табл. 2.1 необходимо установить (с запасом на перегрузки) электродвигатель мощностью
\[5,82 \cdot 1,17 = 6,8 \text{ кВт}. \]
Пример 2.5. Центробежный насос, делящий 1200 об/мин, показал при испытании следующие данные:

\(Q, \text{ дм}^3/\text{с} \)	0	10,8	21,2	29,8	40,4	51,1
\(H, \text{м} \)	23,5	25,8	25,4	22,1	17,3	11,9
\(N, \text{kВт} \)	5,16	7,87	10,1	11,3	12,0	18,5

Перекачивался раствор относительной плотности 1,12. Определить к. п. д. насоса для каждой производительности и построить графическую характеристику насоса.

Решение. К. п. д. насоса определяем из уравнения:

\[N = \frac{Q \rho g H}{1000 \eta}, \]

откуда

\[\eta = \frac{Q \rho g H}{1000 N}. \]

По этой формуле вычислены следующие значения к. п. д. насоса:

| \(Q, \text{ дм}^3/\text{с} \) | 0 | 10,8 | 21,2 | 29,8 | 40,4 | 51,1 |
| \(\eta \) | 0,39 | 0,587 | 0,643 | 0,637 | 0,36 |

Характеристика насоса представлена на рис. 2.7.

Пример 2.6. Требуется подавать 115 м³/ч раствора относительной плотности 1,12 из бака в аппарат на высоту 10,8 м, считая от уровня жидкости в баке. Давление в аппарате \(\rho_{\text{раб}} = 0,4 \text{ кгс/см}^2 \) (~40 кПа), давление в баке атмосферное. Трубопровод имеет диаметр 140×4,5 мм, его расчетная длина (собственная длина плюс эквивалентная длина местных сопротивлений) 140 м. Можно ли применить центробежный насос предыдущего примера, если принять коэффициент трения в трубопроводе \(\lambda \) равным 0,03?

Решение. Определяем необходимый напор, который должен давать насос.

Скорость жидкости:

\[\omega = \frac{115}{3600 \cdot 0,785 \cdot 0,131^2} = 2,37 \text{ м/с}. \]

Скоростной напор:

\[h_{\text{ck}} = \frac{\omega^2}{2g} = \frac{2,37^2}{2 \cdot 9,81} = 0,286 \text{ м}. \]

Потеря напора на трение и местные сопротивления:

\[h_{\text{тр+м.с}} = \frac{\lambda (L + L_3)}{d} h_{\text{ck}} = \]

\[= \frac{0,03 \cdot 140}{0,131} \cdot 0,286 = 9,16 \text{ м}. \]

Рис. 2.7 (к примерам 2.5 и 2.6).
Требуемый полный напор насоса вычисляем по формуле (2.1):

\[H = \frac{0,4 \cdot 10000 \cdot 9,81}{1120 \cdot 9,81} + 10,8 + 9,16 + 0,286 = 23,8 \text{ м.} \]

Требуемая производительность насоса:

\[Q = \frac{115 \cdot 1000}{3600} = 32 \text{ дм}^3/\text{с.} \]

Обращаясь к рис. 2.7, мы видим, что точка \(A \) с координатами \(Q = 32 \text{ дм}^3/\text{с}, \ H = 23,8 \text{ м} \) лежит выше кривой характеристики насоса, и, следовательно, данный насос при \(n_1 = 1200 \text{ об/мин} \) не сможет обеспечить требуемую производительность (при \(H = 23,8 \text{ м} \) насос может подавать только 26 \(\text{дм}^3/\text{с} \)). Однако, если несколько увеличить частоту вращения, то насос окажется пригодным. Пользуясь соотношением (2.8)

\[\frac{Q_1}{Q_2} = \frac{n_1}{n_2} \quad \text{и} \quad \frac{H_1}{H_2} = \left(\frac{n_1}{n_2} \right)^2, \]
можно подобрать необходимую новую частоту вращения \(n_2 \).

Если, например, взять \(n_2 = 1260 \text{ об/мин} \) и пересчитать данные примера 2.5 по формулам (2.8) на эту новую частоту вращения, то получим следующие результаты (табл. 2.3).

Вычертив по данным табл. 2.3 кривую характеристики насоса при \(n_2 = 1260 \text{ об/мин} \) (рис. 2.8), мы увидим, что при этой частоте вращения насос сможет обеспечить требуемые подачу (32 \(\text{дм}^3/\text{с} \)) и напор (23,8 м).

Мощность, потребляемая насосом при новой частоте вращения, определяем по формуле

\[N = \frac{Q \rho g H}{1000 \eta}, \]
считая приближенно, что к. п. д. насоса \(\eta \) не изменился *. Значение его берем по данным примера 2.5, в котором было найдено, что для \(Q = 30\div40 \text{ дм}^3/\text{с} \) к. п. д. насоса \(\eta \approx 0,64 \).

Мощность, потребляемая насосом при \(n_2 = 1260 \text{ об/мин} \):

\[N = \frac{32 \cdot 1120 \cdot 9,81 \cdot 23,8}{1000 \cdot 1000 \cdot 0,64} = 13,1 \text{ кВт.} \]

Пример 2.7. Определить коэффициент подачи шестеренчатого насоса (рис. 2.9), делающего 440 об/мин. Число зубьев на шестеренках 35.

* Мощность можно подсчитать также по формуле \(N_2 = N_1 \left(\frac{1260}{1200} \right)^3 \), взяв значение \(N_1 \) по графику (рис. 2.7).
стерее 12, ширина зуба 42 мм, площадь сечения зуба, ограниченная внешней окружностью соседней шестерни, 960 мм². Насос подает 0,312 м³/мин.

Решение. Производительность шестеренчатого насоса \(Q \) (в м³/с) определяется по формуле:

\[
Q = \eta_0 \frac{2\pi bn}{60},
\]

где \(\eta_0 \) — коэффициент подачи; \(f \) — площадь сечения зуба, ограниченная внешней окружностью соседней шестерни, м²; \(b \) — ширина зуба, м; \(z \) — число зубьев на шестерне; \(n \) — частота вращения в 1 мин.

Теоретическая подача в нашем случае:

\[
Q_T = 2\pi bn / 60 = 2 \times 0,00096 \times 0,042 \times 12 \times 440 / 60 = 0,00708 \text{ м³/с}.
\]

Действительная подача:

\[
Q = 0,312 / 60 = 0,0052 \text{ м³/с}.
\]

Отсюда коэффициент подачи:

\[
\eta_0 = Q / Q_T = 0,0052 / 0,00708 = 0,735.
\]

Пример 2.8. Определить (пренебрегая потерями) теоретическое разрежение, которое может быть создано рабочей струей воды в камере A водоструйного насоса (рис. 2.10). Давление на выходе из диффузора атмосферное (1,013 \times 10^5 Па, или 760 мм рт. ст.), скорость струи в этом месте 2,7 м/с. Диаметр струи в сечении I 23 мм, в сечении II 50 мм.

Решение. Напишем, пренебрегая потерями, уравнение Бернулли для сечений струи I и II:

\[
z_1 + \frac{p_1}{\rho g} + \frac{w_1^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{w_2^2}{2g}.
\]

Рис. 2.8 (к примеру 2.6).

Рис. 2.9 (к примеру 2.7).

Рис. 2.10 (к примерам 2.8 и 2.9).
При горизонтальном расположении насоса:

\[z_1 = z_2. \]

Далее имеем:

\[w_1 = \frac{f_2}{f_1} w_3 = \left(\frac{50}{23} \right)^2 2,7 = 12,8 \text{ м/с}. \]

Из уравнения Бернулли находим:

\[\rho_1 = \rho_2 + \frac{w_3^2 - w_1^2}{2} \rho = 760 \cdot 133,3 + \frac{2,7^2 - 12,8^2}{2} 1000 = \]

\[= 101300 - 78300 = 23000 \text{ Па}. \]

Теоретическое разрежение, следовательно, составляет:

\[\frac{101300 - 23000}{9,81 \cdot 10^4} = 0,8 \text{ кгс/см}^2 \approx 80 \text{ кПа}. \]

Пример 2.9. Водоструйный насос (рис. 2.10) поднимает 7,8 м³/ч перекачиваемой жидкости относительной плотности 1,02 на высоту \(H = 4 \text{ м.} \) Расход рабочей (напорной) воды при этом составляет 9,6 м³/ч. Напор рабочей воды перед насосом \(H_p = 22 \text{ м.} \) Определить к. п. д. водоструйного насоса.

Решение. Производимая насосом полезная работа (мощность):

\[N_{\text{пол}} = 7,8 \cdot 1020 - 9,81 \cdot 4/3600 = 86,7 \text{ Вт}. \]

Затрачиваемая насосом мощность:

\[N = 9,6 \cdot 1000 - 9,81 (22 - 4)/3600 = 471 \text{ Вт}. \]

Отсюда к. п. д. водоструйного насоса:

\[\eta = \frac{86,7}{471} 100 = 18,4 \%. \]

Пример 2.10. Определить давление, развиваемое вентилятором (см. рис. 2.4), который подает азот (\(\rho = 1,2 \text{ кг/м}^3 \)) из газохранилища в установку. Избыточное давление в газохранилище 60 мм вод. ст., в установке 74 мм вод. ст. Потери во всасывающей линии 19 мм вод. ст., в нагнетательной линии 35 мм вод. ст. Скорость азота в нагнетательном трубопроводе 11,2 м/с.

Решение. Давление, развиваемое вентилятором, находим по формуле (2.9).

Разность давлений в местах нагнетания и всасывания:

\[p_2 - p_1 = (74 - 60) 9,81 = 137 \text{ Па}, \text{ или } 14 \text{ мм вод. ст.} \]

Общие потери во всасывающем и нагнетательном трубопроводах:

\[\Delta p_{\text{bc}} + \Delta p_{\text{n}} = (19 + 35) 9,81 = 530 \text{ Па}, \text{ или } 54 \text{ мм вод. ст.} \]

Скоростное давление на выходе из трубопровода:

\[w^2 p/2 = 11,2^2 \cdot 1,2/2 = 76 \text{ Па}, \text{ или } 7,7 \text{ мм вод. ст.} \]

Давление, создаваемое вентилятором:

\[\Delta p = 137 + 530 + 76 = 743 \text{ Па}, \text{ или } 76 \text{ мм вод. ст.} \]
Пример 2.11. Во всасывающем трубопроводе перед центробежным вентилятором имеется разрежение 15,8 мм вод. ст.; манометр на нагнетательном трубопроводе после вентилятора показывает избыточное давление 20,7 мм вод. ст. Расходомер показывает подачу воздуха 3700 м³/ч. Всасывающий и нагнетательный трубопроводы имеют одинаковый диаметр. Частота вращения в 1 мин равна 960. Вентилятор расходует 0,77 кВт. Определить давление, развиваемое вентилятором, и к. п. д. вентилятора. Как изменится производительность вентилятора, если увеличить частоту его вращения до 1150 об/мин, и какая мощность будет расходоваться при новой частоте вращения?

Решение. Давление, развиваемое вентилятором, находим по формуле (2.10). Так как всасывающий и нагнетательный трубопроводы имеют одинаковый диаметр, то скоростные давления одинаковы. Тогда

\[\Delta p = p_{ст. в} - p_{ст. а} = 20,7 \cdot 9,81 - (-15,8 \cdot 9,81) = 354 \text{ Па.} \]

Секундная подача вентилятора:

\[Q = \frac{3700}{3600} = 1,03 \text{ м³/с.} \]

Теоретический расход мощности:

\[N_т = 1,03 \cdot 354/1000 = 0,368 \text{ кВт.} \]

К. п. д. вентилятора:

\[\eta = \frac{N_т}{N} = 0,368/0,77 = 0,48. \]

Подачу вентилятора при \(n_2 = 1150 \text{ об/мин} \) определяем по формуле (2.8):

\[Q_2 = Q_1 \left(\frac{n_2}{n_1} \right) = 3700 \left(\frac{1150}{960} \right) = 4430 \text{ м³/ч.} \]

Расходуемая мощность при новой частоте вращения:

\[N_2 = N_1 \left(\frac{n_2}{n_1} \right)^3 = 0,77 \left(\frac{1150}{960} \right)^3 = 1,33 \text{ кВт.} \]

Пример 2.12. При испытании центробежного вентилятора в частоте вращения в 1 мин \(n = 1440 \) получены следующие данные:

<table>
<thead>
<tr>
<th>(Q, \text{ м³/ч})</th>
<th>100</th>
<th>350</th>
<th>700</th>
<th>1000</th>
<th>1600</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p, \text{ Па})</td>
<td>449</td>
<td>424</td>
<td>432</td>
<td>427</td>
<td>387</td>
<td>316</td>
</tr>
<tr>
<td>(\text{мм вод. ст.})</td>
<td>45,8</td>
<td>43,2</td>
<td>44,0</td>
<td>43,5</td>
<td>39,5</td>
<td>32,2</td>
</tr>
</tbody>
</table>

Сколько воздуха будет подавать этот вентилятор при работе на некоторую сеть (с той же частотой вращения, что и при испытании), если расчет сопротивления сети показал, что при прохождении через нее 1350 м³/ч воздуха получаются следующие величины потерь давления:

\[\Delta p_{ск} = 85 \text{ Па, или 8,7 мм вод. ст.} \]

\[\Delta p_{тр} + \Delta p_{м. с} = 288 \text{ Па, или 29,4 мм вод. ст.} \]

Разность давлений в пространстве нагнетания и в пространстве всасывания для рассчитываемой сети составляет:

\[\Delta p_{доп} = p_2 - p_1 = 128 \text{ Па, или 13 мм вод. ст.} \]
Решение. Для решения этой задачи необходимо найти рабочую точку на пересечении характеристик вентилятора и сети.

Характеристика сети выражается параболой, в уравнении которой

$$\Delta p = aQ^2 + b$$

первое слагаемое правой части aQ^2 равно сумме потерь давления $\Delta p_{вк} + \Delta p_{тр} + \Delta p_{м.с}$ и изменяется пропорционально квадрату расхода, а второе слагаемое b не зависит от расхода и представляет собой разность давлений в пространстве нагнетания и в пространстве всасывания, т. е. $\Delta p_{доп}$, a — постоянный коэффициент.

Вычислим по имеющимся данным несколько точек этой параболы (табл. 2.4).

Нанесем на общий график (рис. 2.11) характеристику вентилятора по данным его испытания и характеристику сети по вычисленным точкам.

Точка пересечения обеих характеристик показывает, что при работе на заданную сеть вентилятор будет подавать 1170 м³/ч воздуха.

Пример 2.13. Сравнить теоретическую затрату работы на сжатие 1 м³ воздуха от $p_{абс} = 9,81 \cdot 10^4$ Па: а) до $p_{абс} = 10,8 \times 10^4$ Па и б) до $p_{абс} = 49,1 \cdot 10^4$ Па. Рассчитать затрату работы как по термодинамической формуле для адиабатического сжатия, так и по гидравлической формуле (т. е. считая воздух несжимаемым).

Решение. а) $p_1 = 9,81 \cdot 10^4$ Па; $p_2 = 10,8 \cdot 10^4$ Па.

<table>
<thead>
<tr>
<th>Q, м³/ч</th>
<th>aQ^2</th>
<th>Δp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Па</td>
</tr>
<tr>
<td>1350</td>
<td>38,1</td>
<td>501</td>
</tr>
<tr>
<td>1350/1,5 = 900</td>
<td>38,1/1,5² = 16,9</td>
<td>293</td>
</tr>
<tr>
<td>1350/2 = 675</td>
<td>38,1/2² = 9,5</td>
<td>221</td>
</tr>
<tr>
<td>1350/2,5 = 540</td>
<td>38,1/2,5² = 6,1</td>
<td>187</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
</tbody>
</table>

Приложение. Значение b во всех случаях 128 Па (13 мм вод. ст.).

79
По формуле (2.12), если отнести работу сжатия в компрессоре к 1 м³ газа (при условиях всасывания), получаем (в Дж/м³):

\[L_{\text{ад}} = \frac{k}{k-1} \rho_1 \left[\left(\frac{\rho_2}{\rho_1} \right)^{\frac{k-1}{k}} - 1 \right]. \]

Для воздуха \(k = 1,4 \) (табл. V). Тогда

\[L_{\text{ад}} = \frac{1,4}{0,4} 9,81 \cdot 10^4 \left(\frac{0,4}{1,1} 1,4 - 1 \right) = 9520 \text{ Дж/м³}. \]

Расчет по гидравлической формуле \(L_r = Q \Delta p \) дает при \(\Delta p = 10,8 \cdot 10^4 - 9,81 \cdot 10^4 = 9900 \text{ Дж/м³}, \)

в) \(\rho_1 = 9,81 \cdot 10^4 \text{ Па}; \quad \rho_2 = 49,1 \cdot 10^4 \text{ Па.} \)

По термодинамической формуле:

\[L_{\text{ад}} = \frac{1,4}{0,4} 9,81 \cdot 10^4 \left(\frac{0,4}{1,4} - 1 \right) = 201000 \text{ Дж/м³}. \]

По гидравлической формуле при \(\Delta p = 49,1 \cdot 10^4 - 9,81 \cdot 10^4 = 39,3 \cdot 10^4 \text{ Па}: \)

\[L_r = 1,39 \cdot 10^4 = 393000 \text{ Дж/м³.} \]

Сравнивая варианты а) и б), мы видим, что в первом случае результаты, полученные по термодинамической и по гидравлической формулам, различаются всего на 3%. Этот случай (\(\rho_2/\rho_1 = 1,1 \)) соответствует предельной степени сжатия воздуха вентиляторами, для которых расчет потребляемой мощности производится, как мы видели выше, по гидравлической формуле.

Во втором случае (\(\rho_2/\rho_1 = 5 \)), который соответствует сжатию воздуха в компрессоре, результаты, полученные по формуле адабатического сжатия и по гидравлической формуле, расходятся на 100%. Для расчета мощности, потребляемой компрессором, всегда применяются термодинамические формулы (2.12) и (2.13).

На теоретической индикаторной диаграмме поршневого компрессора (рис. 2.12) ясно видно, что площадь abce (представляющая собой затрачиваемую работу адабатического сжатия при \(p_2 = 1,1 \text{ кгс/см}^2 \)) приблизительно равна площади abde, но площадь afge (для \(p_2 = 5 \text{ кгс/см}^2 \)) далеко не равна площади afhe.
Пример 2.14. Определить мощность, потребляемую одноступенчатым поршневым компрессором, который сжимает 460 м³/ч (считая при 0 °C и 760 мм рт. ст.) аммиака от $p_{abc} = 2,5$ кгс/см² до $p_{abc} = 12$ кгс/см². Начальная температура аммиака —10 °C; к. п. д. компрессора 0,7. Определить также температуру аммиака в конце сжатия.

Решение. Определяем теоретическую работу компрессора по формуле (2.12) для адиабатического сжатия.

Для аммиака по табл. V находим: $k = 1,29$, $R = 8310/17 = 489$ Дж/(кг·К). Тогда

$$L_{ad} = \frac{1,29}{0,29} 489.263 \left(\frac{12}{2,5} \right)^{0,29} \frac{1,29}{1,29} - 1 = 240 000 \text{ Дж/кг.}$$

Эту же величину вычислим теперь по формуле (2.13). По диаграмме $T - S$ для аммиака (рис. XXVI) находим для точки 1 ($t_1 = -10$ °C; $p_1 = 2,5$ кгс/см²) $i_1 = 1440$ кДж/кг. Проведя из этой точки вертикальную прямую ($S = \text{const}$) до пересечения с изобарой $p_2 = 12$ кгс/см², находим точку 2, для которой $t_2 = 1673$ кДж/кг. Тогда по формуле (2.13)

$$L_{ad} = 1673 000 - 1440 000 = 233 000 \text{ Дж/кг,}$$

что близко к найденному выше (расхождение около 3%).

Массовый расход аммиака:

$$G = 460 \cdot 0,76 = 350 \text{ кг/ч.}$$

Здесь 0,76 кг/м³ — плотность аммиака при нормальных условиях:

$$\rho_0 = M/22,4 = 17/22,4 = 0,76 \text{ кг/м³.}$$

Потребляемую компрессором мощность находим по формуле (2.15):

$$N = \frac{350 \cdot 240 000}{3600 \cdot 1000 \cdot 0,7} = 33,4 \text{ кВт.}$$

Температуру в конце сжатия вычисляем по уравнению (2.14):

$$T_2 = 263 \left(\frac{12}{2,5} \right)^{0,29} \frac{1,29}{1,29} = 374 \text{ K = 101}^\circ \text{C.}$$

Если определить эту температуру непосредственно по $T - S$ диаграмме, то найдем в точке 2: $t_2 = 104$ °C.

Пример 2.15. Требуется подавать сжатый воздух под давлением $p_{abc} = 4,5$ кгс/см² в количестве 80 кг/ч. Пригоден ли будет для этой цели одноступенчатый поршневой компрессор простого действия, имеющий диаметр цилиндра 180 мм, длину хода поршня 200 мм и делающий 240 об/мин? Вредное пространство составляет 5% от объема, описываемого поршнем. Показатель политропы расширения принять равным 1,25.
Решение. Определим по формуле (2.16) производительность компрессора. Предварительно необходимо найти объемный к. п. д. компрессора λ_0.

По уравнению (2.17) находим:

$$\lambda_0 = 1 - 0,05 \left(\frac{1}{5,5} - 1 \right) = 0,854.$$

Примем коэффициент подачи:

$$\lambda = 0,85\lambda_0 = 0,85 \cdot 0,854 = 0,725.$$

Производительность компрессора:

$$Q = \frac{0,725 \cdot 0,18^2 \cdot 3,14 \cdot 0,2 \cdot 240}{4 \cdot 60} = 0,0147 \text{ м}^3/\text{с} = 53 \text{ м}^3/\text{ч}.$$

Считая, что компрессор всасывает атмосферный воздух с температурой $\sim 20^\circ\text{C}$, имеющий плотность 1,2 кг/м3, получим массовую производительность компрессора: $53 \cdot 1,2 = 63,6$ кг/ч.

Следовательно, компрессор не обеспечит заданной производительности (80 кг/ч). Однако требуемая массовая производительность при использовании данного компрессора все же может быть достигнута, если увеличить частоту вращения с 240 до $(80/63,6) \times 240 = 302$ об/мин или если дать компрессору, не меняя частоты вращения, наддув установленной перед ним воздушной вентиляторной, которая будет сжимать воздух от атмосферного давления до давления (абсолютного), равного $80/63,6 = 1,26$ кгс/см2, и с этим давлением подавать воздух на всасывание компрессора (рис. 2.13).

В обоих случаях специальным расчетом должна быть проверена динамика компрессора.

Пример 2.16. В одноступенчатом поршневом компрессоре, предназначаемом для сжатия метана, вредное пространство составляет 8,5% от объема, описываемого поршнем. Считая процесс расширения сжатого газа из вредного пространства адабатическим, определить, при каком предельном давлении нагнетания производительность компрессора станет равной нулю. Давление всасывания атмосферное.

Решение. Производительность компрессора станет равной нулю, когда равным нулю сделается его объемный к. п. д., т. е.

$$\lambda_0 = 1 - \varepsilon_0 \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{m}} - 1 \right] = 0.$$

82
Согласно условию, расширение газа из вредного пространства считаем адабатическим, т. е. вместо показателя политропы m берем показатель адабаты k, равный для метана 1,31 (табл. V). Вредное пространство $e_0 = 0,085$. Давление всасывания $p_1 = 1$ кгс/см2. Тогда

$$1 - 0,085 \left(\frac{1}{p_2^{1,31}} - 1 \right) = 0.$$

Из этого уравнения находим: $p_2^{0,763} = 12,8$, откуда $p_2 \approx 28$ кгс/см2.

Следовательно, производительность компрессора будет равна нулю при давлении нагнетания $p_{абс} = 28$ кгс/см2.

Пример 2.17. Сравнить температuru в конце сжатия, теоретическую затрату работы и величину объемного к. п. д. при сжатии воздуха от давления (абсолютного) 1 до 9 кгс/см2: а) в одноступенчатом поршневом компрессоре, б) в двухступенчатом компрессоре с промежуточным охлаждением между ступенями. Начальная температура воздуха и температура его после холодильника 20°C. Объем вредного пространства составляет 8% от объема, описываемого поршнем.

Пример 2.17. Сравнить температуру в конце сжатия, теоретическую затрату работы и величину объемного к. п. д. при сжатии воздуха от давления (абсолютного) 1 до 9 кгс/см2: а) в одноступенчатом поршневом компрессоре, б) в двухступенчатом компрессоре с промежуточным охлаждением между ступенями. Начальная температура воздуха и температура его после холодильника 20°C. Объем вредного пространства составляет 8% от объема, описываемого поршнем.

Пример 2.17. Сравнить температуру в конце сжатия, теоретическую затрату работы и величину объемного к. п. д. при сжатии воздуха от давления (абсолютного) 1 до 9 кгс/см2: а) в одноступенчатом поршневом компрессоре, б) в двухступенчатом компрессоре с промежуточным охлаждением между ступенями. Начальная температура воздуха и температура его после холодильника 20°C. Объем вредного пространства составляет 8% от объема, описываемого поршнем.

Речь идет о... а) Одноступенчатое сжатие.

Температуру в конце сжатия определяем по формуле (2.14).

Для воздуха $k = 1,4$ (табл. V):

$$T_2 = 293 \cdot 9^{1,4} = 293 \cdot 1,88 = 551 K = 278^\circ$C.$$

Теоретическую затрату работы вычисляем по формуле (2.12).

Для воздуха по табл. V находим:

$$R = \frac{8310}{29} = 287 \text{ Дж/(кг·К).}$$

Следовательно,

$$L_{ад} = \frac{1,4}{0,4} \cdot 287 \cdot 293 \cdot (1,88 - 1) = 260 \text{ 000 Дж/кг.}$$

Объемный к. п. д. компрессора находим по уравнению (2.17), принимая, что расширение воздуха из вредного пространства происходит по адиабате:

$$\lambda_0 = 1 - 0,08 \left(\frac{1}{9^{1,4}} - 1 \right) = 0,7.$$

б) Двухступенчатое сжатие.

Степень сжатия в каждой ступени находим по уравнению (2.21): $x^2 = 9$, откуда $x = 3$.

Температура в конце сжатия в каждой ступени

$$T_2 = 293 \cdot 3^{1,4} = 293 \cdot 1,37 = 402 K = 129^\circ$C.$$

Суммарную теоретическую затрату работы в обеих ступенях вычисляем по формуле (2.18):
\[L_{\text{ад}} = 2 \cdot 287.293 \cdot \frac{1,4}{0,4} \left(\frac{1}{1,88^2} - 1 \right) = 218000 \text{ Дж/кг,} \]

где 1,88 = \((p_{\text{кон}}/p_1)^{\frac{k-1}{k}}\).

Объемный к. п. д. \(\lambda_0 = 1 - 0,08 \left(3^{1,4} - 1 \right) = 0,905. \)

Сопоставив полученные результаты для одноступенчатого и двухступенчатого сжатия:

<table>
<thead>
<tr>
<th>Число ступеней сжатия</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура в конце сжатия, °C</td>
<td>278</td>
<td>129</td>
</tr>
<tr>
<td>Теоретическая затраты работы, Дж/кг</td>
<td>260 000</td>
<td>218 000</td>
</tr>
<tr>
<td>Объемный к. п. д. (\lambda_0)</td>
<td>0,7</td>
<td>0,905</td>
</tr>
</tbody>
</table>

Приведенное сопоставление ясно показывает преимущества двухступенчатого сжатия. Чем больше отношение \(p_{\text{кон}}/p_1 \), тем сильнее проявляются преимущества многоступенчатого сжатия.

Пример 2.18. Компрессор должен подавать 210 м³/ч метана (считая при 0 °C и 760 мм рт. ст.), сжатого до давления \(p_{\text{абс}} = 55 \text{ кгс/см}^2 \). Начальное давление атмосферное, начальная температура 18 °C. Определить: а) число ступеней сжатия и распределение давлений по ступеням; б) расходуемую мощность, принятую к. п. д. компрессора 0,7; в) расход воды в холодильниках компрессора при нагревании ее на 10 °C.

Решение. a) При допускаемой степени сжатия в одной ступени \(\sim 4 \) требуемое число ступеней, согласно уравнению (2.21), будет равно:

\[n = \log 55/\log 4 = 2,9 \approx 3. \]

Пренебрегая потерей давления между ступенями, уточним степень сжатия в каждой ступени трехступенчатого компрессора (рис. 2.14):

\[x = \sqrt[3]{55} \approx 3,8. \]

Таким образом, приближенное распределение давлений по ступеням:

<table>
<thead>
<tr>
<th>Ступень</th>
<th>(p_{\text{нач}})</th>
<th>(p_{\text{кон}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>3,8</td>
</tr>
<tr>
<td>II</td>
<td>3,8</td>
<td>14,45</td>
</tr>
<tr>
<td>III</td>
<td>14,45</td>
<td>55</td>
</tr>
</tbody>
</table>

Рис. 2.14 (к примеру 2.18).
б) Теоретический расход работы определяем по формуле (2.18). Для метана по табл. V находим:

\[k = 1,31; \ R = 8310/16 = 519 \text{Дж/(кг} \cdot \text{К)}; \]

\[\rho_0 = 0,72 \text{ кг/м}^3 \text{ (при } 0^\circ \text{С и } 760 \text{ мм рт. ст.).} \]

Принимая, что в промежуточных холодильниках метан охлаждается до 30 °C, получаем:

\[L_ад = 3 \cdot 519 \cdot 303 \cdot \frac{1,31}{0,31} \left(\frac{0,31}{55^{1,31-3}} - 1 \right) = 746 000 \text{ Дж/кг.} \]

Расходуемую мощность вычисляем по формуле (2.15):

\[N = \frac{210 \cdot 0,72 \cdot 746 000}{3600 \cdot 1000 \cdot 0,7} = 44,6 \text{ кВт.} \]

в) Для определения расхода воды в холодильниках компрессора найдем температуру в конце сжатия в ступенях II и III, принимая, как уже было сказано, что в промежуточных холодильниках после I и II ступеней метан охлаждается до 303 K (рис. 2.15). В цилиндре I ступени компрессора температура в конце сжатия будет несколько ниже, так как в I ступень метан засасывается не при 30 °C, а при 18 °C.

По уравнению (2.14) имеем:

\[T_2 = 303 \cdot 3,8 \frac{1,31}{0,31} = 416 \text{ K } = 143^\circ \text{C.} \]

Принимая приближенно удельную теплоемкость метана при абсолютных давлениях 3,8; 14,45 и 55 кгс/см² одинаковой и равной 2,22 кДж/(кг·К), находим, что в трех холодильниках компрессора (после I, II и III ступеней) охлаждающая вода всего должна отнимать теплоты:

\[Q = 3 \cdot 210 \cdot 0,72 \cdot 2,22 \cdot 10^3 (143 - 30)/3600 = 31 700 \text{ Вт.} \]

Это же количество теплоты может быть подсчитано другим путем, как теплота, эквивалентная работе сжатия:

\[Q = L_ад V_0 \rho_0 = 746 000 \cdot 210 \cdot 0,72/3600 = 31 300 \text{ Вт.} \]

При нагревании воды на 10 °C расход ее составит

\[Q_н = \frac{Q}{c (t_2 - t_1)} = \frac{31 700}{4,19 \cdot 10^3 \cdot 10} = 0,756 \text{ кг/с или } V_в = \frac{0,756 \cdot 3600}{1000} = 2,71 \text{ м}^3/\text{ч.} \]

Здесь \(c = 4,19 \cdot 10^3 \text{ Д ж/(кг} \cdot \text{К)} — удельная теплоемкость воды.\)
Пример 2.19. При помощи поршневого вакуум-насоса в аппарате должен быть создан вакуум (разрежение) 0,9 кгс/см\(^2\). Считая процесс сжатия воздуха в вакуум-насосе политропическим (с показателем политропы 1,25), определить теоретический расход работы: а) в тот момент, когда достигнут вакуум 0,1 кгс/см\(^2\), т. е. остаточное давление в аппарате стало равным 0,9 кгс/см\(^2\); б) когда давление в аппарате стало равным 0,3 кгс/см\(^2\); в) когда достигнут требуемый вакуум, т. е. остаточное давление в аппарате стало равным 0,1 кгс/см\(^2\).

Решение. Подсчитываем теоретический расход работы на 1 м\(^3\) засасываемого газа (т. е. в Дж/м\(^3\)) по формуле (2.12):

\[L = \frac{m}{m-1} p_1 \left(\frac{\rho_2}{\rho_1} \right)^{\frac{m-1}{m}} - 1 \]

где \(m\) — показатель политропы сжатия.

а) \(\frac{\rho_2}{\rho_1} = \frac{9,81 \cdot 10^4}{8,83 \cdot 10^4} = 1,11\); \(\frac{m}{m-1} = \frac{1,25}{0,25} = 5\); \(\frac{m-1}{m} = 0,2\);

\[L = 5 \cdot 8,83 \cdot 10^4 (1,11^{0,2} - 1) = 9720 \text{ Дж/м}^3. \]

б) \(\frac{\rho_2}{\rho_1} = \frac{9,81 \cdot 10^4}{2,94 \cdot 10^4} = 3,33\); \(L = 5 \cdot 2,94 \cdot 10^4 (3,33^{0,2} - 1) = 40000 \text{ Дж/м}^3.\)

в) \(\frac{\rho_2}{\rho_1} = \frac{9,81 \cdot 10^4}{0,981 \cdot 10^4} = 10\); \(L = 5 \cdot 0,981 \cdot 10^4 (10^{0,2} - 1) = 28600 \text{ Дж/м}^3.\)

Мы видим, что расход работы, затрачиваемой вакуум-насосом, проходит через максимум. На этот максимум и рассчитывается мощность двигателя вакуум-насоса.

Контрольные зада́чи

2.1. Насос перекачивает 30%-ную серную кислоту. Показание манометра на нагнетательном трубопроводе 1,8 кгс/см\(^2\) (≈ 0,18 МПа), показание вакууметра (разрежение) на всасывающем трубопроводе перед насосом 29 мм рт. ст. Манометр приложен на 0,5 м выше вакууметра. Всасывающий и нагнетательный трубопроводы одинакового диаметра. Какой напор развивает насос?

2.2. Насос перекачивает жидкость плотностью 960 кг/м\(^3\) из резервуара с атмосферным давлением в аппарат, давление в котором составляет \(p_{\text{нас}} = 37 \text{ кгс/см}^2\), или ≈ 3,7 МПа (см. рис. 2.1). Высота подъема 16 м. Общее сопротивление всасывающей и нагнетательной линий 65,6 м. Определить полный напор, развиваемый насосом.

2.3. Определить к. п. д. насосной установки. Насос подает 380 дм\(^3\)/мин мазута относительной плотности 0,9. Полный напор 30,8 м. Потребляемая двигателем мощность 2,5 кВт.
2.4. Производительность насоса 14 дм³/с жидкости относительной плотности 1,16. Полный напор 58 м. К. п. д. насоса 0,64, к. п. д. передачи 0,97, к. п. д. электродвигателя 0,95. Какой мощности двигатель надо установить?

2.5. Поршневой насос (см. рис. 2.2) установлен на заводе, расположенном на высоте 300 м над уровнем моря. Общая потеря высоты всасывания составляет 5,5 м вод. ст. Геометрическая высота всасывания 3,6 м. При какой максимальной температуре воды еще возможно всасывание?

2.6. Определить производительность дифференциального поршня насоса (рис. 2.16), который имеет больший диаметр ступенчатого плунжера 340 мм, меньший — 240 мм. Ход плунжера 480 мм, частота вращения 60 об/мин. Коэффициент подачи 0,85. Определить также количество жидкости, подаваемой каждой стороной ступенчатого плунжера.

2.7. Поршневой насос двойного действия (см. рис. 2.6) наполняет бак диаметром 3 м и высотой 2,6 м за 26,5 мин. Диаметр плунжера насоса 180 мм, диаметр штока 50 мм, радиус кривошипа 145 мм. Частота вращения 55 об/мин. Определить коэффициент подачи насоса.

2.8. Центробежный насос, делающий 1800 об/мин, должен перекачивать 140 м³/ч воды, имеющей температуру 30 °C. Среднее атмосферное давление в месте установки насоса 745 мм рт. ст. Полная потеря напора во всасывающей линии составляет 4,2 м. Определить теоретически допустимую высоту всасывания.

2.9. Центробежный насос при перекачке 280 дм³/мин воды создает напор H = 18 м. Пригоден ли этот насос для перекачки жидкости относительной плотности 1,06 в количестве 15 м³/ч по трубопроводу диаметром 70 × 2,5 мм из сборника с атмосферным давлением в аппарат с давлением рнач = 0,3 кгс/см²? Геометрическая высота подъема 8,5 м. Расчетная длина трубопровода (собственная длина плюс эквивалентная длина местных сопротивлений) 124 м. Коэффициент трения в трубопроводе λ = 0,03. Определить также, какой мощности электродвигатель потребуется установить, если к. п. д. насосной установки составляет 0,55.

2.10. Центробежный насос для перекачки воды имеет следующие паспортные данные: Q = 56 м³/ч, H = 42 м, N = 10,9 кВт при n = 1140 об/мин. Определить: 1) к. п. д. насоса, 2) производительность его, развиваемый напор и потребляемую мощность при n = 1450 об/мин, считая, что к. п. д. остался неизменным.
2.11. При испытании центробежного насоса получены следующие данные:

<table>
<thead>
<tr>
<th>Q, дм3/мин</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, м</td>
<td>37,2</td>
<td>38,0</td>
<td>37,0</td>
<td>34,5</td>
<td>31,8</td>
<td>28,5</td>
</tr>
</tbody>
</table>

Сколько жидкости будет подавать этот насос по трубопроводу диаметром 76 × 4 мм, длиной 355 м (собственная длина плюс эквивалентная длина местных сопротивлений) при геометрической высоте подачи 4,8 м? Коэффициент трения $\lambda = 0,03$; $\Delta p_{доп} = 0$. (Построить характеристики насоса и трубопровода и найти рабочую точку.)

Как изменится производительность насоса, если геометрическая высота подачи будет 19 м?

2.12. Определить производительность шестеренчатого насоса (см. рис. 2.9) по следующим данным: частота вращения 650 об/мин, число зубьев на шестерне 12, ширина зуба 30 мм, площадь сечения зуба, ограниченная внешней окружностью соседней шестерни, 7,85 см2, коэффициент подачи 0,7.

2.13. Требуется выкачивать 215 дм3/мин раствора относительной плотности 1,06 из подвального бака водоструйным насосом (см. рис. 2.10). Высота подъема 3,8 м. Давление воды перед насосом $p_{изб} = 1,9$ кгс/см2 (~0,19 МПа). К. п. д. насоса 0,15. Сколько кубометров воды будет расходовать в 1 ч водоструйный насос?

2.14. Какой мощности электродвигатель необходимо установить к вентилятору производительностью 110 м3/мин при полном напоре 834 Па (85 мм вод. ст.)? К. п. д. вентилятора 0,47.

2.15. Центробежный вентилятор, делающий 960 об/мин, подает 3200 м3/ч воздуха, потребляя при этом 0,8 кВт. Давление (избыточное), создаваемое вентилятором, 44 мм вод. ст. Каковы будут у этого вентилятора подача, давление и затрачиваемая мощность при $n = 1250$ об/мин? Определить также к. п. д. вентилятора.

2.16. Какое количество воздуха будет подавать вентилятор примера 2.12 при работе на сеть, у которой при расходе 1000 м3/ч сумма ($\Delta p_{ek} + \Delta p_{тр} + \Delta p_{м.с}$) составляет 265 Па, а разность давлений в пространстве нагнетания и в пространстве всасывания равняется 20 мм вод. ст.?

2.17. Сколько воздуха будет подавать вентилятор примера 2.12 в сеть, у которой при расходе 1350 м3/ч сумма ($\Delta p_{ek} + \Delta p_{тр} + \Delta p_{м.с}$) составляет 167 Па, а $\Delta p_{доп}$ равно 128 Па?

2.18. Какую частоту вращения надо дать вентилятору примера 2.12, если он должен подавать 1500 м3/ч воздуха в сеть, полное сопротивление которой при этом расходе 422 Па?

2.19. Определить аналитическим путем и по диаграмме $T - S$ температуру воздуха после адабатического сжатия его от начального давления (абсолютного) 1 кгс/см2 до конечного давления 3,5 кгс/см2. Начальная температура 0 °C. Определить также затрату работы на сжатие 1 кг воздуха.
2.20. Определить мощность, потребляемую углекислотным поршневым компрессором производительностью 5,6 м³/ч (при условиях всасывания). Комpressor сжимает диоксид углерода от 20 до 70 кгс/см² (давление абсолютное). Начальная температура —15 °C. К. п. д. компрессора принять равным 0,65. Задачу решить как аналитическим путем, так и с помощью диаграммы Т — S для углекарда (рис. XXVII).

2.21. Определить объемный к. п. д. компрессора предыдущей задачи, если вредное пространство составляет 6% от объема, описываемого поршнем, а показатель политропы расширения \(m = 1,2 \).

2.22. Определить производительность и расходуемую мощность для одноступенчатого поршневого компрессора по следующим данным: диаметр поршня 250 мм, ход поршня 275 мм, объем вредного пространства 5,4% от объема, описываемого поршнем, частота вращения 300 об/мин. Комpressor сжимает атмосферный воздух до \(p_{\text{вх}} = 4 \) кгс/см². Показатель политропы расширения на 10% меньше показателя адиабаты. Начальная температура воздуха 25 °C. Общий к. п. д. компрессора 0,72.

2.23. Как изменяется производительность и потребляемая мощность компрессора предыдущей задачи, если дать ему воздухо-дукой наддув до \(p_{\text{вх}} = 0,4 \) кгс/см² (см. рис. 2.13). Конечное давление (абсолютное) 4 кгс/см².

2.24. При каком давлении нагнетания объемный к. п. д. одноступенчатого поршневого компрессора, сжимающего этилен, упадет до 0,2? Давление всасывания 1 кгс/см². Расширение газа из вредного пространства считать адиабатическим. Объем вредного пространства составляет 7% от объема, описываемого поршнем.

2.25. Исходя из условия, что компрессорное смазочное масло допускает без заметного ухудшения смазки температуру в цилиндре не выше 160 °C, определить предельное значение давления нагнетания в одноступенчатом поршневом компрессоре: а) для воздуха, б) для этана. Давление всасывания 1 кгс/см². Начальная температура 25 °C. Процесс сжатия считать адиабатическим.

2.26. По данным примера 2.17 определить для одноступенчатого и двухступенчатого компрессоров теоретическую затрату работы по формулам (2.13) и (2.19).

2.27. Определить требуемое число ступеней поршневого компрессора, который должен сжимать азот от 1 до 100 кгс/см² (давление абсолютное), если допускаемая температура в конце сжатия не должна превышать 140 °C. Процесс сжатия считать адиабатическим. Начальная температура азота 20 °C.

2.28. Определить теоретическую затрату работы на сжатие водорода от 1,5 до 17 кгс/см² (давление абсолютное) при одноступенчатом и двухступенчатом сжатии. Начальная температура водорода 20 °C.

2.29. Компрессор при испытании нагнетал атмосферный воздух в баллон объемом 42,4 дм³. За 10,5 мин давление в баллоне
повысилось от 0 до 52 кгс/см² (давление избыточное), а температура воздуха в баллоне подвилась от 17 до 37 °C. Определить производительность компрессора в м³/ч (при нормальных условиях).

2.30. Определить потребляемую мощность и расход воды на холодильники поршневого компрессора, который сжимает 625 м³/ч (при нормальных условиях) этилена от давления (абсолютного) 9,81·10⁴ до 176,6·10⁴ Па. К. п. д. компрессора 0,75. Охлаждающая вода нагревается в холодильниках на 13 °C. Начальная температура газа 20 °C.

ПРИМЕР РАСЧЕТА ЦЕНТРОБЕЖНОГО НАСОСА

Центробежный насос необходимо установить на высоте 5 м над уровнем открытого водоема для перекачки 45 м³/ч воды в реактор, работающий под избыточным давлением 0,1 МПа. Геометрическая высота подъема воды 20 м. Температура воды 20 °C. На линии нагнетания (L₂₃ = 35 м) расположены 2 отвода под углом 90° и 5 отводов под углом 110°, а также 2 нормальных вентиля и 1 прямой винт. На линии всасывания (L₁₂ = 15 м) установлено 2 прямыховых вентиля и 3 отвода под углом 90° (в обоих случаях отношение радиуса изгиба к внутреннему диаметру трубопровода равно 4). Следует выбрать насос (по напору и мощности).

Решение. 1. Выбор диаметра трубопровода проведем, приняв скорость воды по всасывающей и нагнетательной линиям одинаковой и равной 1,5 м/с:

\[d = \sqrt{V/(0,785\omega)} = \sqrt{45/(3600·0,785·1,5)} = 0,103 \text{ м.} \]

Выбираем стальной трубопровод с незначительной коррозией.
2. Расчет потерь на трение и местные сопротивления.

Определим режим течения воды:

\[\text{Re} = \frac{wdp}{\mu} = 1,5·0,103·998/(1,005·10^{-5}) = 153420. \]

Режим турбулентный.

Среднее значение абсолютной шероховатости стенок труб \(e = 0,2 \text{ мм} \) (табл. XI1). Относительная шероховатость \(d/e = 103/0,2 = 515 \). По графику 1,5 находим значение коэффициента трения \(\lambda = 0,0235 \).

Сумма коэффициентов местных сопротивлений для всасывающей линии:

\[\zeta_{\text{вс}} = \zeta_1 + 2\zeta_2 + 3\zeta_3 = 0,5 + 2·0,5 + 3·0,11 = 1,83, \]

где \(\zeta_1 = 0,5 \) — вход в трубу (с острыми краями); \(\zeta_2 = 0,5 \) — прямой винт (для \(d = 100 \text{ мм} \) и \(\text{Re} \geq 3·10^5 \)); \(\zeta_3 = AB = 1,0·0,11 = 0,11 \) — отвод под углом 90° (табл. XI11). Тогда

\[\Delta \rho_{\text{вс}} = \left(\lambda \frac{L_{\text{вс}}}{d} + \sum \zeta_{\text{вс}} \right) \frac{\rho v^2}{2} = \]

\[= \left(0,0235 \frac{15}{0,103} + 1,83 \right) 998·1,5^2/2 = 5894 \text{ Па.} \]

Потери напора на всасывающей линии:

\[H_{\text{вс}} = \Delta \rho_{\text{вс}}/(\rho g) = 5894/(998·9,81) = 0,60 \text{ м.} \]

Сумма коэффициентов местных сопротивлений для нагнетательной линии:

\[\zeta_{\text{n}} = \zeta_1 + 2\zeta_2 + 5\zeta_3 + 2\zeta_4 + \zeta_5 = 1 + 2·0,11 + 5·0,12 + 2·4,1 + 0,5 = 10,52, \]

90
где $\xi_1 = 1$ — выход из трубы; $\xi_2 = A_2B_2 = 1,0 \cdot 0,11 = 0,11$ — отвод под углом 65°; $\xi_3 = A_3B_3 = 1,13 \cdot 0,11 = 0,12$ — отвод под углом 110°; $\xi_4 = 4,1$ — нормальный вентиль (при $d = 100$ мм); $\xi_5 = 0,5$ — прямооточный вентиль (при $Re > 3 \cdot 10^4$). Тогда

$$\Delta p_n = \left(0,0235 \cdot \frac{35}{0,103} + 10,52\right) \frac{998 \cdot 1,5^2}{2} = 20 777$ П.

Потери напора на нагнетательной линии:

$$H_n = \frac{\Delta p_n}{\rho g} = 20 777/(998 \cdot 9,81) = 2,12$ м.

Общие потери напора:

$$H = H_n + H_{bc} = 0,60 + 2,12 = 2,72$ м.

3. Выбор насоса.

По формуле (2.1) рассчитываем полный напор, разрабатываемый насосом:

$$H = \frac{p_2 - p_1}{\rho g} + H_f + H_n = \frac{0,1 \cdot 10^6}{998 \cdot 9,81} + 20 + 2,72 = 32,93$ м.

Полезная мощность насоса:

$$N = VpgH = 45 \cdot 998 \cdot 9,81 \cdot 32,93/3600 = 4030$ Вт = 4,03 кВт.

Для центробежного насоса средней производительности примем $\eta = \eta_{нм} = 0,6$. Тогда мощность, потребляемая двигателем насоса:

$$N_{дв} = 4,03/0,6 = 6,7$ кВт.

По табл. 2.5 устанавливаем, что по заданным производительности и напору следует выбрать центробежный насос марки X45/54, для которого при оптимальных условиях работы производительность $Q = 1,25 \cdot 10^{-2}$ м³/с, напор $H = 42$ м, к. п. д. насоса $\eta_n = 0,6$. Насос снабжен двигателем АО2-62-2 номинальной мощностью 17 кВт ($\eta_d = 0,88$, частота вращения вала $n = 48,3$ об/с).

4. Предельная высота всасывания.

Для центробежных насосов запас напора, необходимый для исключения кавитации, рассчитывают по формуле:

$$H_{кав} = 0,3 (Qn^2)^{2/3} = 0,3 (0,0125 \cdot 48,3^2)^{2/3} = 2,84$ м.

По формуле (все слагаемые выражены в метрах перекачиваемой жидкости)

$$H_{пр. вс} \leq A - h_f - H_{bc} - H_{кав}$,

где A — атмосферное давление, h_f — давление насыщенного пара при соответствующей температуре,

$$H_{bc} \leq 10,25 - 0,24 - 0,60 - 2,84 = 6,57$ м.

Здесь $A = 10,25$ (табл. 11), $h_f = 0,24$ м при 20 °C (табл. 2.2).

Таким образом, расположение насоса на высоте 5 м над уровнем водоснабжение вполне допустимо.
<table>
<thead>
<tr>
<th>Марка насоса</th>
<th>Q, м²/с</th>
<th>H, м столб. жидкости</th>
<th>n, об/мин</th>
<th>ηВ</th>
<th>Электродвигатель</th>
<th>тип</th>
<th>N, кВ</th>
<th>ηд</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2/25</td>
<td>4,2 \cdot 10^{-4}</td>
<td>25</td>
<td>50</td>
<td>—</td>
<td>АОЛ-12-2</td>
<td>1,1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X8/18</td>
<td>2,4 \cdot 10^{-3}</td>
<td>11,3</td>
<td>48,3</td>
<td>0,40</td>
<td>АО2-31-2</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X8/30</td>
<td>2,4 \cdot 10^{-3}</td>
<td>17,7</td>
<td>48,3</td>
<td>0,50</td>
<td>БАО-31-2</td>
<td>3</td>
<td>0,82</td>
<td></td>
</tr>
<tr>
<td>X20/18</td>
<td>5,5 \cdot 10^{-3}</td>
<td>10,5</td>
<td>48,3</td>
<td>0,60</td>
<td>АО2-32-2</td>
<td>4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X20/31</td>
<td>5,5 \cdot 10^{-3}</td>
<td>18</td>
<td>48,3</td>
<td>0,55</td>
<td>БАО-31-2</td>
<td>3</td>
<td>0,82</td>
<td></td>
</tr>
<tr>
<td>X20/53</td>
<td>5,5 \cdot 10^{-3}</td>
<td>34,4</td>
<td>48,3</td>
<td>0,50</td>
<td>АО2-41-2</td>
<td>5,5</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>X45/21</td>
<td>1,25 \cdot 10^{-2}</td>
<td>13,5</td>
<td>48,3</td>
<td>0,60</td>
<td>БАО-51-2</td>
<td>10</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>X45/31</td>
<td>1,25 \cdot 10^{-2}</td>
<td>19,8</td>
<td>48,3</td>
<td>0,60</td>
<td>АО2-52-2</td>
<td>13</td>
<td>0,89</td>
<td></td>
</tr>
<tr>
<td>X45/54</td>
<td>1,25 \cdot 10^{-2}</td>
<td>32,6</td>
<td>48,3</td>
<td>0,60</td>
<td>БАО-52-2</td>
<td>13</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>X90/19</td>
<td>2,5 \cdot 10^{-2}</td>
<td>13</td>
<td>48,3</td>
<td>0,70</td>
<td>АО2-62-2</td>
<td>17</td>
<td>0,88</td>
<td></td>
</tr>
<tr>
<td>X90/33</td>
<td>2,5 \cdot 10^{-2}</td>
<td>25</td>
<td>48,3</td>
<td>0,70</td>
<td>АО2-71-2</td>
<td>22</td>
<td>0,88</td>
<td></td>
</tr>
<tr>
<td>X90/49</td>
<td>2,5 \cdot 10^{-2}</td>
<td>31,4</td>
<td>48,3</td>
<td>0,70</td>
<td>АО2-72-2</td>
<td>30</td>
<td>0,89</td>
<td></td>
</tr>
<tr>
<td>X90/85</td>
<td>2,5 \cdot 10^{-2}</td>
<td>56</td>
<td>48,3</td>
<td>0,65</td>
<td>АО2-81-2</td>
<td>40</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X160/29/2</td>
<td>4,5 \cdot 10^{-2}</td>
<td>20</td>
<td>48,3</td>
<td>0,65</td>
<td>БАО-72-2</td>
<td>30</td>
<td>0,89</td>
<td></td>
</tr>
<tr>
<td>X160/49/2</td>
<td>4,5 \cdot 10^{-2}</td>
<td>33</td>
<td>48,3</td>
<td>0,75</td>
<td>АО2-82-2</td>
<td>40</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X160/29</td>
<td>4,5 \cdot 10^{-2}</td>
<td>29</td>
<td>24,15</td>
<td>0,60</td>
<td>АО2-81-4</td>
<td>40</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Примечания. 1. Насосы предназначены для перекачивания химически активных и нейтральных жидкостей без включений (или с твердыми включениями с размером частиц до 0,2 мм при концентрации их до 0,2 %).

2. Каждый насос может быть изготовлен с тремя различными диаметрами колеса, что соответствует трем различным напорам (в области оптимального значения ηВ).
ГЛАВА 3

ГИДРОМЕХАНИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ, ГИДРОДИНАМИКА ВЗВЕШЕННОГО СЛОЯ, ПЕРЕМЕШИВАНИЕ В ЖИДКОЙ СРЕДЕ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРУМУЛЫ

Осаждение

Осаждение под действием силы тяжести (пылевые камеры, отстойники).

1. Для описания в критериальной форме процесса осаждения шарообразной частицы в неподвижной неограниченной среде могут быть применены критерии подобия: Архимеда Ar, Лященко Ly и Рейнольдса Re.

Наиболее удобной формой критериальной зависимости является $\text{Ly} = f(\text{Ar})$.

2. При так называемом ламинарном режиме осаждения, когда критерии имеют значения $\text{Ar} < 3.6$; $\text{Ly} < 2 \cdot 10^{-3}$; $\text{Re} < 0.2$, Стоксом теоретически получена следующая формула для скорости осаждения w_{oc} (в м/c) шарообразной частицы *

$$ w_{oc} = \frac{d^2 (\rho - \rho_c) g}{18 \mu_c}. \quad (3.1) $$

Для осаждения частицы в газовой среде формула (3.1) упрощается:

$$ w_{oc} = \frac{d^2 \rho g}{18 \mu_c}, \quad (3.2) $$

так как в этом случае величиной ρ_c можно пренебречь.

В формулах (3.1) и (3.2): d — диаметр шарообразной частицы м; ρ — плотность частицы, кг/м3; ρ_c — плотность среды, кг/м3; μ_c — динамический коэффициент вязкости, Па·с, т. е. Н·с/м2, или кг/(м·с).

3. Определение скорости осаждения шарообразной одиночной частицы в неподвижной неограниченной среде по обобщенному методу, пригодному при любом режиме осаждения, осуществляют следующим образом.

Определяют критерий Архимеда:

$$ \text{Ar} = \frac{\Delta \rho}{\rho_c} = \frac{\text{Re}^2}{\text{Fr}} \frac{\rho - \rho_c}{\rho_c} = \frac{d^3 (\rho - \rho_c) \rho_c g}{\mu_c^2}, \quad (3.3) $$

где $\text{Ga} = \text{Re}^2/\text{Fr}$ — критерий Галилея.

Для осаждения в газовой среде:

$$ \text{Ar} = \frac{d^3 \rho_c g}{\mu_c^2}. $$

* Практически возможно применение формулы Стокса и при более высоких значениях критериев Архимеда и Лященко.
По найденному значению критерия \(\text{Re} \) определяют критерий \(\text{Ly} \) (рис. 3.1):

\[
\text{Ly} = \frac{\text{Re}^3}{\text{Ar}} = \frac{\text{Re} \cdot F_r \cdot \rho_c}{\rho - \rho_c} = \frac{\omega_{oc}^3 \rho_c^2}{\mu_c (\rho - \rho_c) g}
\]

(3.4)

либо (если среда — газ)

\[
\text{Ly} = \frac{\omega_{oc}^3 \rho_c^2}{\mu_c g \rho}.
\]

(3.4a)

Далее вычисляют скорость осаждения:

\[
\omega_{oc} = \frac{\text{Re} \cdot \mu_c}{\rho_c d}
\]

или

\[
\omega_{oc} = \sqrt[3]{\text{Ly} \cdot \mu_c (\rho - \rho_c) g / \rho_c^2}.
\]

(3.5a)

Для частицы неправильной формы скорость осаждения определяют тем же путем из критерия Лященко, но с подстановкой в критерий Архимеда вместо \(d \) величины \(d_o \).

Эквивалентный диаметр \(d_o \) частицы неправильной формы вычисляют как диаметр условного шара, объем которого \(V \) равен объему тела неправильной формы:

\[
d_o = \sqrt[3]{6V / \pi} = 1.24 \sqrt[3]{M / \rho},
\]

(3.6)

где \(M \) — масса частицы, кг.

4. Диаметр осаждающейся шарообразной частицы при известной скорости осаждения находят обратным путем, т. е. вычисляют сначала критерий Лященко

\[
\text{Ly} = \frac{\omega_{oc}^3 \rho_c^2}{\mu_c (\rho - \rho_c) g}
\]

и по найденному значению \(\text{Ly} \) определяют критерий \(\text{Ar} \) (рис. 3.1); из последнего по формуле (3.3) вычисляют диаметр шарообразной частицы.

5. Эквивалентный диаметр частицы твердого тела неправильной формы при известной скорости осаждения определяют таким же путем. Сначала определяют критерий \(\text{Ly} \) по формуле (3.4), затем находят значение критерия \(\text{Ar} \) из рис. 3.1 для частицы соответствующей формы и вычисляют ее эквивалентный диаметр:

\[
d_o = \sqrt[3]{\frac{\text{Ar} \cdot \mu_c^2}{\rho_c g \cdot (\rho - \rho_c) \rho_c g}}.
\]

(3.7)

6. Площадь осаждения \(F_{oc} \) (в \(m^2 \)) пылеосадительной камеры или отстойника для суспензий (взвесей) определяется по формуле:

\[
F_{oc} = V / \omega_{oc},
\]

(3.8)

где \(V \) — объемный расход газа (жидкости), проходящего через аппарат параллельно поверхности осаждения, \(m^3/c \); \(\omega_{oc} \) — средняя расчетная скорость осаждения частиц, \(m/c \).
Рис. 3.1. Зависимость критериев Re и Ly от критерия Ar для осаждения одиночной частицы в неподвижной среде:
1 и 6 — шарообразные частицы; 2 — округленные; 3 — угловатые; 4 — продольговатые;
5 — пластинчатые.
Отношение средней расчетной скорости стесненного осаждения частиц \(w'_\text{oc} \) к скорости осаждения одиночной частицы \(w_\text{oc} \) зависит от объемной концентрации суспензии.

При ориентировочных расчетах, учитывая приближенно отличие реальных условий осаждения от теоретических (стесненность осаждения, форма частиц, движение среды), среднюю расчетную скорость осаждения часто принимают равной половине теоретической скорости осаждения одиночной шарообразной частицы:

\[
w'_\text{oc} = 0.5w_\text{oc}.
\]

7. В применении к отстойнику непрерывного действия для отстаивания суспензий (рис. 3.2) формула (3.8) принимает вид:

\[
F_\text{oc} = \frac{G_\text{h} \left(1 - \frac{c_\text{h}}{c_\text{oc}}\right)}{\rho_\text{c}w'_\text{oc}}
\]
(3.9)

или

\[
F_\text{oc} = \frac{V_\text{o} (x_\text{oc} - x_\text{h})}{w_\text{oc}x_\text{oc}}.
\]
(3.10)

Здесь \(F_\text{oc} \) — площадь осаждения отстойника, м\(^2\); \(G_\text{h} \) — массовый расход начальной (разбавленной) суспензии, кг/с; \(c_\text{h} \) — массовая концентрация твердой фазы в начальной суспензии, кг/кг; \(c_\text{oc} \) — массовая концентрация твердой фазы в суспензии (шламе), кг/кг; \(\rho_\text{c} \) — плотность осветленной жидкости, кг/м\(^3\); \(V_\text{o} \) — объемный расход жидкости, находящейся в начальной суспензии, м\(^3\)/с; \(x_\text{h} \) и \(x_\text{oc} \) — концентрации начальной суспензии и шлама, кг твердой фазы на кг жидкой фазы.

Осаджение под действием центробежной силы (циклоны)

8. Основные размеры циклона (рис. 3.3) определяются обычно в зависимости от его диаметра \(D \). Для распространенных циклонов НИИОГАЗ (Научно-исследовательский институт по промышленной и санитарной очистке газа) эти размеры (в долях \(D \)) даны в табл. 3.1.

Отличительной особенностью циклонов НИИОГАЗ является наклонный патрубок для поступающего газа.

Рис. 3.3. Циклон НИИОГАЗ.
Широко применяются три типа этих циклонов:
1) с углом 24° (ЦН-24); этот тип обеспечивает повышенную производительность при наименьшем гидравлическом сопротивлении; предназначен для улавливания крупной пыли;
2) с углом 15° (ЦН-15); этот тип обеспечивает хорошую степень улавливания при сравнительно небольшом гидравлическом сопротивлении;
3) с углом 11° (ЦН-11); этот тип обеспечивает повышенную эффективность и рекомендуется в качестве унифицированного пылеуловителя.

9. Диаметр циклона D определяют по условной скорости газа $w_\text{д}$, отнесенной к полному поперечному сечению цилиндрической части циклона:

$$D = \sqrt{\frac{V}{0.785w_\text{д}}}, \quad (3.11)$$

где V — объемный расход газа, проходящего через циклон, м3/с.

Скорость $w_\text{д}$ определяется по формуле (3.12). При этом предварительно задаются отношением $\Delta p/\rho$ (см. пример 3.10). По данным [3.1] значения $w_\text{д}$ принимают равными 2,5—4 м/с.

10. Гидравлическое сопротивление Δp (в Па) циклона рассчитывают по уравнению:

$$\Delta p = \zeta_0 \frac{w_\text{д}^2 \rho}{2}, \quad (3.12)$$

gде ζ_0 — коэффициент сопротивления циклона, безразмерный; ρ — плотность газа, проходящего через циклон, кг/м3.

11. Степень улавливания пыли η в циклоне зависит, помимо свойств пыли, от диаметра циклона, а также от
Фильтрование

12. При $\Delta p = \text{const}$ объем фильтрата V, прошедшего через $1\ \text{м}^2$ фильтрующей поверхности за время t, и продолжительность фильтрования t связаны уравнением:

$$V^2 + 2VC = Kt, \quad (3.13)$$

где C — константа фильтрования, характеризующая гидравлическое сопротивление фильтрующей перегородки (ткань), $\text{м}^3/\text{м}^2 \cdot \text{с}; K$ — константа фильтрования, учитывающая режим процесса фильтрации и физико-химические свойства осадка и жидкости [см. формулу (3.15)], $\text{м}^3/\text{с}; t$ — продолжительность фильтрования, с.

Константы K и C определяются опытным путем.

13. Скорость фильтрования [в $\text{м}^3/(\text{м}^2 \cdot \text{с})$] в данный момент определяется по уравнению:

$$\frac{dV}{dt} = \frac{K}{2(V + C)}. \quad (3.14)$$

По этому уравнению может быть рассчитана и скорость промывки осадка промывной жидкостью, если вязкость промывной жидкости равна вязкости фильтрата и если промывная жидкость проходит через фильтр тем же путем, что и фильтрат. При этих условиях скорость промывки равняется скорости фильтрования в конечный момент.

Видоизмененное уравнение (3.14)

$$\frac{d\tau}{dV} = \frac{2}{K} V + \frac{2C}{K},$$

выражающее прямолинейную зависимость между величинами $d\tau/dV$ и V, применяется для определения констант C и K по экспериментальным данным. Для этой цели откладывают по оси абсцисс измеренные значения V_1, V_2, \ldots, а по оси ординат — соответствующие измеренные значения $\Delta\tau_1/\Delta V_1, \Delta\tau_2/\Delta V_2, \ldots$. Проведя
по экспериментальным точкам прямую (рис. 3.5), находит затем \(K \) и \(C \) из уравнений:
\[
tg \beta = 2/K; \quad m = 2C/K.
\]

14. Константа фильтрования \(K \) (в \(\text{м}^2/\text{с} \)), отнесенная к 1 \(\text{м}^2 \) фильтрующей поверхности, при \(\Delta p = \text{const} \) связана с удельным сопротивлением осадка уравнением [3.10]:
\[
K = \frac{2\Delta p}{\mu c r}, \tag{3.15}
\]
где \(\Delta p \) — перепад давлений на фильтре, Па; \(\mu \) — динамический коэффициент вязкости фильтрата, Па·с; \(r \) — удельное сопротивление осадка (в расчете на 1 кг содержащегося в нем твердого сухого вещества), м/кг; \(c \) — масса сухого твердого вещества, отлагающегося на фильтре при прохождении через фильтрующую поверхность 1 \(\text{м}^3 \) фильтрата, кг/\(\text{м}^3 \).

15. Величина \(c \) (в \(\text{кг/м}^3 \)) может быть выражена через концентрацию фильтруемой суспензии \(x \) следующим образом (см. пример 3.11):
\[
c = \frac{\rho x}{1 - mx}. \tag{3.16}
\]
Здесь \(\rho \) — плотность фильтрата, \(\text{кг/м}^3 \); \(x \) — массовая концентрация твердой фазы в суспензии, \(\text{кг/кг} \); \(m \) — масса влажного осадка в расчете на 1 кг содержащегося в нем сухого вещества, \(\text{кг/кг} \).

При подстановке значения \(c \) в уравнение (3.15) получаем следующую формулу для константы \(K \) (в \(\text{м}^2/\text{с} \)):
\[
K = \frac{2\Delta p (1 - mx)}{\mu c x r}. \tag{3.17}
\]
Если известна константа фильтрования \(K \), то удельное сопротивление осадка \(r \) может быть найдено из уравнения (3.15), решенного относительно \(r \) (в \(\frac{m}{\text{кг сухого осадка}} \)):
\[
r = \frac{2\Delta p (1 - mx)}{K \mu c x r}. \tag{3.18}
\]

16. Константа фильтрования \(C \) (в \(\text{м}^3/\text{м}^2 \)), характеризующая сопротивление фильтрующей перегородки (ткани) и отнесенная к 1 \(\text{м}^2 \) поверхности фильтра, при \(\Delta p = \text{const} \) определяется следующим выражением [3.10]:
\[
C = \frac{r_{\text{мк}}}{rc}, \tag{3.19}
\]
или в соответствии с уравнением (3.16):
\[
C = \frac{r_{\text{мк}} (1 - mx)}{rx}, \tag{3.20}
\]
где \(r_{\text{мк}} \) — удельное сопротивление фильтрующей ткани (на 1 \(\text{м}^2 \) поверхности), \(\text{м/м}^2 \); \(r \) — удельное сопротивление осадка, \(\text{м/кг} \).

Рис. 3.5. Зависимость \(\Delta x/\Delta V \) от \(V \).
Следовательно, если значение константы фильтрования \(C \) (в м³/м²) известно, то удельное сопротивление ткани может быть вычислено по формуле:

\[
C_{\text{тк}} = \frac{Cr \varphi}{1 - mx}.
\]

(3.21)

17. Концентрация промывной воды в любой момент времени от начала основного (диффузионного) периода промывки * может быть вычислена по уравнению:

\[
C = C_1 e^{-\frac{K w t}{\delta}}.
\]

(3.22)

Здесь \(C_1 \) — концентрация промывной воды в начале процесса; \(e \) — основание натуральных логарифмов (\(e = 2,718 \)); \(K \) — коэффициент, учитывающий физико-химические свойства осадка и промывной воды, а также режим промывки (находится экспериментальным путем); \(w \) — удельная интенсивность промывки или скорость прохождения промывной воды, м²/(м³·с); \(t \) — продолжительность промывки, с; \(\delta \) — толшина слоя осадка, м.

Уравнение (3.22) после логарифмирования принимает вид:

\[
\frac{t_2 - t_1}{\lg C_1 - \lg C_2} = \frac{2,3\lambda}{K w},
\]

(3.23)

где \(t_1 \) и \(t_2 \) — время начала и конца наблюдений в любой период процесса диффузионной промывки; \(C_1 \) и \(C_2 \) — соответствующие концентрации промывной воды.

Из уравнений (3.22) и (3.23) может быть найдена продолжительность промывки \(t \), т. е. время, необходимое для заданного изменения концентрации вымываемого вещества в осадке, а также величина коэффициента \(K \).

18. Количество сухого вещества \(G \) (в кг) в осадке, получаемом на фильтре, зависит от количества собранного фильтрата \(V \), плотности фильтрата \(\rho \), массовой доли твердой фазы в суспензии \(x \), влажности осадка (выражаемой массовым отношением \(m \)) и может быть вычислено по формуле:

\[
G = V \varphi = V \frac{\rho x}{1 - mx}.
\]

(3.24)

19. Концентрация твердой фазы в суспензии \(x \) в зависимости от плотности суспензии \(\rho_c \) выражается формулой:

\[
x = \frac{\rho_c - \rho}{\rho_{\text{тв}} - \rho} \rho_{\text{тв}}.
\]

(3.25)

Плотность суспензии:

\[
\rho_c = \frac{n + 1}{\frac{\rho_{\text{тв}}}{n} + \frac{n}{\rho}} = \frac{\rho (1 + n) \rho_{\text{тв}}}{\rho + \rho_{\text{тв}} n}.
\]

(3.26)

* Во время основного периода промывки идет процесс диффузии раствора; иного вещества в промывную воду и удаления его с водой. Во время же начального периода промывки происходит лишь вытеснение фильтрата промывной водой из пор осадка.
В этих формулах x — массовая концентрация твердой фазы в суспензии, кг/кг; ρ_0 — плотность суспензии, кг/м^3; ρ — плотность жидкой фазы, кг/м^3; $\rho_{\text{тв}}$ — плотность твердой фазы, кг/м^3; n — масса жидкой фазы в суспензии на единицу массы твердой фазы ($T : X = 1 : n$).

По формуле (3.26) можно вычислить и плотность влажного осадка, рассматривая его как концентрированную суспензию.

20. Расчет рукавных фильтров для газов сводится к определению требуемой поверхности F (в м^2) фильтра по формуле:

$$ F = \frac{V}{V_{\text{уд}}}, $$

где V — объемный расход запыленного газа; $V_{\text{уд}}$ — удельный объемный расход запыленного газа в расчете на 1 м^2 поверхности ткани.

Величину $V_{\text{уд}}$ принимают обычно равной 0,2—1 $\text{м}^3/($$\text{м}^2\cdot\text{мин}$), а при улавливании крупной пыли до 2,5 $\text{м}^3/($$\text{м}^2\cdot\text{мин}$).

Центрифугирование

21. Центробежная сила C (в Н), развиваемая при центрифугировании, определяется по уравнению:

$$ C = Mn^2/R = M\omega^2R \approx 40Mn^2R \approx 20Mn^2D. $$

Здесь M — масса осадка и жидкости, находящихся в барабане центрифуги, кг; ω — угловая скорость, с^{-1}; $D = 2R$ — диаметр барабана, м; n — частота вращения центрифуги, с^{-1}.

Давление фильтрования (в Па) при центрифугировании приближенно

$$ \Delta p_u = C/F, $$

где C — центробежная сила, рассчитываемая по уравнению (3.28); $F = \pi DH$ — средняя поверхность фильтрования, м^2; D — внутренний диаметр барабана центрифуги, м; H — высота барабана (в центрифугах периодического и полуперерывного действия) или длина зоны фильтрования (в центрифугах неперерывного действия), м;

более точно

$$ \Delta p_u = 20\rho_cl^2(R_2^2 - R_1^2) = 5\rho_cl^2(D_2^2 - D_1^2), $$

где ρ_c — плотность суспензии, кг/м^3; $D_1 = 2R_1$ — диаметр внутреннего слоя жидкости, м; $D_2 = 2R_2$ — внутренний диаметр барабана, м; n — частота вращения центрифуги, с^{-1}.

22. Фактором разделения в центрифугах называется отношение ускорения центробежной силы к ускорению силы тяжести:

$$ j = C/P = \omega^2R/g \approx 20Fr_c, $$

где R — радиус барабана, м; ω — угловая скорость, с^{-1}.

* Фактор разделения представляет собой видоизмененный критерий Фруда (центробежный):

$$ Fr_c = Dn^2/g. $$
23. Скорость фильтрования при центрифугировании может быть выражена в форме общего гидравлического закона:

$$\frac{dV}{dt} = \frac{\Delta p \mu}{R_n}.$$

Здесь $\Delta p \mu$ — перепад давлений при центрифугировании; $R_n = R_\text{ос} + R_\text{тк}$ — общее сопротивление при центрифугировании, равное сумме сопротивлений осадка и фильтрующей перегородки.

Величины сопротивлений $R_\text{ос}$ и $R_\text{тк}$ могут быть рассчитаны по уравнениям фильтрования или определены экспериментальным путем.

24. Глубина воронки h (в м) жидкости, образуемой при вращении барабана центрифуги, рассчитывается ориентировочно по формуле:

$$h = 2n^2R^2,$$ \hspace{1cm} (3.32)

где n — частота вращения барабана, с$^{-1}$; R — радиус барабана, м.

По этой же формуле приближенно может быть рассчитана глубина воронки и в аппаратах с мешалкой.

25. Расход мощности в пусковой период для центрифуг периодического действия вычисляется по следующим формулам.

а) Мощность, расходуемая на преодоление инерции барабана и загрузки.

Работа T_1 (в Дж), затрачиваемая на преодоление инерции барабана в пусковой период:

$$T_1 = \omega_2^2 M_6 / 2,$$ \hspace{1cm} (3.33)

где ω_2 — установившаяся по достижении заданной частоты вращения окружная скорость вращения барабана (на внешней поверхности его с радиусом R_2), м/с; M_6 — масса барабана, кг.

Работа T_2 (в Дж), затрачиваемая на преодоление инерции загрузки в пусковой период (объем загруженного материала принят равным половине полного объема барабана):

$$T_2 = 0,75\omega_1^2 \rho N / 4.$$ \hspace{1cm} (3.34)

Здесь ω_1 — окружная скорость вращения на внутреннем радиусе барабана R_1, м/с; ρ — плотность загруженного материала, кг/м3; N — полный объем барабана центрифуги, равный $\pi R_1^2 H$, м3.

Мощность N_1 (в Вт), расходуемая на преодоление инерции барабана и загрузки во время пускового периода:

$$N_1 = (T_1 + T_2) / \tau,$$ \hspace{1cm} (3.35)

где τ — продолжительность пускового периода, с.

По практическим данным τ обычно составляет 1—3 мин.
б) Мощность N_3 (в Вт), расходуемая на трение вала в подшипниках:

$$N_3 = \lambda M w_b g,$$

(3.36)

где λ — коэффициент трения, равный 0,07—0,1 *; M — масса всех вращающихся частей центрифуги вместе с загрузкой, кг; w_b — окружная скорость вращения шпинделя, м/с.

в) Мощность N_3 (в Вт), расходуемая на трение стенки барабана о воздух:

$$N_3 = 2,94 \cdot 10^{-3} \beta R_c^2 w_b^3 \rho_b,$$

(3.37)

где ρ_b — плотность воздуха, кг/м3; β — коэффициент сопротивления, равный в среднем 2,3.

g) Полный расход мощности N_T (в Вт) для центрифуги периодического действия в пусковой период:

$$N_T = N_1 + N_2 + N_3.$$

(3.38)

С учетом к. п. д. передаточного устройства η_n расходуемая мощность:

$$N = N_T / \eta_n.$$

(3.39)

Установочную мощность электродвигателей для центрифуг следует выбирать с запасом в 10—20%.

26. Расчет толщины стенки барабана центрифуги или проверка стенки на прочность могут быть сделаны по уравнению:

$$K_2 = \frac{C_1 + C_2}{2f}.$$

(3.40)

Здесь K_2 — допускаемое напряжение материала стенки барабана на разрыв, Па; f — площадь сечения стенки барабана, м2 [так как действующее усилие воспринимается обеими частями сечения барабана, то общая площадь сечения равна $2f$ (рис. 3.6)]; C_1 — центробежная сила полукольца стенки барабана, Н; C_2 — центробежная сила полукольца загрузки, Н.

Величины C_1 и C_2 рассчитываются по уравнению (3.28). При этом расстояние R (в м) от центра тяжести вращающегося полукольца до оси вращения определяется по формуле:

$$R = \frac{4}{3\pi} \left(\frac{R_2^3 - R_1^3}{R_2^2 - R_1^2} \right),$$

(3.40a)

где R_1 и R_2 — внутренний и наружный радиусы полукольца, м.

27. а) Производительность V (объемный расход поступающей суспензии) отстойной центрифуги с ножевым съемом осадка типа...

* Для обыкновенных подшипников с кольцевой смазкой. Для шарикоподшипников $\lambda = 0,03$.
АОГ (в м³/с) при ламинарном режиме осаждения определяется по видоизмененному уравнению (3.8):

$$V = F'w_\eta.$$ \hspace{1cm} (3.41)

Здесь $F' = 2\pi R_0 L$ — поверхность зеркала суспензии в барабане, м²; R_0 — внутренний радиус кольцевого слоя суспензии, м; L — длина барабана, м; $w = w_0e f$ — скорость осаждения частиц под действием центробежной силы, м/с; w_0e — скорость осаждения частиц под действием силы тяжести, м/с; f — фактор разделения, определяемый по радиусу R_0; η — коэффициент, учитывающий отношение действительной и теоретической производительности центрифуги, который при отсутствии опытных данных можно принимать равным 0,4—0,5; он зависит от скольжения жидкости относительно барабана, а также учитывает наличие вихрей, затрудняющих осаждение.

Формула (3.41) может быть приведена к удобному для расчетов виду (применение см. в примере 3.23):

$$V_\eta = 25.3\pi L n^2 R_0^2 w_0e k,$$ \hspace{1cm} (3.42)

где k — отношение времени подачи суспензии (время собственно центрифугирования) к общему времени работы центрифуги.

6) Производительность V (в м³/ч) по суспензии центрифуги НОГШ (непрерывнодействующей отстойной горизонтальной со шнековой выгрузкой осадка) определяется по уравнению:

$$V = 3.5 \left[D_{el}^2 L_{el} (\rho - \rho_c) d^2 n^2 \right]/\mu,$$ \hspace{1cm} (3.42a)

где D_{el} и L_{el} — диаметр и длина «сливного цилиндра», м; ρ и ρ_c — плотность частиц и среды, кг/м³; d — крупность разделения (диаметр наименьших осаждаемых частиц), м; n — частота вращения ротора, об/мин; μ — динамический коэффициент вязкости среды, Па·с.

28. Производительность V (в м³/с) трубчатой сверхцентрифуги (по питанию) определяется из следующего выражения:

$$V \leq wV_{жк}/h,$$ \hspace{1cm} (3.43)

где w — скорость осаждения частиц в центробежном поле, м/с; $V_{жк} = 0.785 (D^2 - D_0^2) L$ — объем жидкости в барабане, м³; h — глубина потока в барабане, м; L — длина рабочей части барабана, м; D — внутренний диаметр барабана, м; D_0 — диаметр сливного порога, м.

Условием хорошей работы сверхцентрифуги (без уноса частиц) расчетного диаметра является наличие ламинарного режима движения потока в барабане ($Re \leq 350$). При больших значениях критерия Re необходимо увеличивать длину барабана.

Гидродинамика взвешенного слоя

29. Для неподвижного слоя твердых частиц порозность, т. е. относительная доля объема, не занятого твердой фазой:

$$\varepsilon_0 = (V_{нас} - V)/V_{нас}.$$ \hspace{1cm} (3.44)

В том случае, когда плотностью среды между частицами можно пренебречь по сравнению с плотностью самих частиц:

$$\varepsilon_0 = 1 - (\rho_{нас}/\rho).$$ \hspace{1cm} (3.44a)

Здесь V и $V_{нас}$ — объем, занимаемый частицами, и объем слоя, м³; ρ и $\rho_{нас}$ — плотность частиц и плотность слоя (так называемая насыпная), кг/м³.
Практически порозность неподвижного насыпного (неупорядоченного) слоя шарообразных частиц одинакового диаметра колеблется в пределах 0,38—0,42; в расчетах принимается среднее значение 0,40.

Для взвешенного слоя твердых частиц порозность

$$\varepsilon = (V_{\text{сл}} - V)/V_{\text{сл}},$$

где $V_{\text{сл}}$ — объем взвешенного слоя, м3.

30. Условием перехода неподвижного слоя твердых частиц во взвешенное состояние является равенство силы давления со стороны среды (проявляющейся в наличии перепада давления по высоте слоя) и веса слоя, приходящегося на единицу площади его поперечного сечения.

Основной гидродинамической характеристикой взвешенного слоя (при неизменном количестве материала в нем) является постоянство $\Delta \rho_{\text{сл}}$:

$$\Delta \rho_{\text{сл}} = G_{\text{сл}}/S = \text{const},$$

где $G_{\text{сл}}$ — вес материала в слое, Н; S — площадь поперечного сечения, м2.

Перепад давления (в Па) для потока, проходящего через взвешенный слой твердых частиц, определяется по уравнению:

$$\Delta \rho_{\text{сл}} = (\rho - \rho_0) g (1 - \varepsilon) h = (\rho - \rho_0) g (1 - \varepsilon_0) h_0,$$

где h и h_0 — высота взвешенного и неподвижного слоев, м; ρ и ρ_0 — плотность твердых частиц и среды, кг/м3.

Если средой является газ, то $\rho_0 \ll \rho$, и приближенно:

$$\Delta \rho_{\text{сл}} = \rho g (1 - \varepsilon) h_0 = \rho g (1 - \varepsilon_0) h_0.$$

(3.47a)

Перепад давления (в Па) в газораспределительной решетке можно определить по уравнению:

$$\Delta \rho_{\text{реш}} = 0,503 \omega_0^2 \rho_0 (1 - \varphi^2)/C^2.$$

Здесь φ — доля живого сечения решетки; эта величина часто принимается равной 0,01—0,05; $\omega_0 = w/\varphi$ — скорость потока в отверстиях решетки, м/с; w — скорость потока, отнесенная к полному сечению аппарата, м/с; C — коэффициент сопротивления решетки, зависящий от отношения d_0/δ и определяемый по графику (рис. 3.7); d_0 — диаметр отверстия решетки, м; δ — толщина решетки, м.

31. Скорость потока, при которой сопротивление слоя становится равным весу слоя, приходящегося на единицу площади поперечного сечения, и при которой частицы неподвижного слоя переходят во

Рис. 3.7. Коэффициент сопротивления решеток:
1 — данные Г. Хьюмара и Х. О' Коннелла;
2 — данные Д. И. Орчака и др.
взвешенное состояние, называется критической скоростью или скоростью псевдоожжения. Критическая скорость для слоя сферических частиц одинакового диаметра определяется из уравнения [3.15]:

\[
Re_{kp} = \frac{Ar}{1400 + 5,22 \sqrt{Ar}}.
\]
(3.49)

Это уравнение выведено для средней порозности неподвижного слоя \(\varepsilon_0 = 0,4 \) и дает погрешность ±20%. В нем

\[
Re_{kp} = \frac{\omega_{kp}d}{v_c}; \quad Ar = \frac{Re^3 (\rho - \rho_c)}{Fr \rho_c} = \frac{d^3 (\rho - \rho_c) g}{v_c^2 \rho_c} = \frac{d^3 \rho_c (\rho - \rho_c) g}{\mu^2},
\]

где \(\omega_{kp} \) — критическая скорость потока, отнесенная к полному сечению аппарата, м/с; \(d \) — диаметр частиц, м; \(\rho \) и \(\rho_c \) — плотность частиц и среды, кг/м³; \(v_c \) — кинематический коэффициент вязкости среды, м²/с; \(\mu \) — динамический коэффициент вязкости среды, Па·с.

Для газа \((\rho_c \ll \rho) \):

\[
Ar = \frac{d^3 \rho g}{v_c^2 \rho_0}.
\]

Для частиц неправильной формы критическую скорость потока можно определить с учетом фактора формы:

\[
\Psi = 0,207S/V^{2/3},
\]
(3.50)

где \(V \) — объем частицы, м³; \(S \) — поверхность частицы, м².

При этом принимается, что эквивалентный диаметр \(d_\Phi \) в м равен:

\[
d_\Phi = \Phi d_\omega,
\]

где \(d_\omega \) — диаметр шара (в м), объем которого равен объему частицы \((d_\omega = 1,24 \frac{S}{V}) \).

Для полидисперсного слоя, состоящего из частиц разного диаметра:

\[
d_\Phi = 1 \sum_{i=1}^{n} \frac{x_i}{d_i}.
\]
(3.51)

Здесь \(n \) — число фракций; \(d_i \) — средний ситовой размер \(i \)-й фракции (т. е. среднее между размерами проходного и непроходного сним); \(x_i \) — массовое содержание \(i \)-й фракции в долях единицы.

32. При увеличении скорости потока \(w \) происходит расширение (т. е. увеличение высоты и порозности) взвешенного слоя. Высота взвешенного слоя \(h \) (в м) связана с высотой неподвижного слоя \(h_0 \) соотношением:

\[
h = \frac{1 - \varepsilon_0}{1 - \varepsilon} h_0.
\]
(3.52)
Порозность взвешенного слоя может быть подсчитана по формуле:

\[
\varepsilon = \left(\frac{18\text{Re} + 0.36\text{Re}^2}{\text{Ar}} \right)^{0.21}.
\] \hspace{1cm} (3.53)

Отношение рабочей скорости газа, отнесенной к полному сечению аппарата, к критической скорости называют числом псевдоожижения:

\[
K_w = \frac{w}{w_{кр}}.
\] \hspace{1cm} (3.54)

Действительная скорость потока в свободном (живом) сечении между частицами слоя определяется выражением:

\[
w_д = w/\varepsilon.
\] \hspace{1cm} (3.55)

33. Скорость потока, при которой одиночная частица переходит в взвешенное состояние, называется скоростью витания. Она приближенно соответствует началу разрушения монодисперсного взвешенного слоя. При этом \(\varepsilon = 1\). Скорость витания может быть определена по формуле:

\[
Re_{вп} = \frac{\text{Ar}}{18 + 0.61 \sqrt[3]{\text{Ar}}},
\] \hspace{1cm} (3.56)

где

\[
Re_{вп} = \frac{w_{вп}}{d} \rho_c/\mu_c.
\]

34. На рис. 3.8 представлен график зависимости \(L \gamma = f(\text{Ar}, \varepsilon)\) для взвешенного (кипящего) слоя от \(\varepsilon_0 = 0.4\) до \(\varepsilon = 1.0\). График позволяет определять скорость потока \(w\), необходимую для достижения заданной порозности взвешенного слоя, состоящего из частиц известного диаметра \(d\), или решать обратную задачу.

35. Среднее расходное время пребывания \(\tau_0\) (в с) частиц твердого материала в аппарате со взвешенным слоем (одиночным):

\[
\tau_0 = \frac{M}{L}.
\] \hspace{1cm} (3.57)

Здесь \(M\) — масса материала, находящегося в слое, кг; \(L\) — расход твердого материала, кг/с.

Ввиду интенсивного перемешивания материала во взвешенном слое время пребывания в слое отдельных частиц значительно отличается от среднего расходного времени пребывания твердого материала в слое \(\tau_0\). Если известно среднее расходное время \(\tau_0\) и задано некоторое время \(t\) (например, продолжительность какого-либо процесса, проводимого во взвешенном слое), то доля \(x\) частиц, имеющих время пребывания в слое, не меньшее чем \(t\), можно определить по уравнению:

\[
x = e^{-t/\tau_0},
\] \hspace{1cm} (3.58)

где \(e = 2.718\).

Для получения более равномерного распределения частиц по времени пребывания применяют несколько последовательно расположенных взвешенных слоев. Доля \(x_n\) частиц материала,
Рис. 3.8. Зависимость критерия Ly от критерия Ar и чорозности ε слоя.
имеющих в многослойном аппарате время пребывания, не меньшем \(\tau \), для аппарата с \(n \) взвешенными слоями составит:

\[
x_n = \left[1 + \frac{\tau}{\tau_0} + \frac{1}{2!} \left(\frac{\tau}{\tau_0} \right)^2 + \cdots + \frac{1}{(n-1)!} \left(\frac{\tau}{\tau_0} \right)^{n-1} \right] e^{-\tau/\tau_0}. \tag{3.59}
\]

Перемешивание в жидкой среде

36. Критерии гидродинамического подобия для процесса перемешивания определяются следующим образом.

Критерий Рейнольдса (центробежный):

\[
Re_n = \frac{\rho nd^2}{\mu}. \tag{3.60}
\]

Критическое значение этого критерия: \(Re_n \) кр \(\approx 50 \).

Критерий мощности *:

\[
K_N = \frac{N}{\rho n^8 d^8}. \tag{3.61}
\]

Критерий Фруда (центробежный):

\[
Fr_n = n^2d/g. \tag{3.62}
\]

В этих критериях: \(N \) — мощность, потребляемая мешалкой, Bt; \(\rho \) — плотность жидкости, кг/м\(^3\); \(\mu \) — динамический коэффициент вязкости жидкости, Па·с; \(n \) — частота вращения мешалки, с\(^{-1}\); \(d \) — диаметр мешалки, м; \(g = 9,81 \) м/с\(^2\) — ускорение свободного падения.

37. Критериальное уравнение для расчета мощности, потребляемой мешалкой, в общенном виде:

\[
K_N = f(Re_n, Fr_n, \Gamma_D, \Gamma_b, \Gamma_{H_0}, \ldots).
\]

Обычно влиянием силы тяжести пренебрегают. Тогда

\[
K_N = \varphi(Re_n, \Gamma_D, \Gamma_b, \Gamma_{H_0}, \ldots),
\]

где \(\Gamma = D/d \); \(\Gamma_b = b/d \); \(\Gamma_{H_0} = H_0/d \), ..., — симплексы геометрического подобия, характеризующие конструкцию мешалки, влияние высоты слоя жидкости и другие геометрические факторы; \(d \) — диаметр мешалки, м; \(D \) — диаметр сосуда, м; \(b \) — ширина лопасти мешалки, м; \(H_0 \) — высота слоя жидкости, м.

Для геометрически подобных аппаратов с мешалками общепринятое критериальное уравнение принимает вид:

\[
K_N = c/Re_n^m, \tag{3.63}
\]

где \(c \) и \(m \) — постоянные величины (для данной конструкции мешалки и для определенного режима перемешивания).

Данные расхода энергии на перемешивание приведены в литературе [3.22]. Значения постоянных величин \(c \) и \(m \) в общем уравнении (3.63) для различных мешалок приведены в табл. XX1; на рис. V11I дана зависимость \(K_N = f(Re_n) \) для тех же мешалок.

* В литературе иногда называется центробежным критерием Эйлера и обозначается \(Eu_n \).
Приемы

Осаджение

Пример 3.1. Найти верхний предел (т. е. наибольший диаметр частиц) применимости формулы Стокса к частицам кварца плотностью 2650 кг/м³, осаждающимся в воде при 20 °C.

Решение. Формула Стокса строго применима при $\text{Ar} < 3,6$. Поэтому наибольшая частица кварца, осаждение которой может быть рассчитано по формуле Стокса, должна иметь диаметр:

$$
\frac{3}{8} \cdot \frac{3,6 \cdot 10^{-6}}{(2650 - 1000) \cdot 1000 \cdot 9,81} = 60 \cdot 10^{-6} \text{ м} = 60 \text{ мкм}.
$$

Пример 3.2. Найти скорость осаждения в воде частиц кварцевого песка шарообразной формы диаметром 0,9 мм, если плотность песка 2650 кг/м³, а температура воды 20 °C.

Решение. Определяем критерий Ar:

$$
\text{Ar} = \frac{d^3 (\rho - \rho_e) \rho_e g}{\mu_c^2} = \frac{0,9 \cdot 10^{-3} (2650 - 1000) \cdot 1000 \cdot 9,81}{1^2 \cdot 10^{-6}} = 1,18 \cdot 10^4,
$$

где для воды $\mu_c = 1 \cdot 10^{-3}$ Па·с (табл. VI).

По значению $\text{Ar} = 1,18 \cdot 10^4$ из рис. 3.1 находим $\text{Re} = 140$. Скорость осаждения частиц кварцевого песка шарообразной формы диаметром 0,9 мм определяем из выражения:

$$
\omega_{oe} = \frac{\text{Re} \mu_c}{\rho_c} = \frac{140 \cdot 1 \cdot 10^{-3}}{0,0009 \cdot 1000} = 0,15 \text{ м/с}.
$$

Пример 3.3. Определить размер наибольших шарообразных частиц мела, которые будут уноситься восходящим потоком воды, идущим со скоростью 0,5 м/с. Температура воды 10 °C, плотность мела 2710 кг/м³.

Решение. Определяем критерий Ly по формуле (3.4):

$$
Ly = \frac{\omega_{oe}^2 \rho_c}{\mu_c (\rho - \rho_c) g} = \frac{0,5 \cdot 1000^2 \cdot 10^3}{1,3 (2710 - 1000) \cdot 9,81} = 5,72 \cdot 10^8,
$$

где для воды при 10 °C $\mu_c = 1,3 \cdot 10^{-8}$ Па·с.

По найденному значению $Ly = 5,72 \cdot 10^8$ из рис. 3.1 находим $\text{Re} = 1750$; затем по формуле (3.5) определяем максимальный диаметр частиц мела, которые будут уноситься водой:

$$
\frac{d}{4} = \frac{\text{Re} \mu_c}{\omega_{oe} \rho_c} = \frac{1750 \cdot 1,3 \cdot 10^{-3}}{0,5 \cdot 1000} = 4,55 \cdot 10^{-3} \text{ м} = 4,55 \text{ мм}.
$$

Пример 3.4. Найти скорость осаждения в воде при 20 °C частицы свинцового блеска угловатой формы с $d_o = 1$ мм. Плотность свинцового блеска 7560 кг/м³.
Решение. Скорость осаждения частиц неправильной формы найдем из критерия Ly, предварительно определив значение критерия Ar:

$$Ar = \frac{\frac{d^2}{2}(\rho - \rho_c) \rho_c g}{\mu_c^2} = \frac{13 \cdot 10^{-2} (7560 - 1000) 10^3 \cdot 9.81}{12 \cdot 10^{-6}} = 6.44 \cdot 10^4,$$

где $\mu_c = 1 \cdot 10^{-8}$ Па·с (табл. VI).

По графику (рис. 3.1) находим для частиц угловой формы $Ly = 3,1 \cdot 10^2$.

Скорость осаждения по формуле (3.5а):

$$w_{oc} = \frac{3}{V} \frac{Ly \mu_c (\rho - \rho_c) g}{\rho_c^2} =$$

$$= \frac{3}{V} \frac{3,1 \cdot 10^2 \cdot 1 \cdot 10^{-8} (7560 - 1000) 9.81/1000^2}{0.271 \text{ м/с}}.$$

Пример 3.5. Определить размеры продолговатых частиц угла ($\rho_1 = 1400$ кг/м3) и плоских частиц сланца ($\rho_2 = 2200$ кг/м3), оседающих с одинаковой скоростью $w_{oc} = 0,1$ м/с в воде при 20 °C.

Решение. Размеры частиц d_9 следует рассчитать по формуле (3.7)

$$d_9 = \sqrt[3]{\frac{Ar \mu_c^2}{(\rho - \rho_c) \rho_c g}},$$

предварительно определив значение критерия Ar по критерiuu Ly из графика (рис. 3.1) для частиц соответствующей формы.

Для частиц продолговатой формы:

$$Ly_1 = \frac{w_{oc}^3 \rho_c^2}{\mu_c (\rho - \rho_c) g} = \frac{10^{-3} \cdot 10^6}{1 \cdot 10^{-8} \cdot 0.4 \cdot 10^3 \cdot 9.81} = 255,$$

где $\mu_c = 1 \cdot 10^{-8}$ Па·с (табл. VI); $\rho_c = 1000$ кг/м3.

Для частиц пластинчатой формы:

$$Ly_2 = \frac{w_{oc}^3 \rho_c^2}{\mu_c (\rho - \rho_c) g} = \frac{10^{-8} \cdot 10^6}{1 \cdot 10^{-3} \cdot 1.2 \cdot 10^3 \cdot 9.81} = 85.$$

Значению $Ly_1 = 255$ соответствует $Ar_1 = 9 \cdot 10^4$ для продолговатых частиц. Значению $Ly_2 = 85$ соответствует $Ar_2 = 7 \cdot 10^4$ для частиц пластинчатой формы.

Эквивалентный диаметр частиц угла:

$$d_{91} = \sqrt[3]{\frac{Ar_1 \mu_c^2}{(\rho_1 - \rho_c) \rho_c g}} = \sqrt[3]{\frac{9 \cdot 10^4 \cdot 1.2 \cdot 10^{-8}}{9.81 \cdot 0.4 \cdot 10^3 \cdot 10^3}} = 2,82 \cdot 10^{-3} \text{ м} = 2,82 \text{ мм.}$$

Эквивалентный диаметр частиц сланца:

$$d_{92} = \sqrt[3]{\frac{Ar_2 \mu_c^2}{(\rho_2 - \rho_c) \rho_c g}} = \sqrt[3]{\frac{7 \cdot 10^4 \cdot 1.2 \cdot 10^{-8}}{9.81 \cdot 1.2 \cdot 10^3 \cdot 10^3}} = 1,81 \cdot 10^{-3} \text{ м} = 1,81 \text{ мм.}$$
Пример 3.6. Какую высоту надо дать слою газа между полками пылевой камеры (рис. 3.9), чтобы осели частицы колчеданной пыли диаметром 8 мкм при расходе печеного газа 0,6 м³/с (при нормальных условиях)? Длина камеры 4,1 м, ширина 2,8 м, общая высота 4,2 м. Средняя температура газа в камере 427 °C. Вязкость газа при этой температуре 0,034·10⁻³ Па·с, плотность пыли 4000 кг/м³, плотность газа 0,5 кг/м³.

Решение. Определяем расход газа при заданных условиях:

\[V = 0,6 (273 + 427)/273 = 1,54 \text{ м³/с}. \]

Линейная скорость газа (пренебрегая толщиной полок):

\[\omega_t = 1,54/(2,8 \cdot 4,2) = 0,131 \text{ м/с}. \]

Время пребывания газа в камере:

\[\tau = L/\omega_t = 4,1/0,131 = 31,3 \text{ с}. \]

Теоретическая скорость осаждения шарообразных частиц (величиной \(\rho_e \) пренебрегаем) по формуле (3.1):

\[\omega_{oc} = \frac{1}{18} \frac{(8 \cdot 10^{-5})^2 \cdot 4000 \cdot 9,81}{0,034 \cdot 10^{-3}} = 0,0041 \text{ м/с}. \]

Действительную скорость осаждения принимаем равной 0,5 × 0,0041 = 0,002 м/с.

Находим расстояние между полками:

\[h = \omega_{oc} \tau = 0,002 \cdot 31,3 \approx 0,06 \text{ м} = 60 \text{ мм}. \]

Проверяем правильность применения формулы (3.1):

\[Re = \frac{\omega_{oc} d\rho_c}{\mu_c} = \frac{8 \cdot 10^{-5} \cdot 0,0041 \cdot 0,5}{0,034 \cdot 10^{-3}} = 0,00048. \]

Так как \(Re = 0,00048 < 0,2 \), то применение формулы Стокса допустимо.

Пример 3.7. Определить размер наименьших частиц, осаждающихся в газоходе квадратного сечения длиной 16 м и высотой 2 м при линейной скорости газа 0,5 м/с. Вязкость газа 0,03·10⁻³ Па·с, плотность газа 0,8 кг/м³, плотность частиц 4000 кг/м³.

Решение. Газ проходит канал в течение

\[\tau = 16/0,5 = 32 \text{ с}. \]
За это время успевают полностью осесть только те частицы, действительная скорость осаждения которых не меньше, чем

\[w_{oc} = \frac{2}{32} = 0,062 \text{ м/с.} \]

Определим диаметр шарообразных частиц, теоретическая скорость осаждения которых вдвое больше, т. е. равна 0,124 м/с.

Вычислим значение критерия Ly по формуле (3.4а):

\[Ly = \frac{w_{oc}^2 \rho_c}{\mu_c \rho g} = \frac{0,124 \cdot 8^2}{0,03 \cdot 10^{-3} \cdot 4000 \cdot 9,81} = 1,035 \cdot 10^{-3}. \]

По графику (рис. 3.1) находим значение Re = 0,14, откуда

\[d = \frac{Re \mu_c}{w_{oc} \rho_c} = \frac{0,14 \cdot 3 \cdot 10^{-2} \cdot 10^{-3}}{0,124 \cdot 8} = 4,24 \cdot 10^{-9} \text{ м} = 42,4 \text{ мкм.} \]

Пример 3.8. Определить диаметр отстойника (см. рис. 3.2) для непрерывного осаждения отмученного мела в воде. Производительность отстойника 80 т/ч начальной суспензии, содержащей 8% (масс.) CaCO₃. Диаметр наименьших частиц, подлежащих осаждению, 35 мкм. Температура суспензии 15 °C. Влажность шлама 70%. Плотность мела 2710 кг/м³.

Решение. Чтобы определить диаметр отстойника, надо вычислить необходимую площадь осаждения по формуле (3.9), для чего предварительно находят скорость осаждения:

\[w_{oc} = \frac{d^2 (\rho - \rho_c) g}{18 \mu_c} = \frac{3,5 \cdot 10^{-10} \cdot (2710 - 1000) \cdot 9,81}{18 \cdot 1,14 \cdot 10^{-3}} = 0,001 \text{ м/с,} \]

где \(\mu_c = 1,14 \cdot 10^{-3} \text{ Па·с (табл. VI).} \)

Проверим значение критерия Re:

\[Re = \frac{w_{oc} \rho_c}{\mu_c} = \frac{1 \cdot 10^{-3} \cdot 3,5 \cdot 10^{-5} \cdot 10^3}{1,14 \cdot 10^{-3}} = 0,0307 < 0,2. \]

Действительная скорость осаждения:

\[w'_{oc} = 0,5 \cdot 0,001 = 0,5 \cdot 10^{-3} \text{ м/с.} \]

Площадь отстойника:

\[F_{oc} = \frac{G_{ii} \left(1 - \frac{c_i}{c_{ii}}\right)}{3600 \rho_c w'_{oc}} = \frac{80 \cdot 10^3 \left(1 - \frac{8}{30}\right)}{3600 \cdot 10^3 \cdot 0,5 \cdot 10^{-3}} = 32,5 \text{ м².} \]

Диаметр отстойника:

\[D = \sqrt{32,5/0,785} = 6,4 \text{ м.} \]

Пример 3.9. Определить высоту отстойника (см. рис. 3.2), если известно, что для уплотнения суспензии в зоне сгущения необходимо 16 ч. Относительная плотность твердой фазы 2,6. Среднее разбавление в зоне сгущения Т : Ж = 1 : 1,5. Диаметр отстойника 10 м. Суточная производительность отстойника 24,2 т твердой фазы. Жидкая фаза — вода.
Решение. Находим относительную плотность суспензии в зоне сгущения по формуле (3.26), разделив ее на \(\rho \):

\[
\Delta_c = \frac{\Delta_{TB}(n+1)}{\Delta_{TB}n+1} = \frac{2.6 (1.5 + 1)}{2.6 \cdot 1.5 + 1} = 1.32,
\]

где \(n = \text{Ж} : T = 1.5 \).

Массовая концентрация суспензии в зоне сгущения:

\[
x = \frac{1}{1 + 1.5} = 0.4 \frac{\text{кг твердой фазы}}{\text{кг суспензии}}.
\]

Таким образом, 1 м³ сгущенной суспензии содержит твердой фазы:

\[
T = 1320 \cdot 0.4 = 530 \text{ кг}.
\]

По условию задачи, в течение суток на 1 м² осаждается твердой фазы:

\[
\frac{24.2}{0.785 \cdot 10^2} = 0.308 \text{ т/(м}^2\text{·сутки)}.
\]

Следовательно, в зоне сгущения за 16 ч пройдет 0,308 \(\frac{16}{24} = \frac{1}{3} \)

0,205 т твердой фазы на 1 м² площади осаждения.

Выше было найдено, что суспензия в зоне сгущения содержит 0,530 т твердой фазы на 1 м³; поэтому высота этой зоны:

\[
h_2 = 0.205/0.530 = 0.387 \text{ м}.
\]

Высота зоны питания принимается 0,45—0,75 м. Для разбавленной суспензии (T : Ж = 1 : 10) можно принять ее равной \(h_1 = 0.6 \text{ м} \).

Высота зоны отстойника, в которой вращаются гребки, зависит от наклона лопастей к дну отстойника. Примем ее равной 0,146 м на 1 м радиуса отстойника. Следовательно,

\[
h_3 = 0.146 \cdot 5 = 0.73 \text{ м}.
\]

Таким образом, общая высота отстойника:

\[
H = h_1 + h_2 + h_3 = 0.6 + 0.387 + 0.73 = 1.717 \text{ м} \approx 1.72 \text{ м}.
\]

Пример 3.10. Рассчитать циклон для выделения частиц сухого материала из воздуха, выходящего из распылительной сушилки, по следующим данным: наименьший размер частиц 80 мкм, расход воздуха 2000 кг/ч, температура 100 °C.

Решение. Для улавливания частиц материала размером 80 мкм выбираем циклон типа ЦН-15.

Принимая \(\Delta \rho/\rho_t = 740 \), диаметр циклона найдем по формуле

\[
D = \sqrt{\frac{V}{0.785 \omega_v}},
\]
предварительно определив условную скорость газа в цилиндрической части циклона \(\omega_c \) из уравнения, \(\Delta p/\rho_r = \xi_0 \omega_c^2/2 \), где \(\xi_0 = 160 \) (стр. 97):

\[\omega_c = \sqrt{740 \cdot 2/160} = 3,04 \text{ м/с}. \]

Плотность воздуха: \(\rho_r = 1,293 \) (273/373) = 0,95 кг/м³. Следовательно,

\[D = \sqrt{\frac{2000}{0,95 \cdot 3600 \cdot 0,785 \cdot 3,04}} = 0,496 \text{ м}. \]

Принимаем диаметр циклона равным 0,5 м.
Гидравлическое сопротивление циклона:

\[\Delta p_u = \xi_0 (\rho_u \omega_u^2)/2 = 160(0,95 \cdot 3,04^2)/2 = 703 \text{ Па, т. е. 72 мм вод. ст.} \]

Фильтрование

Пример 3.11. Вывести формулу (3.16), дающую зависимость между массой сухого осадка на 1 м³ фильтрата, плотностью фильтрата, концентрацией суспензии и влажностью осадка.

Решение. Уравнение материального баланса процесса фильтрования:

\[G_{\text{sух}} = G_{\Phi} + G_{\text{вл. ос}}, \]

где \(G_{\text{sух}} \), \(G_{\Phi} \) и \(G_{\text{вл. ос}} \) — масса суспензии, фильтрата и влажного осадка, соответственно.

Разделим это уравнение на \(G_{\text{sух}} \) — массу сухого вещества, содержащегося в суспензии:

\[\frac{G_{\text{sух}}}{G_{\text{sух}}} = \frac{G_{\Phi}}{G_{\text{sух}}} + \frac{G_{\text{вл. ос}}}{G_{\text{sух}}}. \]

(3.64)

Массу фильтрата заменим произведением объема фильтрата на его плотность:

\[G_{\Phi} = V_{\Phi} \rho. \]

Введем обозначения:

\[m = \frac{G_{\text{вл. ос}}}{G_{\text{sух}}} \frac{\text{кг влажного осадка}}{\text{кг сухого вещества}}; \]

\[x = \frac{G_{\text{sух}}}{G_{\text{sух}}} \frac{\text{кг сухого вещества}}{\text{кг суспензии}}; \]

\[c = \frac{G_{\text{sух}}}{V_{\Phi}} \frac{\text{кг сухого вещества}}{\text{м³ фильтрата}}. \]

Тогда уравнение (3.64) можно переписать так:

\[\frac{1}{x} = \frac{\rho}{c} + m, \]

115
откуда

\[c = \frac{\rho x}{1 - mx}. \]

Пример 3.12. Определить продолжительность фильтрования 10 дм³ жидкости через 1 м² фильтра, если при предварительном испытании фильтра с 1 м² было собрано фильтрата: 1 дм³ через 2,25 мин и 3 дм³ через 14,5 мин после начала фильтрования.

Решение. По опытным данным находим экспериментальные константы \(K \) и \(C \) в уравнении фильтрования:

\[V^2 + 2VC = Kt. \]

Для этого составляем два уравнения с двумя неизвестными:

\[1^2 + 2 \cdot 1 \cdot C = K \cdot 2,25; \quad 3^2 + 2 \cdot 3 \cdot C = K \cdot 14,5, \]

откуда \(K = 0,77 \text{дм}^3/(\text{м}^4 \cdot \text{мин}) \) и \(C = 0,37 \text{дм}^3/\text{м}^2 \).

Для определения истинной продолжительности фильтрования полученные значения констант и заданный объем фильтрата подставляем в уравнение фильтрования:

\[10^2 + 2 \cdot 10 \cdot 0,37 = 0,77t, \]

откуда \(t = 140 \text{мин} \) или \(2 \text{ч} \ 20 \text{мин} \).

Пример 3.13. В условиях предыдущего примера определить длительность промывки осадка, если количество промывной воды составляет 2,4 дм³/м² и промывка идет по линии основного фильтрата.

Решение. Пренебрегая различием в динамических коэффициентах вязкости фильтрата и промывной воды, будем считать, что скорость промывки равна скорости фильтрования в конечный момент.

Скорость фильтрования в конечный момент определим по уравнению (3.14) с использованием данных предыдущего примера:

\[\frac{dV}{dt} = \frac{K}{2 (V + C)} = \frac{0,77}{2 (10 + 0,37)} = 0,037 \text{дм}^3/(\text{м}^3 \cdot \text{мин}). \]

Продолжительность промывки:

\[\tau_{пр} = \frac{V_{пр}}{(dV/dt)_{пр}} = \frac{2,4}{0,037} = 65 \text{мин}. \]

Пример 3.14. Во время опытного фильтрования водной суспензии с содержанием 13,9% карбоната кальция при 20 °C на лабораторном фильтрпрессе с \(F = 0,1 \text{м}^2 \) и толщиной осадка 50 мм были получены данные, приведенные в табл. 3.2.

Определить константы фильтрования: \(K \) (в \text{м}³/\text{ч}) и \(C \) (в \text{м}³/\text{м}²).

Решение. Численные значения констант фильтрования найдем из уравнения (3.13):

\[V^2 + 2VC = Kt. \]

116
Таблица 3.2

<table>
<thead>
<tr>
<th>При избыточном давлении</th>
<th>Собрано фильтрата, дм³</th>
<th>Время от начала опыта, ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Па</td>
<td>кгс/см²</td>
<td></td>
</tr>
<tr>
<td>3,43·10⁴</td>
<td>0,35</td>
<td>2,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,80</td>
</tr>
<tr>
<td>10,3·10⁴</td>
<td>1,05</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,80</td>
</tr>
</tbody>
</table>

При избыточном давлении 3,43·10⁴ Па (0,35 кгс/см²) результаты опытов дают:

\[V_1 = \frac{2,92}{1000 - 0,1} = 2,92 \cdot 10^{-2} \text{ м}^3/\text{м}²; \quad \tau_1 = \frac{146}{3600} = 0,0405 \text{ ч}; \]

\[V_2 = \frac{7,8}{1000 - 0,1} = 7,8 \cdot 10^{-2} \text{ м}^3/\text{м}²; \quad \tau_2 = \frac{888}{3600} = 0,246 \text{ ч}. \]

Подставляем пересчитанные величины в уравнение (3.13) и решаем систему уравнений:

\[(2,92 \cdot 10^{-2})^2 + 2 \cdot 2,92 \cdot 10^{-2}C = K \cdot 0,0405;\]

\[(7,8 \cdot 10^{-2})^2 + 2 \cdot 7,8 \cdot 10^{-2}C = K \cdot 0,246,\]

откуда \(K = 278 \cdot 10^{-4} \text{ м}²/\text{ч}; \quad C = 4,7 \cdot 10^{-3} \text{ м}³/\text{м}². \)

Аналогичным образом вычисляем константы \(K \) и \(C \) для избыточного давления 10,3·10⁴ Па (1,05 кгс/см²). Получаем следующие значения констант фильтрования: \(K = 560 \cdot 10^{-4} \text{ м}²/\text{ч}; \quad C = 3,78 \times 10^{-2} \text{ м}³/\text{м}². \)

Пример 3.15. В условиях предыдущего примера рассчитать удельное сопротивление осадка карбоната кальция. Дополнительно известно, что влажность осадка при \(p_1 = 3,43 \cdot 10^4 \) Па (0,35 кгс/см²) равнялась 37%, а при \(p_2 = 10,3 \cdot 10^4 \) Па (1,05 кгс/см²) — 32% от массы влажного осадка.

Решение. Удельное сопротивление осадка рассчитываем по формуле (3.18).

Давление фильтрования \(\Delta p = p_1 = 3,43 \cdot 10^4 \) Па.

Плотность фильтрата \(\rho = 1000 \text{ кг/м}³. \)

Динамический коэффициент вязкости фильтрата при 20 °C:

\[\mu = \frac{1}{3600} \times 10^{-8} = 27,8 \cdot 10^{-8} \text{ кг/(м} \cdot \text{ч).} \]

Константа фильтрования (при давлении \(p_1 = 3,43 \cdot 10^4 \) Па) \(K = 278 \cdot 10^{-4} \text{ м}²/\text{ч}. \)

Массовая доля твердой фазы в суспензии \(x = 0,139. \)
Массовое отношение влажного осадка к сухому \(m = 1/(1-0.37) = 1,59. \)

Количество фильтрата на 1 кг суспензии \(1 - mx = 1 - 1,59\cdot0,139 = 0,779. \)

Найденные величины подставляем в формулу (3.18):

\[
\frac{r}{K\rho x} = \frac{2\Delta p \cdot (1 - mx)}{2,343 \cdot 10^4 \cdot 0,779} = \frac{2,343 \cdot 10^4 \cdot 0,779}{278 \cdot 10^{-4} \cdot 278 \cdot 10^{-5} \cdot 1000 \cdot 0,139} = 5 \cdot 10^{10} \frac{m}{	ext{кг сухого осадка}}.
\]

При давлении фильтрования \(10,3 \cdot 10^4 \text{ Па, т. е. } 1,05 \text{ кгс/см}^2, \) имеем:

\[
K = 560 \cdot 10^{-4} \text{ м}^2/\text{ч}; \quad m = \frac{1}{1-0,32} = 1,47;
\]

\[
1 - mx = 1 - 1,47 \cdot 0,139 = 0,795.
\]

Остальные величины имеют те же значения, что и при \(\rho_1 = 3,43 \cdot 10^4 \text{ Па, т. е. } 0,35 \text{ кгс/см}^2. \)

Новое удельное сопротивление осадка можно найти путем подстановки численных значений этих величин в формулу (3.18) или из соотношения:

\[
\frac{r_2}{r_1} = \frac{\Delta p_2 K_1 (1 - mx)_2}{\Delta p_1 K_2 (1 - mx)_1} = \frac{10,3 \cdot 10^4 \cdot 278 \cdot 10^{-4} \cdot 0,795}{3,43 \cdot 10^4 \cdot 560 \cdot 10^{-4} \cdot 0,779} = 1,52,
\]

откуда

\[
r_2 = 5 \cdot 10^{10} \cdot 1,52 = 7,6 \cdot 10^{10} \text{ м/кг сухого осадка}.
\]

Следовательно, при увеличении давления фильтрования в 3 раза удельное сопротивление осадка карбоната кальция увеличилось лишь на 52%.

Пример 3.16. Чему равно удельное сопротивление ткани при фильтровании суспензии карбоната кальция в условиях примеров 3.14 и 3.15?

Решение. Удельное сопротивление ткани (в м/м²) вычисляем по формуле (3.21):

\[
r_{тк} = \frac{Crp \rho x}{(1 - mx)}.
\]

При \(\rho_1 = 3,43 \cdot 10^4 \text{ Па, т. е. } 0,35 \text{ кгс/см}^2:

\[
r_{тк} = 4,7 \cdot 10^{-3} \cdot 5 \cdot 10^{10} \cdot 1000 \cdot 0,139 / 0,779 = 4,2 \cdot 10^{10} \text{ м/м}^2.
\]

При \(\rho_2 = 10,3 \cdot 10^4 \text{ Па, т. е. } 1,05 \text{ кгс/см}^2:

\[
r_{тк} = 3,78 \cdot 10^{-3} \cdot 7,6 \cdot 10^{10} \cdot 1000 \cdot 0,139 / 0,795 = 5 \cdot 10^{10} \text{ м/м}^2.
\]

При изменении давления в 3 раза удельное сопротивление ткани изменилось лишь на 19%.

Пример 3.17. Необходимо отфильтровать суспензию на рамном фильтрпресе и за 3 ч получить 6 м³ фильтрата. Опытное
фильтрование этой суспензии на лабораторном фильтрпрессе при том же давлении и той же толщине слоя осадка показало, что постоянные фильтрования, отнесенные к 1 м³ площади фильтра, имеют следующие значения: $K = 20,7 \cdot 10^{-4}$ м²/ч и $C = 1,45 \times 10^{-3}$ м³/м². Определить требуемые размеры фильтрпресса.

Решение. Находим по уравнению фильтрования (3.13) производительность 1 м² фильтрпресса:

$$V^2 + 2 \cdot 0,145 \cdot 10^{-2}V = 20,7 \cdot 10^{-4} \cdot 3,$$

откуда

$$V = -0,145 \cdot 10^{-2} + \sqrt{(0,145 \cdot 10^{-2})^2 + 62,1 \cdot 10^{-4}} =$$

$$= -0,145 \cdot 10^{-2} + 7,88 \cdot 10^{-2} = 7,73 \cdot 10^{-2}$$ м³/м²

за цикл фильтрования, т. е. за 3 ч.

Следовательно, для заданной производительности необходима поверхность фильтрования:

$$F = 6/0,0773 = 77,5$$ м².

По каталогу выбираем ближайший больший фильтрпресс с $F = 83$ м², имеющий 42 рамы размером 1000 × 1000 мм.

Примечание. Поверхность фильтрования можно определить также непосредственно из уравнения (3.13), составленного для всего фильтра с поверхностью F и производительностью V_P м³ фильтрата за цикл фильтрования,

$$V_P^2 + 2V_PFC = KF^2 \cdot t;$$

$$6^2 + 2 \cdot 6 \cdot 1,45 \cdot 10^{-3}F = 20,7 \cdot 10^{-4} \cdot 3F^2,$$

откуда $F = 77,4$ м².

Пример 3.18. На барабанный вакуум-фильтр непрерывного действия (рис. 3.10) подается 8,5 м³/ч водной суспензии, содержащей 17,6% твердой фазы. Желательная конечная влажность осадка 34%. Предполагаемый вакуум на заводе 600 мм рт. ст. Во время опытного фильтрования на лабораторной модели при вакууме 510 мм рт. ст. было установлено, что необходимая влажность осадка достигается за 32 с работы зоны фильтрования. При этом постоянные фильтрования, отнесенные к 1 м², оказались равными: $K = 11,2$ дм³/(м³·с) и $C = 6$ дм³/м³. Плотность суспензии 1120 кг/м³. Определить требуемую поверхность фильтра и частоту его вращения.

Решение. Пересчитаем постоянные фильтрования K для

Рис. 3.10 (к примеру 3.18).
вакуума 600 мм рт. ст., принимая приближенно, что K пропорционально Δp:

$$K/K' = 600/510 = 1,17,$$

откуда

$$K = 11,2 \cdot 1,17 = 13,1 \text{ дм}^3/(\text{м}^2 \cdot \text{с}).$$

Определяем удельную производительность зоны фильтрации из уравнения (3.13), приняв время фильтрации $\tau = 32$ с (по заданию):

$$V^2 + 2VC = K\tau; \quad V^2 + 2V \cdot 6 = 13,1 \cdot 32;$$

$$V = -6 + \sqrt{36 + 420} = -6 + 21,4 = 15,4 \text{ дм}^3/\text{м}^2 \text{ за } 32 \text{ с.}$$

Следовательно, удельная производительность зоны фильтрации в 1 с: $15,4/32 = 0,482 \text{ дм}^3/(\text{м}^2 \cdot \text{с}).$

Пересчитываем заданную производительность по суспензии на производительность по фильтрату.

При влажности осадка 34% массовое соотношение влажного и сухого осадка:

$$m = 1/(1 - 0,34) = 1,52.$$

Массовая доля твердой фазы в суспензии $x = 0,176$; расход суспензии $G_c = V_c\rho_c = 8,5 \cdot 1120 = 9500 \text{ кг/ч};$ масса влажного осадка $G_{oc} = G_c x m = 9500 \cdot 0,176 \cdot 1,52 = 2540 \text{ кг/ч};$ масса фильтрата $G_f = G_c - G_{oc} = 9500 - 2540 = 6960 \text{ кг/ч.}$ При плотности фильтрата $\rho = 1000 \text{ кг/м}^3$ объемный расход фильтрата составляет 6960 дм3/ч.

Таким образом, заданная производительность по фильтрату:

$$6960/3600 = 1,93 \text{ дм}^3/\text{с.}$$

Следовательно, необходимая поверхность в зоне фильтрования:

$$F_f = 1,93/0,482 = 4,0 \text{ м}^2.$$

Так как обычно в барабанных вакуум-фильтрах поверхность зоны фильтрования составляет $\sim 35\%$ от общей поверхности, то общая поверхность фильтра:

$$F = 4,0/0,35 = 11,43 \text{ м}^2.$$

По каталогу подбираем ближайший тип барабанного вакуум-фильтра с $F = 12 \text{ м}^2$. Диаметр фильтра $D = 2,1 \text{ м, длина фильтра } L = 1,8 \text{ м.}$

Частота вращения фильтра в 1 мин, необходимая для обеспечения заданного времени фильтрации $\tau = 32$ с, определяется из пропорции

$$32 - 0,35$$

$$60 - n,$$

* На самом деле это не совсем так — см. пример 3,14.
откуда \[n = 60 \cdot 0,35/32 = 0,655 \text{ об/мин.} \]

Пример 3.19. Сколько времени необходимо отмывать осадок на фильтрпрессе от NaCl, чтобы достигнуть концентрации 5 г/дм³, допустимой в промывной воде? Промывка ведется чистой водой. Интенсивность промывки 0,33 м³/(м²·ч). Толщина слоя осадка 35 мм. Константа промывки \(K = 520 \text{ см³/дм³}. \) В начальный момент промывки концентрация NaCl в промывной воде 143 г/дм³.

Р е ш е н и е. Воспользуемся уравнением (3.23), подставив в него заданные величины в соответствующих единицах измерения: \(\delta = 0,035 \text{ м}; \omega = 0,33 \text{ м³/(м²·ч)}; K = 520 \cdot 0,001 \text{ м³/м³}. \) Тогда
\[
\tau = \frac{2,3 \cdot 0,035}{520 \cdot 0,001 \cdot 0,33} (\lg 143 - \lg 5) = 0,683 \text{ ч} = 41 \text{ мин.}
\]

Пример 3.20. В условиях предыдущего примера рассчитать концентрацию NaCl в промывной воде через 50 мин после начала основного периода промывки.

Р е ш е н и е. Концентрацию соли в промывной воде найдем по формуле (3.22):
\[
C_2 = 143e^{-\frac{520 \cdot 0,001 \cdot 0,33 \cdot 50}{0,035 \cdot 60}} = 143e^{-4,08}.
\]

Логарифмируя это выражение, получаем:
\[
\lg C_2 = \lg 143 - \frac{4,08}{2,3} = 2,156 - 1,75 = 0,406.
\]

Следовательно, \(C_2 = 2,53 \text{ г/дм³}. \)

Центрифугирование

Пример 3.21. Определить технологический тип и наметить конструкцию центрифуги для отделения поташа от маточного раствора, исходя из того, что концентрация твердого вещества в суспензии составляет 75%; для осадка (крystalлического) требуется остаточная влажность 3%; промывка осуществляется водой, отбелька — паром, как маточный раствор, так и осадок имеют щелочную реакцию.

Процесс разделения следует механизировать, так как центрифуга должна обеспечить большую производительность.

Р е ш е н и е. Для разделения системы жидкость — твердое тело в случае грубых суспензий пригодны центрифуги технологического типа 1-а.

Согласно заданию, процесс должен быть механизирован. Этому заданию отвечают центрифуги полуценпрерывного (класс Б) и не-прерывного (класс В) действия. Учитывая необходимость промывки осадка водой и отбельки паром, останавливаемся на центрифугах полуценпрерывного действия. Механизация процесса может быть обеспечена путем автоматизации управления. К классу Б
относятся две конструктивные группы центрифуг: горизонтальные и вертикальные. Из числа центрифуг полунепрерывного действия получили наибольшее распространение горизонтальные центрифуги, поэтому останавливаем свой выбор на центрифуге горизонтального типа.

Пример 3.22. Центрифуга периодического действия имеет барабан с внутренним диаметром 1200 мм, высотой 550 мм, толщиной стенок 10 мм и массой 120 кг. Число отверстий в стенке барабана по вертикали 12, диаметр отверстий 5 мм. На барабан надеты три стальных обруча сечением 15 × 30 мм² каждый. Материал барабана — сталь с временным сопротивлением на разрыв 4500 кгс/см². Масса загрузки 400 кг, толщина слоя 200 мм. Найти предельно допустимую частоту вращения центрифуги, если запас прочности не должен быть менее 5.

Решение. Для данной стали допускаемое напряжение на разрыв:

\[K_z = 4500 \cdot 9,81 \cdot 10^4/5 = 8,83 \cdot 10^7 \text{ Па, или } 900 \text{ кгс/см}^2. \]

Площадь сечения стенки барабана и обручей за вычетом отверстий:

\[l = 55.1 - 12.1 \cdot 0,5 + 3 \cdot 3.1.5 = 62.5 \text{ см}^2 = 6,25 \cdot 10^{-3} \text{ м}^2. \]

Из формулы (3.40) следует, что максимально допустимая центробежная сила:

\[C_1 + C_2 = 8,83 \cdot 10^7 \cdot 2 \cdot 6,25 \cdot 10^{-3} = 1,1 \cdot 10^8 \text{ Н.} \]

Расстояние от центра тяжести полукольца стенки барабана до оси вращения находим по формуле (3.40а):

\[R_3 = \frac{4}{3.3,14} \left(\frac{0,61^3 - 0,63^3}{0,61^2 - 0,62} \right) = 0,387 \text{ м.} \]

Центробежная сила, развиваемая половиной барабана, согласно уравнению (3.28):

\[C_1 = 0,011 \cdot 60 \cdot 0,387n^2 = 0,253n^2 \text{ Н.} \]

Расстояние от центра тяжести полукольца загрузки до оси вращения:

\[R_3 = \frac{4}{3.3,14} \left(\frac{0,63^3 - 0,43^3}{0,64^2 - 0,44} \right) = 0,32 \text{ м.} \]

Центробежная сила, развиваемая полукольцом загрузки:

\[C_2 = 0,011 \cdot 200 \cdot 0,32n^2 = 0,697n^2 \text{ Н.} \]

Общая центробежная сила:

\[C_1 + C_2 = 0,253n^2 + 0,697n^2 = 0,950n^2 \text{ Н.} \]

Выше было найдено, что центробежная сила не должна превышать 1,1 \cdot 10^6 \text{ Н. Следовательно, максимально допустимая частота вращения центрифуги:}

\[n = \sqrt{1,1 \cdot 10^6/0,950} = 1070 \text{ об/мин } = 17,8 \text{ об/с.} \]
Пример 3.23. Определить часовую производительность (по пита- танию) автоматической осадительной центрифуги АОГ-800 при работе ее на водной суспензии гидроксида магния. Плотность частиц \(\rho = 2525 \text{ кг/м}^3 \). Температура суспензии 30 \(^\circ\)С. Наимень- ший диаметр частиц 3 мкм. Характеристика центрифуги: диа- метр барабана 800 мм; длина барабана 400 мм; диаметр борта 570 мм; частота вращения 1200 об/мин. Цикл работы центрифуги составляет 20 мин; из них 18 мин — подача суспензии, 2 мин — разгрузка осадка.

Решение. Производительность определяем по формуле (3.42):

\[
V_q = 25,3 \eta Ln^2 R_0^2 \omega_{oc} k.
\]

Скорость осаждения частиц находим по формуле Стокса:

\[
\omega_{oc} = \frac{d^2 (\rho - \rho_c) g}{18 \mu_c} = \frac{3^2 (2525 - 1000) 9,81}{10^{12} \cdot 18 \cdot 0,8 \cdot 10^{-3}} = 0,935 \cdot 10^{-5} \text{ м/с.}
\]

Динамический коэффициент вязкости воды при 30 \(^\circ\)С \(\mu_c = 0,8 \cdot 10^{-3} \text{ Па} \cdot \text{с.} \)

Определяем скорость осаждения под действием центробежной силы:

\[
w = \omega_{oc} \frac{R_0 n^2}{900} = 0,935 \cdot 10^{-5} \cdot \frac{925 \cdot 1200^2}{900} = 4,26 \cdot 10^{-3} \text{ м/с.}
\]

Проверяем режим осаждения:

\[
Re = \frac{w d \rho_c}{\mu_c} = \frac{4,26 \cdot 10^{-3} \cdot 3 \cdot 10^{-6} \cdot 10^3}{0,8 \cdot 10^{-3}} = 1,6 \cdot 10^{-2},
\]

т. е. режим ламинарный.

Далее находим:

\[
k = 18/20 = 0,9.
\]

Производительность центрифуги, приимая \(\eta = 0,45: \)

\[
V_q = 25,3 \cdot 0,45 \cdot 0,4 \cdot 1200^2 \cdot 0,285^2 \cdot 0,935 \cdot 10^{-5} \cdot 0,9 = 4,46 \text{ м}^3/\text{ч.}
\]

Пример 3.24. Определить, какую производительность может обеспечить трубчатая сверхцентрифуга СГО-150 с трехлопастной крыльчаткой, работающая на осветлении минерального масла. Плотность масла \(\rho_o = 900 \text{ кг/м}^3 \). Динамический коэффициент вязкости масла при температуре центрифугирования 3 \cdot 10^-3 \text{ Па} \cdot \text{с.}

Плотность твердых частиц \(\rho = 1400 \text{ кг/м}^3 \). Диаметр частиц 1 мкм. Техническая характеристика центрифуги: внутренний диаметр барабана 150 мм, диаметр сливного порога 50 мм, длина барабана 750 мм, частота вращения 13 000 об/мин.

Решение. Производительность определяем по формуле (3.43).
Так как частицы очень малы, то режим осаждения их будет, вероятно, ламинарным. Воспользуемся формулой Стокса с последующей проверкой режима осаждения:

\[\omega_{oc} = \frac{d^2 (\rho - \rho_c) g}{18 \mu_c} = \frac{12 (1400 - 900) \cdot 9.81}{10^{12} \cdot 18 \cdot 3 \cdot 10^{-3}} = 9.06 \cdot 10^{-8} \ \text{м/с}. \]

Скорость осаждения под действием центробежной силы:

\[\omega = \omega_{oc} f = 9.06 \cdot 10^{-8} \cdot 4700 = 4.26 \cdot 10^{-4} \ \text{м/с}. \]

Здесь

\[f = n^2 R_0 / 900 = 13^2 \cdot 10^6 \cdot 0.025 / 900 = 4700. \]

Проверяем режим осаждения:

\[\text{Re} = \frac{\omega d \rho_c}{\mu_c} = \frac{4.26 \cdot 1.900}{10^4 \cdot 10^8 \cdot 3 \cdot 10^{-3}} = 1.42 \]

Найдем полезный объем барабана центрифуги:

\[V_ж = FL = 0.785 (D^2 - D_0^2) L = 0.785 (0.15^2 - 0.05^2) 0.75 = 0.0118 \ \text{м}^3. \]

Глубина потока в барабане:

\[h = \frac{D - D_0}{2} = \frac{0.15 - 0.05}{2} = 0.05 \ \text{м}. \]

Тогда

\[V \leq \frac{\omega V_ж}{h} 3600 = \frac{4.26 \cdot 0.0118}{10^4 \cdot 0.05} 3600 = 0.368 \ \text{м}^3/ч. \]

Проверяем режим потока в барабане центрифуги:

\[\text{Re}_{пот} = \frac{\omega_{pot} d_0 \rho_c}{\mu}; \]

\[\omega_{pot} = \frac{V}{F} = \frac{1.05}{10^4 \cdot 0.0157} = 0.0067 \ \text{м/с}; \]

\[V = \frac{0.368}{3600} = 1.05 \ \text{м}^3/с; \]

\[F = 0.785 (D^2 - D_0^2) = 0.785 (0.15^2 - 0.05^2) = 0.0157 \ \text{м}^2. \]

Для центрифуги с трехлопастной крыльчаткой:

\[d_\theta = 4 \frac{F}{11} = \frac{4 \pi (D^2 - D_0^2)}{4 (\pi D + 6h)} = \frac{\pi (D^2 - D_0^2)}{\pi D + 6h} = \frac{3.14 (0.15^2 - 0.05^2)}{3.14 \cdot 0.15 + 6 \cdot 0.05} = 0.0815 \ \text{м}; \]

\[\text{Re}_{пот} = \frac{0.0067 \cdot 0.0815 \cdot 900}{3 \cdot 10^{-3}} = 164 < 350, \]

т. е. режим ламинарный.

Пример 3.25. Выбрать тип фильтрующего аппарата для геля кремниевой кислоты и определить необходимое число аппаратов на основании следующих данных: 1) начальная концентрация твердой фазы в суспензии 4,7 %, относительная плотность суспензии 1,1; 2) суточное задание 9 т влажного осадка; 3) осадок должен иметь наименьшую влажность, так как в дальнейшем идет на сушку (в вакуум-сушилку); 4) осадок аморфный, плохо фильтрующийся.

124
<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Относный фильтр</th>
<th>Центрифуга</th>
</tr>
</thead>
<tbody>
<tr>
<td>Площадь фильтрования, м²</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Толщина слоя осадка, мм</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Продолжительность:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>фильтрования</td>
<td>1 ч</td>
<td>45 мин</td>
</tr>
<tr>
<td>промывки щелочью и водой</td>
<td>2 ч</td>
<td>33 мин</td>
</tr>
<tr>
<td>общая</td>
<td>3 ч</td>
<td>1,3 ч</td>
</tr>
<tr>
<td>Профильтровано суспензии, дм³</td>
<td>170</td>
<td>108</td>
</tr>
<tr>
<td>Остаточная влажность осадка, %</td>
<td>85</td>
<td>78</td>
</tr>
<tr>
<td>Вакуум, мм рт. ст.</td>
<td>400</td>
<td>—</td>
</tr>
</tbody>
</table>

Предварительные опыты фильтрования геля на отсосном фильтре (нутч-фильтр) и на центрифуге дали результаты, приведенные в табл. 3.3.

Барабан центрифуги имел \(D = 400 \) мм, \(H = 250 \) мм, \(n = 800 \) об/мин.

Решение и задача. 1. Определение давления фильтрования.

Относный фильтр

\[\Delta p = \frac{400}{760} = 0,525 \text{ кгс/см}^2 = 5,15 \cdot 10^4 \text{ Па.} \]

Центрифуга

При коэффициенте заполнения барабана центрифуги во время ее работы \(\varphi = 0,5 \) имеем объем суспензии (рабочий объем барабана):

\[V_c = 0,785D^2H\varphi = 0,785 \cdot 0,4^2 \cdot 0,25 \cdot 0,5 = 0,0157 \text{ м}^3. \]

Давление фильтрования при центрифугировании определяем по формуле (3.29):

\[\Delta p = \frac{\pi^2 MRn^2}{900F} = \frac{0,011MRn^2}{F} = \frac{0,011 \cdot 0,0157 \cdot 1100 \cdot 0,2 \cdot 800^2}{0,3} = 8,1 \cdot 10^4 \text{ Па, или 0,83 кгс/см}^2. \]

Следовательно, давление при центрифугировании было в полтора раза больше, чем при фильтровании на отсосном фильтре.

2. Определение удельной производительности.

Относный фильтр

Профильтировано 170 дм³ суспензии с начальной концентрацией 4,7 %, т. е. собрано геля, считая на сухое вещество:

\[G = 0,170 \cdot 1100 \cdot 0,047 = 8,8 \text{ кг.} \]

Продолжительность всей операции 3 ч (без учета времени на разгрузку), следовательно, удельная производительность:

\[\frac{G}{F\tau} = \frac{8,8}{3,1} = 2,94 \text{ кг сухого геля/(м}^2 \cdot \text{ч)}. \]

Считая на влажный гель (при влажности 85 %):

\[2,94/0,15 = 19,5 \text{ влажного геля/(м}^2 \cdot \text{ч).} \]
Центрифуга
Профильтировано 108 дм³ суспензии, следовательно, получено осадка, считая на сухое вещество:

\[G = 0,108 \times 1100 \times 0,047 = 5,54 \text{ кг.} \]

Соответственно, удельная производительность:

\[\frac{G}{F_\tau} = \frac{5,54}{0,3 \times 1,3} = 14,3 \text{ кг сухого геля/(м²·ч).} \]

Считая на влажный гель (при влажности 78%):

\[14,3 \times 0,22 = 65 \text{ кг влажного геля/(м²·ч).} \]

3. Сопоставим, насколько больше надо удалить воды при сушке влажного геля после отсасного фильтра по сравнению с гелем, отжатым на центрифуге.

Влажность осадка на отсасном фильтре 85%, а на центрифуге 78%, следовательно, центрифуга удаляет воды больше, чем отсасный фильтр, на 2120 кг:

\[\frac{1000}{0,15} - \frac{1000}{0,22} = 2120\frac{\text{кг воды}}{\text{кг сухого геля}}. \]

Сопоставляя опытные и расчетные данные по фильтрованию геля, можно констатировать следующее.

Центрифуга, работающая с давлением фильтрования в 0,83/0,525 = 1,6 раза большим и при толщине слоя осадка в 2 раза меньше, чем в случае отсасного фильтра, дает производительность в 14,3/2,94 ≈ 5 раз большую, чем отсасный фильтр (считая на сухой гель; в пересчете на влажный осадок производительность центрифуги больше в 65/19,5 = 3,3 раза).

Центрифуга, по сравнению с отсасным фильтром, дает меньшую остаточную влажность и тем самым облегчает работу сушильки, освобождая ее от испарения 2,12 т воды (считая на 1 т сухого геля).

При суточной производительности 9 т геля с влажностью 78% и удельном расходе пара на сушку, равном 1,5 кг/кг испаренной влаги, экономия пара за сутки составит:

\[D_n = 9 \times 0,22 \times 2,12 \times 1,5 = 6,3 \text{ т.} \]

Большая удельная производительность центрифуги, меньшая остаточная влажность осадка и, следовательно, существенная экономия пара при сушке геля заставляют в данном случае отдать предпочтение центрифуге, несмотря на ее более высокую стоимость.

4. Определим ориентировочно число промышленных центрифуг, необходимых для выполнения суточного задания (9 т влажного геля).

При таком сравнительно большом задании целесообразно остановиться на центрифуге полунепрерывного действия с механической выгрузкой осадка и автоматическим управлением. По ката-
логу выбираем горизонтальную центрифугу со следующей характеристикой: \(D = 1600 \text{ мм}, \ H = 700 \text{ мм}, \ n = 500 \text{ об/мин}, \) полезный объем 500 дм³.

Поверхность фильтрования этой центрифуги:

\[F = 3,14 \cdot 1,6 \cdot 0,7 = 3,5 \text{ м²}. \]

Развиваемое давление фильтрования по формуле (3.29):

\[\Delta \rho = 0,011 \cdot 0,5 \cdot 1100 \cdot 0,8 \cdot 500^2 / 3,5 = 34,6 \cdot 10^4 \text{ Па, или 3,5 кгс/см²}. \]

Таким образом, промышленная центрифуга развивает давление фильтрования в 3,5/0,83 = 4 раза больше, чем опытная.

Ориентировочно производительность фильтров пропорциональна \(\sqrt{\Delta \rho} \), следовательно, можно ожидать увеличения удельной производительности центрифуги почти в 2 раза, т. е. до 65·2 = 130 кг влажного геля/(м²·ч).

Так как фильтрование и промывка осадка занимают около 75% общего времени работы центрифуги полунепрерывного действия, то средняя часовая производительность ее равна 130·0,75 = 97 кг/(м²·ч).

Следовательно, суточная производительность одной центрифуги, принимая для нее 20 рабочих часов в сутки, составит 97 × 3,5·20 = 6800 кг влажного осадка.

Для обеспечения всей заданной суточной производительности необходимо установить 9000/6800 = 1,32, т. е. две центрифуги, а с резервом — три.

Взвешенный слой

Пример 3.26. В аппарате имеется взвешенный слой силикагеля, ситовой состав которого следующий:

<table>
<thead>
<tr>
<th>Фракция, мм</th>
<th>2,0 + 1,5</th>
<th>1,5 + 1,0</th>
<th>1,0 + 0,5</th>
<th>0,5 + 0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание, % (масс.)</td>
<td>43</td>
<td>28</td>
<td>17</td>
<td>12</td>
</tr>
</tbody>
</table>

Насыпная плотность силикагеля \(\rho_{нас} = 650 \text{ кг/м³}, \) плотность частиц \(\rho = 1100 \text{ кг/м³}. \) Температура воздуха 150 °С. Число псевдоожжения \(K = 1,6. \)

Определить критическую, рабочую и действительную (в свободном сечении между частицами) скорость воздуха.

Решение. Подсчитываем величину критерия \(\text{Ag} \) и по рис. 3.8 находим соответствующее значение \(L_{Y_{кр}}. \)

С этой целью определяем эквивалентный диаметр частиц силикагеля.

Среднечастотные диаметры фракций:

\[d_1 = \frac{2,0 + 1,5}{2} = 1,75 \text{ мм}; \ d_2 = \frac{1,5 + 1,0}{2} = 1,25 \text{ мм}; \]
\[d_3 = \frac{1,0 + 0,5}{2} = 0,75 \text{ мм}; \ d_4 = \frac{0,5 + 0,25}{2} = 0,37 \text{ мм}. \]
Тогда эквивалентный диаметр по формуле (3.51):

$$d_3 = \sum \frac{1}{d_i} = \frac{1}{0,43 + 0,28 + 0,17 + 0,12} \approx 1,0 \text{ мм.}$$

Динамический коэффициент вязкости воздуха при 150 °C (см. рис. VI): $\mu = 0,024 \cdot 10^{-3}$ Па·с.
Плотность воздуха:

$$\rho = 1,293 \frac{273}{273 + 150} = 0,835 \text{ кг/м}^3.$$

Следовательно,

$$Re = \frac{d_3 \rho c_{lg}}{\mu_c} = \frac{13 \cdot 10^{-8} \cdot 1,1 \cdot 10^3 \cdot 0,835 \cdot 9,81}{2,4 \cdot 10^{-10}} = 1,565 \cdot 10^4.$$

Значению $Re = 1,565 \cdot 10^4$ соответствует $Ly_{kr} = 3 \cdot 10^{-2}$. Отсюда

$$w_{kr} = \sqrt[3]{\frac{L_y_{kr} \mu_c \rho}{\rho_c^2}} = \sqrt[3]{\frac{3 \cdot 10^{-2} \cdot 0,024 \cdot 10^{-3} \cdot 1,1 \cdot 10^3 \cdot 9,81}{0,835^2}} = 0,224 \text{ м/с.}$$

Определяем рабочую скорость воздуха:

$$w = K_w w_{kr} = 1,6 \cdot 0,224 = 0,358 \text{ м/с.}$$

Найдем порозность взвешенного слоя. При $K_w = 1,6$:

$$Ly = K_w^3 L_y_{kr} = 1,6^3 \cdot 3 \cdot 10^{-2} = 1,23 \cdot 10^{-1}.$$

По рис. 3.8 при $Ly = 1,23 \cdot 10^{-1}$ и $Re = 1,565 \cdot 10^4$ имеем $\varepsilon = 0,47$.
Действительная скорость воздуха в свободном сечении слоя:

$$w_d = w/\varepsilon = 0,358/0,47 = 0,762 \text{ м/с.}$$

Пример 3.27. По данным предыдущего примера определить размеры и гидравлическое сопротивление аппарата. Производительность 2,5 т/ч силикагеля при среднем времени пребывания его в аппарате $\tau_0 = 10$ мин. Расход воздуха в рабочих условиях 4300 м³/ч. Живое сечение решетки 0,015, диаметр отверстий 0,8 мм, толщина решетки 2 мм.

Решение. Определяем диаметр аппарата. Секундный расход воздуха:

$$V = 4300/3600 = 1,195 \text{ м}^3/\text{с.}$$

Площадь сечения аппарата:

$$S = V/w = 1,195/0,358 = 3,34 \text{ м}^2.$$

Диаметр аппарата:

$$D = \sqrt{4S/\pi} = \sqrt{4 \cdot 3,34/3,14} = 2,06 \text{ м.}$$

Определяем высоту слоя в аппарате. Масса силикагеля в аппарате:

$$M = L \tau_0 = 2500 \cdot 10/60 = 417 \text{ кг.}$$

128
Объем неподвижного слоя силикагеля:

\[V_0 = M/\rho_{нaс} = 417/650 = 0,642 \text{ м}^3. \]

Высота неподвижного слоя:

\[h_0 = V_0/S = 0,642/3,34 = 0,192 \text{ м.} \]

Порозность неподвижного слоя:

\[\varepsilon_0 = 1 - (\rho_{нaс}/\rho) = 1 - (650/1100) = 0,41. \]

Высота взвешенного слоя при \(K_w = 1,6: \)

\[h = \frac{1 - \varepsilon_0}{1 - \varepsilon} h_0 = \frac{1 - 0,41}{1 - 0,47} 0,192 = 0,214 \text{ м.} \]

Рассчитаем гидравлическое сопротивление аппарата. Сопротивление слоя:

\[\Delta p_{сл} = \rho (1 - \varepsilon_0) gh_0 = 1100 (1 - 0,41) 9,81 \cdot 0,192 = 1200 \text{ Па.} \]

Скорость воздуха в отверстиях решетки при живом сечении \(\Phi = 0,015: \)

\[\omega_0 = \omega/\Phi = 0,358/0,015 = 23,9 \text{ м/с.} \]

Диаметр отверстий решетки \(d_0 = 0,0008 \text{ м, толщина решетки } \delta = 0,002 \text{ м. При } d_0/\delta = 0,4 \text{ по рис. 3.7 находим } C = 0,63. \]

Сопротивление решетки:

\[\Delta p_{реш} = 0,503 \cdot 23,9^2 \cdot 0,835 (1 - 0,015^2)/0,63^2 = 605 \text{ Па.} \]

Сопротивление аппарата:

\[\Delta p = \Delta p_{сл} + \Delta p_{реш} = 1200 + 605 = 1805 \text{ Па. т. е. 184 мм вод. ст.} \]

Пример 3.28. Определить диаметр шарообразных частиц кварцевого песка плотностью 2640 кг/м³, которые начнут переходить во взвешенное состояние при скорости потока воздуха 1 м/с и температуре 20 °C.

Решение. Диаметр шарообразных частиц песка определяем по критерию \(L_y_{кр}: \)

\[L_y_{кр} = \frac{\omega_0^2 \rho_с^2}{\mu \varphi} = \frac{13 \cdot 1,205^2}{0,018 \cdot 9,81 \cdot 2640 \cdot 10^{-3}} = 3,14, \]

где \(\rho_с = 1,293 (273/293) = 1,205 \text{ кг/м}^3; \ \mu = 0,018 \cdot 10^{-3} \text{ Па} \cdot \text{с.} \)

Значению \(L_y_{кр} = 3,14 \) соответствует, по рис. 3.8, \(\text{Ag} = 9 \cdot 10^5. \)

Искомый диаметр частиц песка:

\[d = \sqrt[3]{\frac{\text{Ag} \mu_с^2}{\rho \varphi e_г}} = \sqrt[3]{\frac{9 \cdot 10^5 \cdot 1,28 \cdot 10^{-4} \cdot 10^{-6}}{2640 \cdot 1,205 \cdot 9,81}} = 0,0021 \text{ м = 2,1 мм.} \]

Пример 3.29. Во взвешенном слое содержится 1000 кг твердого материала; расход материала через слой (скорость ввода и вывода частиц) составляет 4000 кг/ч. Определить: 1) какая доля частиц будет находиться в слое в течение времени, большего чем среднее расходное время пребывания материала в слое; 2) сколько таких взвешенных слоев необходимо соединить последовательно, чтобы
доля частиц, находящихся в аппарате в течение времени, меньшего чем среднее расходное время пребывания материала в одном слое, не превышала 10%.

Решение. Вычисляем среднее расходное время пребывания материала в одном слое. При \(M = 1000 \) кг, \(L = 4000 \) кг/ч

\[
\tau_0 = \frac{M}{L} = \frac{1000}{4000} = \frac{1}{4} \text{ ч} = 900 \text{ с.}
\]

Определяем долю материала, находящегося в одном взвешенном слое в течение времени \(\tau \gg \tau_0 \):

\[
x_1 = e^{-\tau/\tau_0} = e^{-900/900} = e^{-1} = 0,368.
\]

Таким образом, только 37 % материала находится в слое больше 15 мин, и, следовательно, для материала, находящегося в слое, менее 15 мин, составит:

\[
1 - x_1 = 0,63, \text{ т. е. 63%}.
\]

Для того чтобы найти число взвешенных слоев, которые должны быть соединены последовательно, определим по формуле (3.59) для аппарата с двумя, тремя и т. д. слоями долю материала, время пребывания которой в слоях меньше \(\tau_0 \).

а) Для двухслойного аппарата:

\[
x_2 = \left(1 + \frac{\tau}{\tau_0} \right) e^{-\tau/\tau_0} = \left(1 + \frac{900}{900} \right) e^{-900/900} = 2e^{-1} = \frac{2}{2,718} = 0,736;
\]

\[
1 - x_2 = 0,264.
\]

Следовательно, в аппарате с двумя последовательно соединенными взвешенными слоями 26 % материала будет находиться в слоях меньше 15 мин.

б) Для трехслойного аппарата:

\[
x_3 = \left[1 + \frac{\tau}{\tau_0} + \frac{1}{2!} \left(\frac{\tau}{\tau_0} \right)^2 \right] e^{-\tau/\tau_0} = \\
\left[1 + \frac{900}{900} + \frac{1}{2!} \left(\frac{900}{900} \right)^2 \right] e^{-900/900} = \frac{2,5}{2,718} = 0,92;
\]

\[
1 - x_3 = 0,08.
\]

Таким образом, в аппарате с тремя слоями только 8 % материала будет находиться в слоях менее 15 мин. Следовательно, трехслойный аппарат удовлетворяет требуемым условиям. Среднее расходное время пребывания материала в трехслойном аппарате составит:

\[
\tau_{ср} = 3M/L = \frac{3000}{4000} = \frac{3}{4} \text{ ч} = 45 \text{ мин.}
\]

Сравним этот трехслойный аппарат с таким однослоиным, в котором количество материала в слое такое же, как и во всех слоях трехслойного (3000 кг). Среднее расходное время пребывания твердого материала в таком однослоином аппарате также составит:

\[
\tau_{ср} = \frac{3000}{4000} = \frac{3}{4} \text{ ч} = 45 \text{ мин.}
\]
Но доля материала, находящегося в слое менее 15 мин, будет уже больше:
$$1 - e^{-t/\tau^*} = 1 - e^{-15/45} = 0,285,$$ т. е. 28,5 %.

Отсюда видно преимущество секционированного (трехслойного) аппарата.

Перемешивание в жидкой среде

Пример 3.30. Смесь кислот (плотность 1600 кг/м³, динамический коэффициент вязкости 2·10⁻² Па·с) приготавливают в аппарате без перегородок (диаметр 1200 мм, высота 1500 мм), заполненном на 0,75 объема. Исходные кислоты перемешивают пропеллерной мешалкой с частотой вращения 3,5 об/с (рис. 3.11). Определить требуемую установочную мощность электродвигателя.

Решение. Находим диаметр нормализованной мешалки:
$$d = D/3 = 1,2/3 = 0,4 \text{ м.}$$

Определяем режим перемешивания по формуле (3.60):
$$Re_\text{ц} = \frac{\rho nd^3}{\mu} = \frac{1600 \cdot 3,5 \cdot 0,4^3}{20 \cdot 10^{-3}} = 44 800.$$

Режим — турбулентный.

Определяем значение критерия мощности по графику (рис. VII):
$$K_N = 0,27.$$

Рассчитываем мощность, потребляемую мешалкой при установившемся режиме, по уравнению (3.61):
$$N_p = K_N \rho n^3 d^5 = 0,27 \cdot 1600 \cdot 3,5^3 \cdot 0,4^5 = 200 \text{ Вт} = 0,2 \text{ кВт}.$$

Мощность в пусковой момент обычно в 2—3 раза превышает рабочую:
$$N_\text{пуск} = 2N_p = 0,4 \text{ кВт}.$$

Определяем установочную мощность, принимая к. п. д. электродвигателя с передачей 0,95 и запас мощности в 20%:
$$N_\text{уст} = 0,4 \cdot 1,2/0,95 \approx 0,5 \text{ кВт}.$$

Пример 3.31. Электродвигатель мощностью 16,5 кВт с приводом, понижающим частоту вращения до 240 об/мин, приводит в действие открытую турбинную мешалку с шестью лопатками; мешалка интенсивно размешивает реакционную массу (ρ = 1200 кг/м³, µ = 1,6 Па·с) в сосуде диаметром 1630 мм с перегородками. Какой должен быть диаметр мешалки?

Решение. Поскольку обусловлено интенсивное перемешивание, можно считать режим развитым турбулентным. По рис. VII находим: $K_N = 6,9.$
По формуле (3.61):
\[d = \sqrt[5]{\frac{N}{K_{NPN^8}}} = \sqrt[5]{\frac{16,5 \cdot 10^3}{6,9 \cdot 1,2 \cdot 10^3 \cdot 4^3}} = \sqrt[5]{3120 \cdot 10^{-5}} = 0,5 \text{ м.} \]

Проверим отношение \(D/d \):
\[D/d = 1,63/0,5 = 3,26. \]

Пример 3.32. Теоретический анализ и результаты опытов показывают, что мощность, затрачиваемая на перемешивание жидкости (\(N \)), зависит от динамического коэффициента вязкости (\(\mu \)) и плотности (\(\rho \)) жидкости, ускорения свободного падения (\(g \)), частоты вращения мешалки (\(n \)), ее диаметра (\(d_m \)) и других геометрических характеристик (диаметра аппарата, высоты заполнения его жидкостью, высоты размещения мешалки над дном сосуда). Требуется найти общий вид критериальной зависимости, связывающей пере-
численные переменные.

Решение. Для геометрически подобных систем функциональная зависимость между переменными записывается так:
\[N = f(\mu, \rho, g, n, d_m). \] (a)

В соответствии с теоремой исходная критериальная зависимость должна иметь вид
\[\varphi(\pi_1, \pi_2, \pi_3) = 0 \text{ или } \pi_1 = f(\pi_2, \pi_3), \]
где \(\pi_1, \pi_2, \pi_3 \) — неизвестные безразмерные выражения (критерии подобия).

Предполагая, как обычно, что связь, существующую между переменными, в некотором диапазоне изменения переменных с достаточной точностью можно описать уравнением типа степенного одночлена, перепишем исходную зависимость (a) так:
\[[N] = C [\mu]^a [\rho]^b [g]^c [n]^d [d_m]^f. \] (b)

Далее, подставляя единицы измерения соответствующих величин, получим уравнение связи основных единиц:
\[\left[\frac{kg \cdot m^2}{c^3} \right] = C \left[\frac{kg}{m \cdot c} \right]^a \left[\frac{kg}{m^3} \right]^b \left[\frac{m}{c^2} \right]^c \left[\frac{1}{c} \right]^d [m]^f. \] (b)

Сопоставляя затем показатели степени у одноименных единиц измерения, придем к системе из трех уравнений, содержащей пять неизвестных:
\[\begin{cases} a + b = 1; \\ a + 2c + e = 3; \\ a + 3b - c - f = -2. \end{cases} \] (c)

Полученную неопределенную систему уравнений (c) можно решить относительно трех любых величин, принимая две остальные величины заданными. Общее число вариантов решений определяется числом сочетаний, которые могут быть составлены из всех неизвестных, входящих в систему, по числу выбираемых заданными, т. е. в данном случае числом сочетаний из пяти по два:
\[C_5^2 = \frac{5 \cdot 4}{1 \cdot 2} = 10. \]

132
Такими сочетаниями будут:

\[
ab, ac, ae, af,
bc, be, bf,
ce, cf,
ef.
\]

Элементарный анализ системы уравнений (г) позволяет установить, что при выборе заданными величин \(a\) и \(b\) решить систему невозможно * и, таким образом, число вариантов решений уменьшается до девяти.

Решим систему уравнений (г), считая заданными величины \(a\) и \(c\) (показатели степени \(\mu\) и \(g\))

\[
b = 1 - a; \quad e = 3 - a - 2c; \quad f = 5 - 2a - c.
\]

Перепишем уравнение (б), используя найденные значения \(b\), \(e\) и \(f\):

\[
-N = C_{\mu} a^1 - a^2 \rho^2 n^2 - a^2 - 2c \rho_2^2 \nu^2 - 2a - c.
\]

Группируем величины с одинаковыми буквенными показателями, получим:

\[
\frac{N}{\rho n^2 d_m} = C \left(\frac{\rho d_m^2}{\mu} \right)^{-a} \left(\frac{n^2 d_m}{g} \right)^{-c}
\]

или

\[
K_N = C \text{ Re}_u^{-a} \text{ Fr}_u^{-c},
\]

t. е. получим систему безразмерных переменных, в которой только по одному разу и каждая только в один какой-то критерий входят физические характеристики \(\mu\) и \(g\).

Таким же путем, принимая заданными

\(b\) и \(c\), получим: \(K_N \text{ Re}_u = C \text{ Re}_u^b \text{ Fr}_u^{-c}\);

\(a\) и \(e\), \(K_N^2 \text{ Fr}_u^3 = C^2 \text{ Ga}^{-a} \text{ Fr}_u^e\);

\(b\) и \(e\), \(K_N \text{ Re}_u \text{ Fr}_u = C \text{ Ga}^{b/2} \text{ Fr}_u^{e/2}\);

\(c\) и \(e\), \(K_N \text{ Re}_u^3 = C \text{ Ga}^c \text{ Re}_u^e\);

\(a\) и \(f\), \(K_N \text{ Fr}_u^5 = C \left(\frac{\text{ Fr}_u^{a/2}}{\text{ Re}_u} \right)^a \text{ Fr}_u^f\);

\(b\) и \(f\), \(K_N \text{ Re}_u \text{ Fr}_u^3 = C \left(\frac{\text{ Re}_u}{\text{ Fr}_u} \right)^b \text{ Fr}_u^f\);

\(c\) и \(f\), \(K_N^2 \text{ Re}_u^5 = C^2 \left(\frac{\text{ Re}_u}{\text{ Fr}_u} \right)^c \text{ Re}_u^f\);

\(e\) и \(f\), \(K_N^3 \text{ Re}_u^7 \text{ Fr}_u = C^3 \left(\frac{\text{ Fr}_u^2}{\text{ Re}_u} \right)^e \text{ Ga}^f\).

* Следует подчеркнуть, что невозможность решения системы (г) при выборе заданными величин \(a\) и \(b\) не случайна, а отражает физическую особенность реальных жидкостей — вязкость и плотность являются свойствами, которые независимо изменять нельзя.
Рис. 3.12 (к примеру 3.33).

Таким образом, для описания процесса перемешивания жидкости можно использовать девять принципиально совершенно равноценных, но различных по форме критериальных уравнений.

Различие уравнений обусловливается теми физическими величинами, характеризующими изучаемое явление (в данном случае двумя величинами), которые входят в определяющие критерии только по одному разу и каждая только в один какой-то критерий.

Все уравнения легко могут быть преобразованы одно в другое, поскольку численные значения показателей степени определяются уравнениями связи.

Выбор того или иного критериального уравнения определяется обычно либо стремлением использовать традиционные формы обобщенных переменных (в данном случае критерии Рейнольдса и Фруда), либо удобством обработки экспериментальных данных. Численные значения коэффициента C и показателей степени могут быть определены только опытным путем.

Пример 3.33. В реакторе (рис. 3.12) диаметром 1000 мм, заполненном на высоту 1000 мм реакционной массой, имеющей при температуре ведения процесса $\mu = 150 \cdot 10^{-3}$ Па·с и $\varrho = 1200$ кг/м3, необходимо обеспечить равномерное распределение твердых частиц катализатора с наибольшим размером 1,3 мм и плотностью 2450 кг/м3; $T : J = 1 : 4$.

Какую мешалку целесообразнее использовать — пропеллерную трехлопастную (рис. 3.13, а) с шаговым отношением 1 или турбинную (рис. 3.13, б) закрытого типа с восемью лопастями?

Решение. 1. Определяем диаметр нормализованной мешалки:

$$d_m = (0,25 \div 0,3) \ D = (0,25 \div 0,3) \ 1 = 0,3 \ m.$$

2. Для нахождения требуемых значений критерия Re_D и величины определяющей частоты вращения воспользуемся обобщенным уравнением:

$$Re_D = C \Ga^k \varrho^l \varrho^{m} d_m \ D^n.$$

В этом уравнении:

$$
\begin{array}{cccccc}
C & k & l & m & n \\
\text{для пропеллерной мешалки} & 0,105 & 0,6 & 0,8 & 0,4 & 1,9 \\
\text{турбинной} & 0,25 & 0,57 & 0,37 & 0,33 & 1,15 \\
\end{array}
$$
Вычисляем значения критериев и симплексов подобия:

$$Ga = \frac{d_m^3 \rho_c^2}{\mu^2} = \frac{33 \cdot 10^{-8} \cdot 1,2^3 \cdot 10^6 \cdot 9,81}{1,5^2 \cdot 10^{-2}} = 1,7 \cdot 10^7;$$

$$S_D = \frac{\rho_c}{\rho} = \frac{2,45 \cdot 10^3}{1,2 \cdot 10^3} = 2,04;$$

$$\Gamma_d = \frac{d_d}{d_m} = \frac{1,3 \cdot 10^{-3}}{3 \cdot 10^{-4}} = 4,33 \cdot 10^{-3};$$

$$\Gamma_D = \frac{D}{d_m} = \frac{1,0}{3 \cdot 10^{-1}} = 3,33.$$

Найденные величины критериев и симплексов подобия лежат в пределах приложимости уравнения.

Находим значения критерия Re и определяющей частоты вращения для пропеллерной мешалки:

$$Re = 0,105Ga^{0,6}S_p^{0,8} \Gamma_d^{0,4} \Gamma_D^{1,9} = 1,05 \cdot 10^{-1} \cdot 1,7^{0,6} \cdot 10^{4 \cdot 2} \cdot 2,04^{0,8} \times$$

$$\times 4,33^{0,4} \cdot 10^{-1 \cdot 2} \cdot 3,33^{1,9} = 4,51 \cdot 10^3;$$

$$n_0 = Re \frac{\mu}{\rho_c d_m^2} = \frac{4,51 \cdot 10^3 \cdot 1,5 \cdot 10^{-1}}{1,2 \cdot 10^8 \cdot 3^2 \cdot 10^{-2}} = 6,26 \text{ об/с} = 376 \text{ об/мин.}$$
Находим значения критерия Re_п и определяющей частоты вращения для турбинной мешалки:

\[
Re_\text{п} = 0,25G_\alpha^0,67 \bar{S}_\rho^0,37 \Delta^0,33 T_D^1,15 = 2,5 \cdot 10^{-1} \cdot 1,70,57 \cdot 10^{-3},99 \cdot 2,040,37 \times \\
\times 4,3390,33 \cdot 10^{-9,89} \cdot 3,331,15 = 2,85 \cdot 10^3;
\]

\[
n_\text{п} = Re_\text{п} \frac{\mu}{\rho_c d_m^2} = \frac{2,85 \cdot 10^3 \cdot 1,5 \cdot 10^{-4}}{1,2 \cdot 10^3 \cdot 32 \cdot 10^{-3}} = 3,96 \text{ об/с} = 238 \text{ об/мин}.
\]

3. Определяем мощность, затрачиваемую непосредственно на перемешивание.
Из графика \(K_N = f (Re) \) [2] находим для пропеллерной мешалки: \(K_N = 0,32 \); для турбинной мешалки: \(K_N = 1,3 \).
Вычисляем постоянный множитель:

\[
\rho_c d_m^5 = 1,2 \cdot 10^3 \cdot 3 \cdot 10^{-5} = 2,91.
\]

Мощность, потребляемая пропеллерной мешалкой:

\[
N = K_N n_\text{п}^3 \rho_c d_m^5 = 3,2 \cdot 10^{-1} \cdot 6,263 \cdot 2,91 = 227 \text{ Вт} \approx 0,23 \text{ кВт}.
\]

Мощность, потребляемая турбинной мешалкой:

\[
N = K_N n_\text{п}^3 \rho_c d_m^5 = 1,3 \cdot 3,963 \cdot 2,91 = 234 \text{ Вт} \approx 0,23 \text{ кВт}.
\]

Так как в данном случае мощность, затрачиваемая на перемешивание, одинакова, выбираем турбинную мешалку,рабатывающую при меньшей частоте вращения.

Пример 3.34. Опыты по окислению сульфида аммония в тиосульфат кислородом, проведенные в модельном аппарате диаметром 500 мм с четырьмя отражательными перегородками, показали, что при перемешивании закрытой турбинной мешалкой диаметром 125 мм с частотой вращения 6 об/с и при удельном расходе кислорода \(u_m = 3,5 \cdot 10^{-3} \text{ м}^3 \text{О}_2/(\text{м}^3 \cdot \text{с}) \) обеспечивается поглощение 1,04 дм³ кислорода на 1 м³ реакционной среды в 1 с — удельная производительность \(k_m = 1,04 \cdot 10^{-3} \text{ м}^3 \text{О}_2/(\text{м}^3 \cdot \text{с}) \).

На основании результатов модельных опытов проектируется промышленный аппарат диаметром 2 м с мешалкой диаметром 0,5 м, геометриически подобный модельному (\(\Gamma_D = D/d = 4 \)). Необходимо рассчитать частоту вращения мешалки в промышленном аппарате, при которой будет обеспечена такая же удельная производительность, как и в модельных условиях. Расход кислорода в промышленном аппарате \(u_n = 3,5 \cdot 10^{-3} \text{ м}^3 \text{О}_2/(\text{м}^3 \cdot \text{с}) \); физические свойства реакционной среды в модельном и в промышленном аппаратах близки к свойствам воды. Температура реакции 80 ºС.

Решение. Для расчета промышленных аппаратов, в которых \(Re_\text{п} \geq 1,8 \cdot 10^5 \), можно воспользоваться уравнением:

\[
Di = C Re_u^{0,09} Fr_u^{0,105} K_u^{0,75} T_D^{-0,167},
\]

где \(Di = k/n \) — критерий Дьяконова; \(K_u = u/n \) — критерий распределения.
Если при переходе от модели к промышленному аппарату свойства реагирующих фаз не изменяются, уравнение (а) приводится к виду:

\[k = C_1 \frac{n^{0.67} d^{1.015} u^{0.75}}{D^{0.67}}. \]

Вычисляем значение критерия Рейнольдса (центробежного) для модельного аппарата:

\[\text{Re}_n = \frac{\rho n d_m^2}{\mu} = \frac{972 \cdot 6 \cdot 0.125^2}{3.56 \cdot 10^{-4}} = 2.55 \cdot 10^5 > 1.8 \cdot 10^5. \]

Таким образом, результаты опытов могут быть использованы для моделирования.

По опытам на модели определяем коэффициент \(C_1 \) для рассматриваемого процесса:

\[C_1 = \frac{k_m D_m^{0.67}}{n_m^{0.67} (d_m)_m^{1.015} u_m^{0.75}} = \frac{1.04 \cdot 10^{-3} \cdot 5^{0.67}}{6^{0.67} \cdot 0.125^{1.015} (3.5 \cdot 10^{-3})^{0.75}} = 1.15 \cdot 10^{-4}. \]

Подставив в уравнение характеристики промышленного аппарата и найденное значение \(C_1 \), рассчитаем частоту вращения мешалки:

\[n_n = \left(\frac{k_n D_n^{0.67}}{C_1 (d_n)_n^{1.015} u_n^{0.75}} \right) \frac{1}{0.67} = \left(\frac{1.04 \cdot 10^{-3} \cdot 5^{0.67}}{1.15 \cdot 10^{-4} \cdot 5^{1.015} (3.5 \cdot 10^{-3})^{0.75}} \right) \frac{1}{0.67} = 2.85 \text{ об/с.} \]

Принимаем скорость вращения мешалки \(n_n = 3 \text{ об/с.} \)

Проверяем значение критерия Рейнольдса для промышленного аппарата:

\[\text{Re}_n = \frac{972 \cdot 3 \cdot 0.5^2}{3.56 \cdot 10^{-4}} = 2.04 \cdot 10^6. \]

Поскольку значение критерия Рейнольдса для промышленного аппарата также лежит в пределах приложимости уравнения (а), выбранная частота вращения обеспечит заданную производительность.

КОНТРОЛЬНЫЕ ЗАДАЧИ

3.1. Найти соотношение диаметров частиц свинцового блеска (\(\rho = 7800 \frac{\text{кг}}{\text{м}^3} \)) и кварца (\(\rho = 2600 \frac{\text{кг}}{\text{м}^3} \)), осаждающихся с одинаковой скоростью: а) в воздухе; б) в воде, считая, что осаждение происходит при \(\text{Re} < 0.2 \).
3.2. С какой скоростью будут осаждаться шарообразные частицы кварца (\(\rho = 2600 \text{ кг/м}^3 \)) диаметром 10 мкм; а) в воде при 15 °C; б) в воздухе при 15 и 500 °C?
3.3. Какой должна быть скорость воздуха в вертикальной трубе пневматической сушилки, чтобы обеспечить перемещение кристаллов плотностью 2000 кг/м³ с наибольшим диаметром 3 мм? Температура воздуха 60 °C. Скорость воздуха должна быть на 25% больше скорости витания частиц.
3.4. Рассчитать скорость восходящего потока воздуха в воздушном сепараторе, необходимую для отделения мелких \((d < 1 \text{ мм})\) частиц апатита от более крупных. Температура воздуха 20 °C. Плотность апатита 3230 кг/м³.
3.5. Каким должно быть расстояние между полками пылевой камеры (см. рис. 3.9), чтобы в ней оседали частицы колечанной пыли диаметром более 15 мкм? Остальные условия такие же, как в примере 3.6.
3.6. Через пылевую камеру (см. рис. 3.9) с расстоянием между полками 100 мм проходят 2000 м³/ч запыленного газа плотностью 1,6 кг/м³ (расход и плотность даны при нормальных условиях). Температура газа 400 °C. Динамический коэффициент вязкости газа при этой температуре 0,03·10⁻³ Па·с. Плотность пыли 3700 кг/м³. Длина камеры 4,55 м, ширина 1,71 м, высота 4 м. Какого размера частицы пыли будут улавливаться в камере, если считать, что действительная скорость осаждения вдвое меньше теоретической?
3.7. Доказать идентичность формул (3.9) и (3.10) для расчета площади отстойника непрерывного действия.
3.8. Определить диаметр отстойника (см. рис. 3.2) для непрерывного уплотнения водной суспензии мела, имеющей температуру 35 °C. Остальные условия такие же, как в примере 3.8.
3.9. Как изменится производительность отстойника, если температуру водной суспензии повысить с 15 до 50 °C? В обоих случаях \(Re < 0,2\).
3.10. Подобрать циклон типа НИИОГАЗ (см. рис. 3.3 и табл. 3.1) по следующим данным: расход запыленного воздуха 5100 м³/ч (0 °C и 760 мм рт. ст.), температура воздуха 50 °C. Плотность пыли 1200 кг/м³. Частицы пыли имеют наименьший диаметр 15 мкм. Определить также гидравлическое сопротивление циклона.
3.11. Вывести формулу (3.25), исходя из условия, что объем суспензии равен сумме объемов жидкой и твердой фаз.
3.12. Рассчитать плотность водной суспензии, содержащей 10% (масс.) твердой фазы. Относительная плотность твердой фазы равна 3.
3.13. Определить скорость осаждения в воде при 25 °C продолговатых частиц угля \((\rho = 1400 \text{ кг/м}^3)\) и пластинчатых частиц сланца \((\rho = 2200 \text{ кг/м}^3)\), имеющих эквивалентный диаметр 2 мм.
3.14. Определить диаметр частиц свинцового блеска угловатой формы, осаждающихся со скоростью 0,25 м/с в воде при температуре 15 °C. Плотность свинцового блеска 7500 кг/м³.

3.15. Какое количество влажного осадка будет собрано на фильтре в результате фильтрования 10 м³ суспензии относительного удельного веса 1,12, содержащей 20 % (масс.) твердой фазы? Влажность осадка 25%.

3.16. В результате фильтрования водной суспензии с содержанием 20 % (масс.) твердой фазы собрано 15 м³ фильтрата. Влажность осадка 30%. Сколько получено осадка, считая на сухое вещество?

3.17. Фильтрпресс имеет 26 рам размером 62×62 см. Толщина рам 25 мм. Время фильтрования до заполнения рам 2 ч. Промывка ведется водой в количестве 10% от объема фильтрата. Давление во время фильтрования и промывки одинаково и постоянно. Сколько времени требуется на промывку? Осадок однородный несжимаемый, объем его составляет 5% от объема фильтрата. Расчет вести по уравнению (3.13), полагая C = 0.

3.18. Время фильтрования 20 м³ раствора на рамном фильтрессе 2,5 ч. Найти ориентировочное время промывки осадка 2 м³ воды, полагая приближенно, что скорость промывки в 4 раза меньше скорости фильтрования в конечный момент. Сопротивлением ткани пренебречь. Динамические коэффициенты вязкости фильтрата и промывной воды одинаковы.

3.19. Как изменится время промывки осадка в условиях предыдущей задачи, если μ фильтрата 1,5·10⁻³ Па·с, а промывной воды 1·10⁻³ Па·с.

3.20. Найти теоретическое время промывки осадка на фильтре при следующих условиях: интенсивность промывки 6 дм³/(м²·мин); толщина лепешки 30 мм; начальная концентрация отмываемой соли в фильтрате промывной воды 120 г/дм³, конечная — 2 г/дм³. Константа скорости промывки K, по опытным данным, равняется 350 см³/дм³.

3.21. Определить константу скорости промывки K при следующих условиях: интенсивность промывки 10 дм³/(м²·мин); толщина лепешки 25 мм; начальная концентрация соли в фильтрате промывной воды 40 г/дм³, конечная — 0,5 г/дм³; время промывки 1 ч 40 мин.

3.22. Как изменится производительность фильтра, если: 1) вдвое увеличить фильтрующую поверхность; 2) вдвое увеличить давление (при однородном несжимаемом осадке); 3) вдвое увеличить концентрацию твердого вещества в фильтруемой суспензии; 4) вдвое уменьшить (повышая температуру) вязкость фильтрата; 5) вдвое увеличить время полного оборота фильтра (т. е. увеличить толщину слоя осадка)?

3.23. Показать ориентировочно, как влияет изменение частоты вращения барабанного вакуум-фильтра (см. рис. 3.10) на его про-
изводительность (например, при увеличении частоты вращения на 50 %). Воспользоваться уравнением (3.13), положив C = 0.

3.24. Определить технологический тип и наметить конструкцию центрифуги для отделения n-нитроанилина от раствора после перекристаллизации, учитывая следующие данные: 1) концентрация твердого вещества в суспензии 35%; 2) растворитель — вода; 3) осадок кристаллический; 4) требуемая остаточная влажность 5%; 5) кристаллизация идет периодически.

3.25. Требуется выделить хлопковое масло из промывных вод (соапстока) после щелочной очистки. Определить технологический тип и наметить конструкцию центрифуги, учитывая следующие данные: 1) характер смеси — эмульсия; 2) относительная плотность масла 0,9; 3) относительная плотность водного раствора соли (добавленной для разрушения эмульсии) 1,05.

3.26. Определить удельное давление на стенки барабана центрифуги, если толщина слоя жидкости 10 см, внутренний диаметр барабана 1 м, частота вращения 500 об/мин. Плотность жидкости 1100 кг/м³.

3.27. Найти частоту вращения центрифуги, если известно, что высота барабана H = 0,5 м. Давление у стенок барабана должно быть 5 кгс/см² (~0,5 МПа). Загружено 400 кг суспензии.

3.28. Показать приближенно, что при допускаемом напряжении на разрыв для стали K₂ = 88,3·10⁶ Па, т. е. 900 кгс/см², окружающая скорость барабана центрифуги не должна превышать 60 м/с. Исходя из этого условия, определить наибольший допустимый диаметр барабана: a) для фильтрующей центрифуги, делающей 1100 об/мин; b) для трубчатой сверхцентрифуги, делающей 14 000 об/мин.

3.29. Вывести формулу, по которой можно вычислить скорость центрифугирования твёрдых шарообразных частиц, исходя из закона Стокса. Частота вращения измеряется в об/с.

3.30. Во сколько раз быстрее произойдет осаждение одних и тех же частиц в центрифуге, чем в отстойнике, если барабан центрифуги имеет D = 1 м и n = 600 об/мин? Режим осаждения в обоих случаях ламинарный.

3.31. Определить приближенно, пренебрегая трением вала в подшипниках и трением стенки барабана о воздух, время разгона центрифуги, в которую загружено 300 кг влажной соли. Внутренний диаметр барабана 1 м, его масса 200 кг. Рабочая частота вращения 800 об/мин. Мощность электродвигателя 6 кВт, общий к. п. д. агрегата 0,8. Высота барабана 780 мм, коэффициент заполнения барабана 0,5.

3.32. В условиях предыдущей задачи найти требуемую мощность электродвигателя (с учетом трения), если период разгона центрифуги принять равным 2,5 мин. Диаметр вала 70 мм; подшипники — шариковые; толщина стенки барабана 10 мм.

3.33. Определить необходимое число центрифуг периодического действия с размерами барабана D = 1200 мм, H = 500 мм.
для фильтрования 50 т суспензии в сутки. Суспензия содержит 40 % (масс.) твердой фазы. Относительная плотность жидкой фазы 1,1, твердой — 1,8. Продолжительность одной операции 25 мин. Число рабочих часов в сутках принять равным 20. Коэффициент заполнения барабана 0,5.

3.34. Как изменится производительность фильтрующей центрифуги, если увеличить частоту ее вращения вдвое? Осадок однородный несжимаемый. Сопротивлением фильтрующей ткани пренебречь.

3.35. Отстойная горизонтальная автоматическая центрифуга АОГ-1800 должна работать на водной суспензии мела. Определить производительность центрифуги по питанию, если температура суспензии 40 °С. Размер наименьших частиц мела 2 мкм. Техническая характеристика центрифуги: диаметр барабана 1800 мм, длина барабана 700 мм, диаметр борта 1300 мм, частота вращения \(n = 735 \text{ об/мин}; \) к. п. д. принять равным 0,45.

3.36. Во сколько раз производительность промышленной фильтрующей центрифуги типа АГ больше производительности лабораторной модели, геометрически ей подобной? Размеры промышленной центрифуги больше размеров лабораторной в три раза. Работа ведется на одной и той же суспензии, с одинаковой частотой вращения и при одинаковом времени заполнения барабана осадком.

3.37. Определить производительность шнековой осадительной центрифуги НОГШ-600, работающей на водной суспензии гипса при температуре 50 °С. Наименьшие частицы гипса в суспензии имеют диаметр 2 мкм. Техническая характеристика центрифуги: диаметр сливного цилиндра 480 мм; длина зоны осаждения 350 мм; частота вращения барабана \(n = 1400 \text{ об/мин}.\)

3.38. Осаджение частиц какого диаметра обеспечит центрифуга НОГШ-230, если на разделение подавать 3 м³/ч водной суспензии каолина при 35 °С? Техническая характеристика центрифуги: диаметр сливного цилиндра 180 мм; длина его 164 мм; частота вращения барабана 1600 об/мин.

3.39. Определить скорость воздуха, необходимую для начала образования взвешенного слоя частиц гранулированного алюмосиликагеля при следующих условиях: температура воздуха 100 °С; плотность алюмосиликагеля (каждящаяся) \(\rho = 968 \text{ кг/м}^3; \) диаметр частиц 1,2 мм. Каково будет гидравлическое сопротивление, если высота неподвижного слоя 400 мм?

3.40. В условиях предыдущей задачи определить порозность и высоту взвешенного слоя, если скорость воздуха превышает критическую в 1,7 раза.

3.41. Определить наибольший диаметр гранулированных частиц угля, начинающих переходить во взвешенное состояние в воздухе при скорости его в аппарате 0,2 м/с. Температура 180 °С. Определить также объемную концентрацию частиц, если скорость воздуха повысится до 0,4 м/с. Плотность угля (каждящаяся) 660 кг/м³.
3.42. Бак диаметром 900 мм и высотой 1100 мм, снабженный мешалкой, заполнен на 3/4 цилиндровым маслом \((\rho = 930 \text{ кг/м}^3, \mu = 18 \text{ Па·с})\). Какой мощности надо установить электродвигатель для трехлопастной пропеллерной мешалки с частотой вращения 180 об/мин?

3.43. Для получения разбавленного раствора минеральная соль интенсивно размещается с водой при 64 °C посредством лопастной мешалки. Какова частота вращения мешалки, если диаметр ее 0,5 м, а мощность, потребляемая электродвигателем, 0,8 кВт? Физические характеристики для разбавленного раствора принять такие же, как и для воды.

3.44. Лопастная мешалка размером \(d_1 = D/3\) заменена на меньшую с \(d_2 = D/4\). Размещение в обоих случаях производится в условиях ламинарного режима. Как изменился частота вращения мешалки при той же мощности электродвигателя?

3.45. Каков должен быть диаметр пропеллерной мешалки для интенсивного перемешивания технического глицерина \((\rho = 1200 \text{ кг/м}^3, \mu = 1,6 \text{ Па·с})\) в баке диаметром 1750 мм при \(n = 500 \text{ об/мин}\) и расходе мощности 17 кВт?

ПРИМЕР РАСЧЕТА БАТАРЕЙНОГО ЦИКЛОННА [3.1]

В батарейном циклоне (рис. 3.14) требуется очищать от пыли 7800 м³/ч газа при температуре 310 °C. Плотность газа (при 0 °C и 760 мм рт. ст.) 1,3 кг/м³. Барометрическое давление 99 300 Па (745 мм рт. ст.). На входе в батарейный циклон газ находится под разрежением 294 Па (30 мм вод. ст.). Гидравлическое сопротивление батарейного циклона не должно превышать 392 Па (40 мм вод. ст.). Плотность пыли 2450 кг/м³. Запыленность газа 32 г/м³ (при 0 °C и 760 мм рт. ст.).

Пыль слабо сливающаяся.

Решение. Характеристики циклонных элементов типа БЦ с розеточным направляющим аппаратом в случае улавливания слабо сливающейся пыли с плотностью 2300 кг/м³ при \(\Delta p/\rho = 736 \text{ м}^2/\text{с}^2\) (или \(\Delta p/\rho = 75 \text{ м}^2/\text{с}^2\)) приведены в табл. 3.4. На основании данных этой таблицы выбираем циклонные элементы диаметром 150 мм (допускаемая запыленность газа до 35 г/м³).

Определяем плотность газа при рабочих условиях:

\[
\rho = 1,293 \times \frac{273 \times \left(\frac{745 - 30}{13,6}\right)}{(273 + 310) \times 760} = 0,595 \text{ кг/м}^3.
\]

По условию потеря давления \(\Delta p\) не должна превышать 392 Па (40 мм вод. ст.). Соотношение \(\Delta p/\rho = 392/0,595 = 660 \text{ м}^2/\text{с}^2\) (или \(\Delta p/\rho = 40/0,595 = 67,2 \text{ м}^2/\text{с}^2\)) не выходит из рекомендуемых пределов 540—736 м²/с² (или 55—75 м²/с²).

Таблица 3.4

<table>
<thead>
<tr>
<th>Диаметр элемента мм</th>
<th>Наибольшая допускаемая запыленность газа, г/м³ (при 0 °C и 760 мм рт. ст.)</th>
<th>Степень улавливания пыли (в %) при диамете частиц</th>
<th>Коэффициент гидравлического сопротивления, если при угле наклона лопастей 25°</th>
<th>30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>75</td>
<td>72</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>35</td>
<td>78</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>82</td>
<td>96</td>
<td>65</td>
</tr>
</tbody>
</table>

142
Для направляющего аппарата типа розетки с углом наклона лопастей к горизонтали 25° коэффициент гидравлического сопротивления \(\zeta_0 = 90 \).
Скорость газа в цилиндрической части циклонного элемента \(w_d \) определяем из формулы (3.12):
\[
w_d = \sqrt{\frac{2 \Delta p}{\zeta_0 \rho}} = \sqrt{\frac{392.5}{90 \cdot 0.595}} = 3.84 \text{ м/с.}
\]
Расход газа на один элемент батарейного циклона:
\[
V_1 = 0.785 D^2 \cdot 3600 w_d = 0.785 \cdot 0.150^2 \cdot 3600 \cdot 3.84 = 244 \text{ м}^3/\text{ч.}
\]
Требуемое число элементов:
\[
n = \frac{7800}{244} = 32.
\]
Располагаем их в четыре ряда по ходу газа (восемь элементов в каждом ряду).

ПРИМЕР РАСЧЕТА ПЕННОГО ГАЗОПРОМЫВАТЕЛЯ ДЛЯ ОЧИСТКИ ГАЗА ОТ ПУЛЫ [3.9]

Определить основные размеры пенного газопромывателя для очистки от пыли 50 000 м³/ч газа при 80°С. Запыленность газа на входе в аппарат \(c_{vx} = 0.01 \text{ кг/м}^3 \) (при нормальных условиях), степень очистки 0.99.

П е ш е н и е. Поскольку скорость газа в полном сечении аппарата является основным фактором, от которого зависит хорошее пенообразование и, следовательно, эффективность очистки, важно правильно выбрать расчетную скорость. Верхним пределом допустимой скорости газа является такая его скорость, при которой резко усиливается унос воды в виде брызг. По экспериментальным данным в газопромывателях, имеющих слой пены высотой 30—100 мм, струйный прорыв газа, вызывающий разрушение пены и сильный брызгонос, начинается при скоростях газа в полном сечении аппарата (под решеткой) от 2.7 до 3.5 м/с.

Чем выше слой пены на решетке и чем больше свободное сечение решетки, тем большая скорость газа возможна без брызгоносов. Уменьшение диаметра отверстий (при сохранении постоянного свободного сечения решетки) также способствует уменьшению брызгоносов. Обычно верхним пределом является скорость газа под решеткой ~3 м/с.

Нижним пределом скорости газа для пенного аппарата является такая скорость, при которой сильно уменьшается пенообразование.

Для пенных газопромывателей с большим свободным сечением решетки и большим диаметром отверстий нижним пределом является такая скорость газа, при которой большая часть жидкости протекает через отверстия, в результате чего высота пены становится ничтожно малой. Для обычных условий нижним пределом расчетной скорости можно считать 1 м/с.

Примем среднюю скорость газа \(w = 2.3 \text{ м/с.} \) Определяем площадь поперечного сечения аппарата:
\[
f = \frac{50 000}{3600 \cdot 2.3} = 6 \text{ м}^2.
\]
Газпромыватель может быть круглого или прямоугольного сечения. В круглом аппарате обеспечивается более равномерный поток газа, в прямоугольном — лучшее распределение жидкости.

Примем аппарат прямоугольного сечения размером 3×2 м с подачей воды посередине (рис. 3.15). Для лучшего распределения газа по площади аппарата ввод газа осуществляется через диффузор.

Расчет количества подаваемой воды производится различно, в зависимости от температуры поступающего газа. Для холодного газа наиболее влияние на расход воды оказывают гидродинамические факторы, для горячего газа расход воды определяется тепловым балансом.

При очистке от пыли газов, имеющих температуру ниже 100 °C, расчет количества подаваемой воды проводят, исходя из гидродинамики процесса в материального баланса газоочистки. В обычных условиях для сохранения достаточной равномерности пенообразования по всей решетке необходимо, чтобы через отверстия протекало не больше 50 % подаваемой воды, так как слишком сильная утечка создает неравномерность высоты слоя воды на решетке.

Расход воды в газпромывателе складывается из расхода воды, идущей в уetchку, и расхода воды, идущей на слив с решетки.

Испарением воды при заданной температуре газа можно пренебречь.

Количество воды, протекающей через отверстия решетки, определяется массой увлажненной пыли и заданным составом суспензии, а затем подбирается решетка с таким свободным сечением, диаметром отверстий и прочими данными, чтобы обеспечить установленную утечку.

При заданной степени очистки η концентрация пыли в газе после газпромывателя $c_{\text{вых}}$ определяется по формуле *

$$c_{\text{вых}} = c_{\text{вх}} (1 - \eta) = 0,01 (1 - 0,99) = 0,0001 \text{ кг/м}^3$$

Количество улавливаемой пыли:

$$G_{\text{yл}} = V_0 \left(c_{\text{вх}} - c_{\text{вых}} \right) = 50000 \frac{273}{273 + 80} \left(0,01 - 0,0001 \right) = 383 \text{ кг/ч}.$$

Если известна концентрация суспензии $c = T : \text{Ж} \text{ } (\text{в кг/кг})$, то утечка L_y, т. е. объем воды, необходимый для образования суспензии (в м3/ч), определяется по уравнению:

$$L_y = \frac{K G_{\text{yл}}}{1000c},$$

где K — коэффициент распределения пыли между утечкой и сливной водой, выраженный отношением количества пыли, попадающей в утечку, к общему количеству увлажненной пыли; обычно $K = 0,5 - 0,8$.

Концентрация суспензии, как правило, находится в пределах отношения $T: \text{Ж} = (1 : 5) \div (1 : 10)$. Получение суспензии с $T: \text{Ж} = 1 : 5$ может вызывать забивание отверстий решетки (особенно мелких). Получение суспензии с $T: \text{Ж} < < 1 : 10$ нерационально ввиду ее слишком больших объемов.

* Концентрация пыли $c_{\text{вых}}$ отнесена к объему газа перед аппаратом V_0, приведенному к нормальным условиям. Она незначительно отличается от заполненности газа (в кг/м3) после аппарата, так как количество газа после аппарата увеличивается на 1—2 % за счет испарения воды в газпромывателе.
Примем $c = 1 : 8 = 0,125$ кг/кг и $K = 0,7$. Тогда

$$\frac{0,7 \cdot 383}{1000 \cdot 0,125} = 2,14 \text{ м}^3/\text{ч}$$

на всю решетку или

$$2,14/6 = 0,36 \text{ м}^3/(\text{м}^2 \cdot \text{ч})$$
на 1 м2 решетки.

Вследствие трудности определения параметров решетки по заданной утечке, а также учитывая частичное испарение воды после ее протекания через решетку, возьмем коэффициент запаса $\sim 1,5$, т. е. примем $L_y = 1,5 \cdot 2,14 \approx 3,3 \text{ м}^3/\text{ч}$, или $0,55 \text{ м}^3/\text{м}^2 \cdot \text{ч}$.

Количество сливной воды определяется по формуле:

$$L_{сл} = ib,$$
где i — интенсивность потока на сливе с решетки, м3/м2·ч; b — ширина решетки перед сливом, равная длине сливного порога, м.

Принимая $i = 1$ м3/м2·ч, находим для выбранного типа аппарата (слив на обе стороны):

$$L_{сл} = 1 \cdot 2 \cdot 2 = 4 \text{ м}^3/\text{ч}.$$

Общий расход воды:

$$L = 3,3 + 4 = 7,3 \text{ м}^3/\text{ч}.$$

Удельный расход воды:

$$L_{уд} = \frac{7300}{50000} = 0,146 \text{ дм}^3/\text{м}^3 \text{ газа}.$$

Утечка составляет от общего расхода воды L:

$$L_{у} = (3,3/7,3) \cdot 100 = 45 \%,$$
что приемлемо (должно быть $L \geq 2L_{у}$).

Основные характеристики решетки (диаметр и шаг отверстий) подбирают, исходя из необходимой утечки.

Установлено, что утечка воды возрастает с увеличением диаметра отверстий d_0 и высоты исходного слоя * жидкости на решетке h_0.

Утечка сильно возрастает при уменьшении скорости газа в отверстиях ниже 4—6 м/с (в зависимости от d_0 и h_0) и резко снижается при увеличении скорости газа выше 13—15 м/с, что может вызвать забивание решетки пылью. Кроме того, повышение скорости газа в отверстиях при небольшом слое воды (пены) на решете, характерном для газопромывателей, приводит к струйному прорыву газа и сильному брызгообразованию.

Для обеспечения нормальной работы газопромывателя скорость газа $ω_0$ в крупных отверстиях решеток следует выбирать в пределах 8—13 м/с, а для решеток с более мелкими отверстиями в пределах 7—10 м/с, в зависимости от исходной запыленности газа, возможных колебаний газовой нагрузки и других условий.

Учитывая значительную концентрацию пыли в газе (10 г/м3 при нормальных условиях) и относительно большую легкость изготовления решеток с крупными отверстиями (меньше отверстий и легче сверлова их), устанавливаем решетку с крупными отверстиями, для которых рекомендуется расчетная скорость газа 8—13 м/с. Считая, что колебания в нагрузке аппарата по газу будут происходить, в основном, в сторону снижения (обычные условия), выбираем скорость газа $ω_0 = 12$ м/с.

Тогда отношение площади свободного сечения решетки f_0 к площади сечения аппарата f составляет:

$$f_0/f = \frac{ω_0}{ω_0} = 2,3/(12 \cdot 0,95) = 0,2,$$

* Исходным слоем называется высота слоя невспененной жидкости, толщиной на образование слоя пены данной высоты.
где \(z = 0,95 \) — коэффициент, учитывающий, что 5% площади свободного сечения занимают опоры решетки, перегибные стенки и т. д.

При разбивке отверстий решетки по шестиугольнику с шагом \(t \) заштрихованная площадь на рис. 3.16 равняется:

\[
S = tx = t \cdot 2 \sqrt{t^2 - (t/4)^2} = 1,73t^2.
\]

На эту площадь приходится два отверстия диаметром \(d_0 \). Площадь отверстий:

\[
S_0 = 2 \cdot 0,785d_0^2 = 1,57d_0^2.
\]

Как было найдено выше, отношение \(S_0/S \) должно составлять 0,2:

\[
1,57d_0^2/(1,73t^2) = 0,2,
\]

откуда

\[
t = \sqrt{1,57d_0^2/(1,73 \cdot 0,2)}.
\]

При диаметре отверстий \(d_0 = 5 \) мм:

\[
t = \sqrt{0,91 \cdot 25/02} = 10,7 \approx 11 \text{ мм}.
\]

Высота порога на сливе с решеткой устанавливается из расчета создания слоя пены перед сливом высотой 60—100 мм (в зависимости от заданной степени очистки).

Подсчитаем, какова должна быть высота слоя пены на решетке, чтобы обеспечить заданную степень очистки \(\eta = 0,99 \).

Коэффициент скорости пылеулавливания

\[
K_\Pi = 2\eta w/(2 - \eta) = 2 \cdot 0,99 \cdot 2,3/(2 - 0,99) = 4,5 \text{ м/с}.
\]

Связь между коэффициентом \(K_\Pi \) и высотой слоя пены \(H \) при улавливании гидрофильной пыли со средним размером частиц 15—20 мкм выражается эмпирической формулой:

\[
H = K_\Pi - 1,95w + 0,09 = 4,5 - 1,95 \cdot 2,3 + 0,09 = 0,1 \text{ м}.
\]

С другой стороны, для пылеуловителей

\[
H = 0,806w^{0,7}h_0^{0,6},
\]

где \(h_0 \) — высота исходного слоя воды на решетке, м.

Отсюда

\[
h_0 = \left(\frac{H}{0,806w^{0,7}} \right)^{1/0,6} = \left(\frac{0,1}{0,806 \cdot 2,3^{0,7}} \right)^{1/0,6} = 0,013 \text{ м}.
\]

Высота исходного слоя жидкости \(h_0 \) связана с интенсивностью потока на сливе \(\lambda \) с высотой порога \(h_\Pi \) эмпирической зависимостью:

\[
h_0 = \varphi \sqrt{\lambda} + \Psi h_\Pi,
\]

где \(\varphi \) — коэффициент, характеризующий водослив; для производственных расчетов с достаточной точностью можно принять \(\varphi = 3 \); \(\Psi \) — степень подпора жидкости порогом, которая может значительно изменяться в зависимости от условий пенообразования; для рабочих условий газопромывателей \(\Psi \approx 0,4 \).

Таким образом, высоту порога (в мм) можно рассчитать по формуле:

\[
h_\Pi = 2,5h_0 - 7,5 \sqrt{\lambda}.
\]
В нашем случае: \(w = 2,3 \text{ м/с}, i = 1 \text{ м}^3/(\text{м} \cdot \text{ч}) \). Тогда высота порога:

\[
h_p = 2,5 \times 13 - 7,5 \sqrt{12} = 25 \text{ мм}.
\]

Для обеспечения работы аппарата при колебаниях его режима примем высоту порога 30 мм.

Общая высота газопромывателя складывается из высот отдельных частей его: напрежеточной \(h_1 \), подрешеточной \(h_2 \) и бункера \(h_6 \). Эти высоты определяются конструктивно: \(h_1 \) — в зависимости от брызгообразования и размеров брызгоуловителя, \(h_2 \) — в зависимости от конструкции подвода газа, \(h_6 \) — в зависимости от свойства суспензии.

ПРИМЕР РАСЧЕТА БАРАБАННОГО ВАКУУМ-ФИЛЬТРА

Рассчитаем барабанный вакуум-фильтр (см. рис. 3.10) производительностью 2,8 т/сутки сухого осадка и гидрата закиси никеля по следующим данным: 1) вакуум 53,3·10³ Па (400 мм рт. ст.); 2) среднее удельное сопротивление осадка \(r = 43,21 \times 10^{10} \text{ м/кг сухого осадка}; 3) удельное сопротивление фильтрующей ткани (диагональ) \(r_{тк} = 11,43 \times 10^{10} \text{ м/м²}; 4) масса твердого вещества, отлагающегося на фильтре при получении 1 м² фильтрата, \(c = 207,5 \text{ кг/м}^2; 5) заданная толщина слоя осадка \(\delta = 5 \text{ мм} \); 6) объем влажного осадка, получаемого при прохождении через фильтр 1 м² фильтрата, 0,686 м³/м²; 7) плотность влажного осадка 1220 кг/м³ (при влажности 75,2 %), плотность фильтрата 1110 кг/м³; 8) общее число секторов фильтра \(z = 24 \) (по аналогии с применяемыми барабанными фильтрами); 9) динамический коэффициент влажности фильтрата (при температуре фильтрования 50 °C) \(\mu = 1,51 \times 10^{-3} \text{ Па·с}; 10) время просушки осадка на фильтре \(t_0 = 1,5 \text{ мин} \); 11) концентрация исходной суспензии 10,67 %. Решение. Расчет вакуум-фильтра сводится к определению необходимой поверхности фильтрования и к подбору фильтра по каталогу.

Поверхность фильтрования \(F \) (в \(\text{м}^2 \)) можно определить из выражения:

\[
F = \frac{V_\text{общ}}{V'},
\]

где \(V_\text{общ} \) — производительность фильтра по фильтрату, м³/ч; \(V' \) — производительность 1 м² фильтра по фильтрату, равная \(v \times n \), м³/(м²·ч); \(v \) — производительность 1 м² фильтра за один оборот, м³/м²·ч; \(n \) — частота вращения фильтра, об/ч.

Определяем производительность фильтра по фильтрату.

Производительность фильтра по сухому осадку должна составить 2,8 т/сутки, или 117 кг/ч. В пересчете на влажный осадок (влажность 75,2 %) это будет (117·110)/24,8 = 472 кг/ч.

Количество суспензии, поступающей на фильтрование, при концентрации ее 10,67 % составит (117·100)/10,67 = 1096 кг/ч. Тогда выход фильтрата будет равен 1096 — 472 = 624 кг/ч или, при плотности фильтрата 1110 кг/м³, 624/1110 = = 0,56 м³/ч, т. е. 13,4 м³/сутки.

Таким образом, \(V_\text{общ} = 0,56 \text{ м}^3/\text{ч}. \)

Для определения \(V' \) надо знать производительность 1 м² фильтра за один оборот, т. е. за время прохождения зоны фильтрования \(t \), и частоту вращения фильтра в 1 ч.

Известно, что объем влажного осадка, отлагающегося на фильтре при прохождении 1 м² фильтрата, равен 0,686 м³/м². При заданной толщине слоя осадка 5 мм необходимая поверхность зоны фильтрования на 1 м² фильтрата 0,686/0,005 = = 137,5 м²/м². Очевидно, через поверхность зоны фильтрования в 1 м² пройдет объем фильтрата:

\[
v = 1/137,5 = 0,00728 \text{ м}^3/\text{м}^2.
\]

* Такая толщина слоя объясняется аморфной структурой осадка; для кристаллических осадков толщина слоя обычно больше (15—20 мм).
Для определения частоты вращения фильтра надо знать время фильтрования \(t \) (врея, за которое образуется осадок толщиной 5 мм). Для этого воспользуемся основным уравнением фильтрования (3.13):

\[V^2 + 2VC = Kt, \]

где \(V = 7,28 \cdot 10^{-3} \text{ м}^3/\text{м}^2/\text{с} \).

Константу \(K \) определим по уравнению (3.15):

\[K = \frac{2 \Delta \rho}{\mu \sigma r} = \frac{2 \cdot 53300}{1,51 \cdot 10^{-3} \cdot 207,5 \cdot 43,21 \cdot 10^{10}} = 0,79 \cdot 10^{-4} \text{ м}^3/\text{с}, \]

где

\[\Delta \rho = 53300 \text{ Па} = 400 \text{ мм рт. ст.}; \mu = 1,51 \cdot 10^{-3} \text{ Па} \cdot \text{с}; \]
\[c = 207,5 \text{ кг/м}^3; \ r = 43,21 \cdot 10^{10} \text{ м/кг.} \]

Константу \(C \) определим по уравнению (3.19):

\[C = \frac{\tau_{	ext{пр}}}{rc} = \frac{11,43 \cdot 10^{10}}{43,21 \cdot 10^{10} \cdot 207,5} = 1,28 \cdot 10^{-3} \text{ м}^3/\text{м}^2. \]

Тогда

\[\tau = \frac{7,28 \cdot 10^{-6} + 2 \cdot 7,28 \cdot 10^{-3} \cdot 1,28 \cdot 10^{-3}}{0,79 \cdot 10^{-6}} = 91 \text{ с} = 1,52 \text{ мин}. \]

Для определения частоты вращения барабана необходимо найти угловую скорость вращения фильтра по формуле:

\[\omega = \frac{360 - \varphi'}{\tau + \tau_{\text{пр}}}, \]

где \(\tau = 1,52 \text{ мин} \) — время фильтрования; \(\tau_{\text{пр}} = 1,5 \text{ мин} \) — время подсушки осадка; \(\varphi' \) — угол, занимаемый зоной отсева эма и мертвой зоной (принимаем его равным 1,23 рад, или 70°, на основании практических данных). Тогда

\[\omega = \frac{2 \pi - 1,23}{3,02} = 1,67 \text{ рад/мин}, \]

или

\[\omega = \frac{360 - 70}{3,02} = 96,2 \text{ град/мин.} \]

Общая продолжительность рабочего цикла, или продолжительность одного оборота барабана:

\[\tau_{\text{об}} = 2 \pi / 1,67 = 360 / 96,2 \approx 3,8 \text{ мин.} \]

Частота вращения фильтра в 1 ч:

\[n = 60 / 3,8 = 15,8 \text{ об/ч.} \]

Время просушки, съема осадка и пребывания в мертвых зонах:

\[\tau_{	ext{суш}} = 3,8 - 1,52 = 2,28 \text{ мин.} \]

Число секций, одновременно находящихся в зоне просушки, в зоне съема осадка и в мертвых зонах:

\[z = 2,28 \cdot 24 / 3,8 \approx 14. \]

В зоне фильтрования находится 10 секций (24—14).

Необходимая поверхность фильтра:

\[F = \frac{V_{\text{об} \text{б}}} {vn} = \frac{0,56}{0,00728 \cdot 15,8} = 4,86 \text{ м}^2. \]

Принимаем вакуум-фильтр с поверхностью фильтрования 5 м².
Глава 4
ТЕПЛОПЕРЕДАЧА В ХИМИЧЕСКОЙ АППАРАТУРЕ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

Теплопроводность

1. Уравнение теплопроводности для установившегося теплового потока через однослоиную плоскую стенку:

\[q = \frac{Q}{F} = \frac{t_r - t_x}{r} = \frac{\lambda}{\delta} (t_r - t_x), \quad (4.1) \]

где \(q \) — удельный тепловой поток (удельная тепловая нагрузка), Вт/м²; \(Q \) — тепловой поток (расход теплоты), Вт; \(F \) — площадь поверхности стенки, м²; \(t_r \) и \(t_x \) — температуры горячей и холодной поверхностей стенки, К или °C; \(r = \frac{\delta}{\lambda} \) — термическое сопротивление стенки, (м²·K)/Вт; \(\delta \) — толщина стенки, м; \(\lambda \) — коэффициент теплопроводности, Вт/(м·K).

Уравнение теплопроводности для установившегося теплового потока через многослойную плоскую стенку:

\[q = \frac{Q}{F} = \frac{t_r - t_x}{\sum r} = \frac{t_r - t_x}{\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \ldots} . \quad (4.2) \]

2. Для цилиндрической однослоиной стенки средняя площадь поверхности определяется по формуле:

\[F_{cp} = \pi d_{cp} L = \frac{\pi (d_2 - d_1) L}{\ln \frac{d_2}{d_1}} , \quad (4.3) \]

где \(c_1 \) и \(d_2 \) — внутренний и наружный диаметры; \(L \) — длина цилиндра, м.

Уравнение теплопроводности для установившегося теплового потока через однослоиную цилиндрическую стенку:

\[Q = \frac{\lambda}{\delta} (t_r - t_x) F_{cp} = \frac{2\pi \lambda (t_r - t_x) L}{\ln \frac{d_2}{d_1}} . \quad (4.4) \]

Здесь \(\delta = \frac{(d_2 - d_1)}{2} \).

Если \(d_2/d_1 < 2 \), то вместо вычисления по формуле (4.3) можно с достаточной точностью принимать для средней площади поверхности однослоиной цилиндрической стенки величину

\[F_{cp} = \pi (d_1 + d_2) L/2 . \quad (4.5) \]

Уравнение теплопроводности для установившегося теплового потока через многослойную цилиндрическую стенку:

\[Q = \frac{2\pi L (t_r - t_x)}{\sum \frac{1}{\lambda} \ln \frac{d_n}{d_n}} = \frac{2\pi L (t_r - t_x)}{\frac{1}{\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{\lambda_2} \ln \frac{d_2}{d_2} + \ldots} . \quad (4.6) \]

Здесь \(d_1 \) и \(d_n \) — внутренний и наружный диаметры каждого цилиндрического слоя.
3. При отсутствии экспериментальных данных коэффициент теплопроводности жидкости λ [в Вт/(м·К)] при температуре ~ 30 °C может быть рассчитан по формуле:

$$\lambda_{30} = A c_m^{1/4} \rho^{1/4} M,$$

где c — удельная теплоемкость жидкости, Дж/(кг·К); ρ — плотность жидкости, кг/м3; M — мольная масса жидкости, г/кмоль; A — коэффициент, зависящий от степени ассоциации жидкости, м3·кмоль$^{-1/3}$·с$^{-1}$.

Для ассоциированных жидкостей (например, воды) $A = 3,58 \cdot 10^{-8}$, для неассоциированных (например, бензола) $A = 4,22 \cdot 10^{-8}$.

Коэффициент теплопроводности жидкости при температуре t определяется по формуле:

$$\lambda_t = \lambda_{30} [1 - \varepsilon (t - 30)],$$

где ε — температурный коэффициент. Значения $\varepsilon \cdot 10^3$ (в °С$^{-1}$):

- Анилин 1,4 Метиловый спирт 1,2 Хлорбензол 1,5
- Ацетон 2,2 Нитробензол 1,0 Хлороформ 1,8
- Бензол 1,8 Пропиленовый спирт 1,4 Этилацетат 2,1
- Гексан 2,0 Уксусная кислота 1,2 Этиловый спирт 1,4

Коэффициент теплопроводности водного раствора при температуре t определяется по формуле:

$$\lambda_{pt} = \lambda_{pt_{30}} \frac{\lambda_{pt}}{\lambda_{pt_{30}}},$$

где λ_0 и λ_2 — коэффициенты теплопроводности раствора и воды.

4. Коэффициент теплопроводности газа [в Вт/(м·К)] при невысоких давлениях может быть вычислен по формуле:

$$\lambda = B c_p \mu.$$

Здесь μ — динамический коэффициент вязкости газа, Па·с; $B = 0,25 \times 9 (k - 5)$; $k = c_p / c_v$ — показатель адабат; c_p и c_v — удельная теплоемкость газа при постоянном давлении и при постоянном объеме, соответственно, Дж/(кг·К).

Так как для газов данной атомности отношение c_p / c_v есть величина приближенно постоянная, то для одноатомных газов $B = 2,5$, для двухатомных $B = 1,9$, для трехатомных $B = 1,72$.

Для расчета коэффициента теплопроводности смеси газов применяется аддитивность в общем случае неприменимо. Приближенный расчет λ смеси газов см. в примере 4.6.

Теплоотдача

5. В табл. 4.1 дан перечень основных случаев теплоотдачи и соответствующих расчетных уравнений.

6. Основные критерии подобия, входящие в критериальные уравнения конвективной теплоотдачи:

Критерий Нуссельта:

$$Nu = al / \lambda.$$

(4.11)
<table>
<thead>
<tr>
<th>Вид теплоотдачи</th>
<th>Номер уравнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>А. Конвективная теплоотдача, не сопровождающаяся изменением агрегатного состояния</td>
<td></td>
</tr>
<tr>
<td>1. Вынужденное движение</td>
<td></td>
</tr>
<tr>
<td>a) развитое турбулентное течение</td>
<td>(4.17)—(4.22)</td>
</tr>
<tr>
<td>б) Re < 10 000</td>
<td>(4.23)—(4.28)</td>
</tr>
<tr>
<td>2. Поперечное обтекание пучков труб</td>
<td></td>
</tr>
<tr>
<td>a) гладких</td>
<td>(4.29)—(4.35)</td>
</tr>
<tr>
<td>б) оребренных</td>
<td>(4.36)—(4.37)</td>
</tr>
<tr>
<td>3. Течение вдоль плоской поверхности</td>
<td></td>
</tr>
<tr>
<td>4. Стекание жидкости пленкой по вертикальной поверхности</td>
<td>(4.41)—(4.44)</td>
</tr>
<tr>
<td>5. Перемешивание жидкостей мешалками</td>
<td></td>
</tr>
<tr>
<td>11. Свободное движение (естественная конvection)</td>
<td>(4.46)—(4.48)</td>
</tr>
<tr>
<td>Б. Теплоотдача при изменении агрегатного состояния</td>
<td></td>
</tr>
<tr>
<td>1. Пленочная конденсация пара</td>
<td>(4.49)—(4.59)</td>
</tr>
<tr>
<td>2. Кипение жидкостей</td>
<td>(4.60)—(4.65)</td>
</tr>
<tr>
<td>В. Теплоотдача при тепловом излучении твердых тел</td>
<td>(4.66)—(4.71)</td>
</tr>
</tbody>
</table>

Критерий Прандтля:

\[Pr = \frac{\nu}{\lambda} = \frac{v}{a}. \] (4.12)

Критерий Рейнольдса:

\[Re = \frac{\omega l \rho}{\mu} = \frac{\omega l}{v}. \] (4.13)

Критерий Галилея:

\[Ga = \frac{Re^3}{Fr} = \frac{g \beta \rho \mu^2}{\rho \lambda^2} = \frac{g \beta \rho}{\mu^2}. \] (4.14)

Критерий Грасгофа:

\[Gr = Ga \beta \Delta t = \frac{g \beta}{\nu^2} \beta \Delta t. \] (4.15)

Критерий Пекле:

\[Pe = RePr = \frac{\omega l \rho}{\mu} = \frac{\omega l \rho}{\lambda \nu}. \] (4.16)

Эти критерии учитывают, соответственно, влияние физических свойств теплоносителя и особенностей гидромеханики его движения на интенсивность теплоотдачи.

Величины, входящие в выражения для критериев подобия, и их единицы измерения приведены в табл. 4.2.

Физико-химические свойства жидкости (газа), входящие в критериальные уравнения, необходимо брать при так называемой определяющей температуре. Какая температура принимается за определяющую, указывается для каждого частного случая теплоотдачи.

6. Приближенные значения критерия Pr для капельных жидкостей можно определить по номограмме (рис. XIII). Для воды значения критерия Pr даны в табл. XXXIX.
<table>
<thead>
<tr>
<th>Величина</th>
<th>Наименование</th>
<th>Единица измерения и СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Коэффициент теплоотдачи</td>
<td>Вт/(м²·К)</td>
</tr>
<tr>
<td>β</td>
<td>Коэффициент объемного расширения</td>
<td>К·л</td>
</tr>
<tr>
<td>λ</td>
<td>Коэффициент теплопроводности</td>
<td>Вт/(м·К)</td>
</tr>
<tr>
<td>μ</td>
<td>Динамический коэффициент вязкости</td>
<td>Па·с</td>
</tr>
<tr>
<td>ν</td>
<td>Кинематический коэффициент вязкости</td>
<td>м²/с</td>
</tr>
<tr>
<td>ρ</td>
<td>Плотность</td>
<td>кг/м³</td>
</tr>
<tr>
<td>a = (\lambda/(\sigma p))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Удельная теплоемкость (при постоянном давлении)</td>
<td>Дж/(кг·К)</td>
</tr>
<tr>
<td>g</td>
<td>Ускорение свободного падения</td>
<td>м/с²</td>
</tr>
<tr>
<td>l</td>
<td>Определяющий геометрический размер (для каждой формулы указывается, какой размер является определяющим)</td>
<td>м</td>
</tr>
<tr>
<td>r</td>
<td>Теплota парообразования (испарения) удельная</td>
<td>Дж/кг</td>
</tr>
<tr>
<td>Δt</td>
<td>Разность температур стенки и жидкости (или на- оборот)</td>
<td>К</td>
</tr>
<tr>
<td>ω</td>
<td>Скорость</td>
<td>м/с</td>
</tr>
</tbody>
</table>

У капельных жидкостей с возрастанием температуры величина критерия \(Pr\) уменьшается — см. рис. XIII. Следовательно, для капельных жидкостей при нагревании \(Pr/Pr_{ct} > 1\), а при охлаждении \(Pr/Pr_{ct} < 1\). На этом основании при проектировании теплообменников в расчете коэффициентов теплоотдачи для нагревающихся жидкостей можно принимать \((Pr/Pr_{ct})^{0.25} = 1\), допуская небольшую погрешность в сторону уменьшения коэффициента теплоотдачи, т. е. в сторону запаса. Для охлаждающихся жидкостей, когда \(Pr/Pr_{ct} \geq 0.5\), с достаточной точностью можно принимать среднее значение \((Pr/Pr_{ct})^{0.25}\), равное 0,93.

7. Во многие критериальные уравнения конвективной теплоотдачи входит множитель \((Pr/Pr_{ct})^{0.25}\), учитывающий направление теплового потока и близкий к единице, когда температуры жидкости и стенки не сильно отличаются. При вычислении критерия \(Pr_{ct}\) значения физико-химических свойств жидкости надо брать по температуре стенки.

Для газов \(Pr/Pr_{ct} = 1\) как при нагревании, так и при охлаждении, поскольку для газа данной атомности (при невысоких давлениях) критерий \(Pr\) является величиной приблизительно постоянной, не зависящей от температуры и давления.

Приближенные значения критерия \(Pr\) для газов, рекомендуемые для расчетов:

Одноатомные газы 0,67 Трехатомные газы 0,8
Двухатомные газы 0,72 Четырех- и многоатомные газы 1,0

8. Теплоотдача при развитом турбулентном течении в прямых трубах и каналах (\(Re > 10\ 000\)).

Расчетная формула:

\[Nu = 0,021e^{0.8}Pr^{0.43}(Pr/Pr_{ct})^{0.25}.\] (4.17)
По уравнению (4.17) построена номограмма (рис. X11), рекомендуемая для расчетов.

Выражения для критериев Nu, Re, Pr — см. уравнения (4.11) и следующие, а также табл. 4.2.

Определяющая температура — средняя температура жидкости (газа), определяющий геометрический размер l — эквивалентный диаметр d₀:

\[d₀ = 4f/π, \]

где \(f \) — площадь поперечного сечения потока, а \(π \) — полный периметр поперечного сечения потока, независимо от того, какая часть этого периметра участвует в теплообмене.

Для труб круглого сечения \(d₀ = d \).

Значения поправочного коэффициента \(ε₁ \), учитывающего влияние на коэффициент теплоотдачи отношения длины трубы L к ее диаметру d, приведены в табл. 4.3.

Для изогнутых труб (змеевиков) полученное по формуле (4.17) значение α умножают на коэффициент x, учитывающий относительную кривизну змеевика:

\[α_βм = xα; \]

\[x = 1 + 3,54 \frac{d}{D}, \]

где d — внутренний диаметр трубы змеевика; D — диаметр витка змеевика.

Для газов расчетная формула (4.17) упрощается, так как в этом случае Pr/Pr₁ = 1, а Pr зависит только от атомности газа:

\[Nu = Cε₁ Re^{0,8}. \]

Например, для воздуха:

\[Nu = 0,018ε₁ Re^{0,8}. \]

9. Теплоотдача в прямых трубах и каналах при \((GrPr) < 8 \cdot 10^6\) и Re < 10 000 для вертикального или горизонтального расположения труб (см. табл. 4.4).

а) Re < 2300:

\[Nu = 1,55ε₁ (Re \frac{d}{L})^{1/3} (\frac{μ}{μ_{т}})_{0,14}. \]

Т а б л и ц а 4.3

<table>
<thead>
<tr>
<th>Значение критерия Re</th>
<th>Отношение L/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1 \cdot 10^4</td>
<td>1,23</td>
</tr>
<tr>
<td>2 \cdot 10^4</td>
<td>1,18</td>
</tr>
<tr>
<td>5 \cdot 10^4</td>
<td>1,13</td>
</tr>
<tr>
<td>1 \cdot 10^5</td>
<td>1,10</td>
</tr>
<tr>
<td>1 \cdot 10^6</td>
<td>1,05</td>
</tr>
</tbody>
</table>
Рис. 4.1. Зависимость Nu от критерия Re при значениях $(GrPr) < \cdot 10^8$.

Коэффициент c_1 ($c_1 > 1$) вводится, если перед обогреваемым участком трубы нет участка гидродинамической стабилизации. Величина c_1 обычно близка к единице и для приближенных расчетов может не учитываться. Остальные обозначения — см. уравнения (4.11)—(4.16) и табл. 4.2. Для газов (μ/μ_{ct}) не учитывается.

Определяющая температура: $t = 0,5 (t_{ot} + t_{ж.ср})$, где $t_{ж.ср} = 0,5 (t_{ж.нач} + t_{ж.кон})$.

Формула (4.23) выводена при значениях $0,00067 < (\mu/\mu_{ct})$ и $20 < (Pe \frac{d}{L})$.

При значениях $(Pe \frac{d}{L}) < 20$ величина Nu асимптотически стремится к предельному значению

$$Nu \approx 3,66. \quad (4.24)$$

б) $2300 < Re < 10 000$. В этой области надежных расчетных формул нет. Приближенно расчет (с запасом) можно выполнять по графику (рис. 4.1).

10. Теплоотдача в прямых трубах и каналах при $(GrPr) > 8 \cdot 10^6$ и $Re < 10 000$ (табл. 4.4).

Определяющая температура $t = 0,5 (t_{ot} + t_{ж.ср})$.

а) Горизонтальное расположение труб ($Re < 3500$):

$$Nu = 0,8 \left(Pe \frac{d}{L} \right)^{0.4} (GrPr)^{0.1} \left(\frac{\mu}{\mu_{ct}} \right)^{0.14}. \quad (4.25)$$

Обозначения — см. в уравнениях (4.11)—(4.16) и табл. 4.2. Для газов (μ/μ_{ct}) не учитывают.

Формула (4.25) выводена при значениях $20 < (Pe \frac{d}{L}) < 120$;

$10^8 < (GrPr) \leq 1,3 \cdot 10^7$; $2 < Pr \leq 10$.

При $(Pe \frac{d}{L}) \leq 10$ значение Nu определяют по уравнению:

$$Nu = 0,5 \left(Pe \frac{d}{L} \right). \quad (4.26)$$
Таблица 4.4

Указатель формул для расчета коэффициентов теплоотдачи в прямых трубах и каналах при Re < 10 000

<table>
<thead>
<tr>
<th>Значение GrPr</th>
<th>Положение прямых труб</th>
<th>Пределы применения</th>
<th>Формулы или рисунок</th>
</tr>
</thead>
<tbody>
<tr>
<td><8·10<sup>8</sup></td>
<td>Любое</td>
<td>Re < 2 300</td>
<td>20 ≤ (\left(\frac{Pe}{\frac{d}{L}} \right)) (4.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\left(\frac{Pe}{\frac{d}{L}} \right) \leq 20) (4.24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 300 < Re < 10 000</td>
<td>— Rис. 4.1</td>
</tr>
<tr>
<td>>8·10<sup>8</sup></td>
<td>Горizontalное</td>
<td>Re < 3 500</td>
<td>20 ≤ (\left(\frac{Pe}{\frac{d}{L}} \right) \leq 120) (4.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\left(\frac{Pe}{\frac{d}{L}} \right) \leq 10) (4.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Re > 3 500</td>
<td>— (4.27)</td>
</tr>
</tbody>
</table>

в) Горизонтальное расположение труб (Re > 3500):

\[
Nu = 0,022 Re^{0,8} Pr^{0,4} (\mu / \mu_{ct})^{n},
\]

где \(n = 0,14 \) при нагревании, \(n = 0,25 \) при охлаждении.

Формулы (4.25) и (4.27) выведены на основании экспериментальных данных при (GrPr) < 13·10⁸. Для приближенных расчетов эти формулы можно применять и при (GrPr) > 13·10⁸.

в) Вертикальное расположение труб при несовпадении свободной и вынужденной конвекции (движение жидкости в вертикальной трубе снизу вверх при охлаждении и сверху вниз при нагревании):

\[
Nu = 0,037 Re^{0,75} Pr^{0,4} (\mu / \mu_{ct})^{n},
\]

где \(n = 0,11 \) при нагревании, \(n = 0,25 \) при охлаждении.

Формула (4.28) выведена при значениях 250 < Re < 10 000; 1,5·10⁸ < (GrPr) < 12·10⁸. Для приближенных расчетов эту формулу можно применять и при (GrPr) > 12·10⁸.

г) Вертикальное расположение труб при совпадении свободной и вынужденной конвекции (движение жидкости в вертикальной трубе снизу вверх при нагревании и сверху вниз при охлаждении). Коэффициенты теплоотдачи при такой схеме движения теплоноситель
телей значительно ниже коэффициентов теплоотдачи при горизонтальном расположении труб и при вертикальном расположении при несовпадении вынужденной и свободной конвекции. Поэтому аппараты с такими направлениями движения теплоносителей применять не рекомендуется и расчетная формула не приводится.

Сводка расчетных формул при \(Re < 10^4 \) приведена в табл. 4.4.

11. Теплоотдача при поперечном обтекании пучка гладких труб.

а) Аппараты с однократно-перекрестным движением жидкости. Пример — межтрубное пространство аппарата, изображенного на рис. 4.2. Течение жидкости по \(B-B \).

При \(Re < 1000 \) для коридорных и шахматных пучков:

\[
Nu = 0,56\varepsilon_\varphi Re^{0,5} Pr^{0,36} (Pr/Pr_{ct})^{0,25}.
\]
(4.29)

При \(Re > 1000 \) для коридорных пучков:

\[
Nu = 0,22\varepsilon_\varphi Re^{0,65} Pr^{0,36} (Pr/Pr_{ct})^{0,25},
\]
(4.30)

для шахматных пучков:

\[
Nu = 0,4\varepsilon_\varphi Re^{0,6} Pr^{0,36} (Pr/Pr_{ct})^{0,25}.
\]
(4.31)

Определяющая температура — средняя температура жидкости, определяющий размер — наружный диаметр трубы. Расчет скорости \(w \) — см. формулу (4.35).

Коэффициентом \(\varepsilon_\varphi \) учитывается влияние угла атаки \(\varphi \) (рис. 4.3). Значения \(\varepsilon_\varphi \) приведены в табл. 4.5.

По формулам (4.29)—(4.31) находят значения коэффициентов теплоотдачи для третьего и последующих рядов труб в пучке. При достаточно большом числе рядов эти значения приближенно можно считать средними для всего пучка.

Для газов формулы упрощаются, так как \(Pr/Pr_{ct} = 1 \), а \(Pr \) зависит только от
Приемильно к кожухотрубчатым теплообменникам с перечными перегородками (рис. 4.4) в формулах (4.29)—(4.31) принимают коэффициент $\varepsilon_\varphi = 0,6$, учитывая, что теплоноситель в межтрубном пространстве лишь часть пути движется поперек труб и при угле атаки, меньшем 90°; кроме того, он может протекать через щели между перегородками и кожухом или трубами.

Расположение входного штуцера и сегментных перегородок для одно- и двухходового кожухотрубчатых теплообменников показано на рис. II и III.

Поперечные перегородки в межтрубном пространстве часто размещают на таком расстоянии друг от друга, чтобы живое сечение продольного потока в сегментном вырезе перегородки было равно живому сечению поперечного потока у края перегородки.

При соблюдении этого условия, например, для стрелки сегмента $b = 0,25D_{вн}$ расстояние между перегородками l будет равно:

$$l = \frac{b}{1,415\psi}. \quad (4.33)$$

где ψ — коэффициент, зависящий только от наружного диаметра d и шага t труб:

$$\psi = \frac{1 - (d/t)}{1 - 0,9 (d/t)^2}. \quad (4.34)$$

Расчетная скорость потока:

$$w = V/S_{с.ж.}. \quad (4.35)$$

Рис. 4.4. Кожухотрубчатый теплообменник с сегментными поперечными перегородками.
Рис. 4.5. Труба с поперечными ребрами.
Рис. 4.6. Зависимость $\alpha_{\text{пр}}$ от α.

Здесь V — расход жидкости, $\text{м}^3/\text{с}$; $S_{\text{пр}}$ — площадь проходного сечения межтрубного пространства, между перегородками, м^2. Для стандартных теплообменников в ГОСТах приводятся площади проходных сечений.

12. Теплоотдача при обтекании пучка труб с поперечными ребрами.

Расчетная формула имеет вид:

$$
Nu = C (d/t)^{-0.54} (h/t)^{-0.14} Re^n Pr^{0.4}.
$$

(4.36)

В этой формуле (рис. 4.5): d — наружный диаметр несущей трубы, м; t — шаг ребер, $\text{м}; h = (D - d)/2$ высота ребра, м.

Для коридорных пучков: $C = 0.116$, $n = 0.72$; для шахматных пучков: $C = 0.25$, $n = 0.65$.

Определяющая температура — средняя температура жидкости, определяющий размер — шаг ребер t.

Формула (4.36) применима при значениях $Re = 3000 \div 25000$ и $3 < (d/t) < 4.8$.

По вычисленному из уравнения (4.36) коэффициенту теплоотдачи определяют по графику (рис. 4.6) так называемый приведенный коэффициент теплоотдачи $\alpha_{\text{пр}}$, который и подставляют в формулу для коэффициента теплопередачи (отнесенного к полной площади наружной поверхности F_{n}):

$$
K = \frac{1}{\alpha_{\text{пр}}} + \frac{1}{\alpha_2} \frac{F_{\text{n}}}{F_{\text{в}}} + \sum r_{\text{ст}},
$$

(4.37)

где F_{n} — площадь полной наружной поверхности оребренной трубы на единицу длины, включая поверхность ребер; $F_{\text{в}}$ — площадь внутренней поверхности несущей трубы на единицу длины; α_2 — коэффициент теплоотдачи для потока, проходящего внутри трубы, $\text{Bt}/(\text{м}^2 \cdot \text{K})$; $\Sigma r_{\text{ст}}$ — сумма термических сопротивлений стенки и загрязнений.

13. Теплоотдача при течении вдоль плоской горизонтальной поверхности.

Расчетные формулы:

а) $Re < 5 \cdot 10^5$.

$$
Nu = 0.66 Re^{0.5} Pr^{0.33} (Pr/Pr_{\text{ст}})^{0.25},
$$

(4.38)
6) \(Re > 5 \cdot 10^8 \)

\[
\text{Nu} = 0,037 \, Re^{0.8} \, Pr^{0.43} \, (Pr/P_{\text{ct}})^{0.25}.
\]

(4.39)

Определяющая температура — средняя температура жидкости, определяющий размер — длина обтекаемой стенки по направлению движения потока.

Для расчетов по формуле (4.39) можно использовать номограмму (рис. XII), умножая полученное значение критерия \(\text{Nu} \) на величину 0,037/0,021 = 1,76.

Для газов формулы упрощаются. Для воздуха уравнение (4.39) приводится к виду:

\[
\text{Nu} = 0,032 \, Re^{0.8}.
\]

(4.40)

14. Теплоотдача при стекании жидкости пленкой по вертикальной поверхности.

а) При турбулентном стекании пленки (\(Re > 2000 \)):

\[
\text{Nu} = 0,01 \, (Ga \cdot Pr \cdot Re)^{1/3}.
\]

(4.41)

б) При ламинарном стекании пленки (\(Re < 2000 \)):

\[
\text{Nu} = 0,67 \, (Ga^2 \cdot Pr^3 \cdot Re)^{1/9}.
\]

(4.42)

Определяющая температура — средняя температура пограничного слоя, равная 0,5 \((t_{\text{ст}} + t_{\text{ср.Ж}}) \).

В уравнениях (4.41) и (4.42):

\[
\text{Nu} = \alpha H/\lambda; \quad Ga = H^{3/2} \rho h g / \mu^2; \quad Re = \omega d_p / \mu = 4 \Gamma / \mu,
\]

(4.43)

где \(H \) — высота поверхности, \(m; \) \(d_p = 4f/\Pi \) — эквивалентный диаметр пленки, \(m; \) \(f \) — площадь поперечного сечения пленки, \(m^2; \) \(\Pi \) — омываемый пленкой периметр, \(m; \) \(\Gamma = G/(\pi d) = G/\Pi \) — линейная плотность орошения, \(\text{кг/м·с}. \)

При \(Re < 1500 \) толщина пленки \(b \) определяется теоретическим уравнением:

\[
b = \sqrt[3]{\frac{3G\mu}{\Pi \rho g}} = \sqrt[3]{\frac{3G\mu}{\rho g}}.
\]

(4.44)

15. Теплоотдача при перемешивании жидкостей мешалками.

Коэффициент теплоотдачи в аппаратах со змеевиками, рубашками и мешалкой можно рассчитать по уравнению:

\[
\text{Nu} = CRe^m \, Pr^{0.33} \, (\mu/\mu_{\text{ct}})^{0.14} \, \Gamma^{-1},
\]

(4.45)

где \(\text{Nu} = \alpha d_m / \lambda; \) \(Re = \rho n d_m^2 / \mu; \) \(\Gamma = D/d_m; \) \(D \) — диаметр сосуда; \(n \) — частота вращения мешалки; \(d_m \) — диаметр окружности, омываемой мешалкой; \(\mu_{\text{ct}} \) — динамический коэффициент вязкости жидкости при температуре стенки рубашки или змеевика; \(\mu \) — динамический коэффициент вязкости жидкости при средней температуре 0,5 \((t_{\text{ср.Ж}} + t_{\text{ст}}) \).

Значения остальных физических констант надо брать при средней температуре жидкости в сосуде \(t_{\text{ср.Ж}} \).

* См. также [3.22], и [3.23].
Для аппаратов с рубашками: \(C = 0,36, \ m = 0,67; \) для аппаратов со змеевиками: \(C = 0,87, \ m = 0,62. \)

Формула (4.45) дает удовлетворительные результаты для турбинных, пропеллерных и лопастных мешалок с \(\Gamma' = D/d_m = 2,5 \div 4 \) в аппаратах диаметром до 1,5 м.

16. Теплоотдача при свободном движении (при естественной конвекции).

Расчетные уравнения:
А. Теплоотдача снаружи горизонтальных труб при \(10^3 < \frac{\text{GrPr}}{<} \sim 10^9: \)

\[
\text{Nu} = 0,5 \left(\frac{\text{GrPr}}{<} \right)^{0,25} \left(\frac{\text{Pr}}{\text{Pr}_{ct}} \right)^{0,25}.
\]

(4.46)

Определяющая температура — температура окружающей трубу среды; определяющий размер — диаметр трубы.

Б. Для вертикальных поверхностей, плоских и цилиндрических:

а) при \(10^3 < \frac{\text{GrPr}}{<} \sim 10^6: \)

\[
\text{Nu} = 0,76 \left(\frac{\text{GrPr}}{<} \right)^{0,25} \left(\frac{\text{Pr}}{\text{Pr}_{ct}} \right)^{0,25};
\]

(4.47)

б) при \(\text{GrPr} > 10^9: \)

\[
\text{Nu} = 0,15 \left(\frac{\text{GrPr}}{<} \right)^{0,33} \left(\frac{\text{Pr}}{\text{Pr}_{ct}} \right)^{0,25}.
\]

(4.48)

Определяющая температура — температура окружающей среды; определяющий размер для вертикальных поверхностей — высота.

17. Теплоотдача при пленочной конденсации пара.

А. Пленочная конденсация чистого насыщенного пара любых веществ, не содержащих неконденсирующихся газов (воздуха, инертных газов).

1. Обобщенная расчетная формула теплоотдачи в модели Нуссельта с преимущественным термическим сопротивлением в пленке конденсата:

\[
\text{Nu} = C \left(\frac{\text{GaPr} \ K_{\Phi}}{r} \right)^n.
\]

(4.49)

Здесь \(C, n — \) постоянные; \(\text{Nu} = \alpha l/\lambda; \) \(\text{Ga} = g \rho \mu /\mu; \) \(\text{Pr} = \mu c_p /\lambda; \) \(K_{\Phi} = r/(c_p \Delta t); \) \(\alpha — \) среднее значение искового коэффициента теплоотдачи при конденсации пара; \(l — \) характерный линейный размер, равный высоте \(H \) для вертикальных поверхностей теплообмена и диаметру \(d \) для поверхностей горизонтальных труб; \(\lambda, \rho, \mu, c_p, g — \) соответственно, величины коэффициентов теплоотдачи, плотности массы, динамической вязкости, изobarной теплоемкости и ускорения свободного падения для пленки конденсата при средней температуре \(t_{\text{пл}} = 0,5 \left(t_{\text{конд}} + t_{\text{ст}} \right), \) равной полусумме температуры конденсации \(t_{\text{конд}} \) и температуры стенки \(t_{\text{ст}}; \) \(r — \) темпераура фазового превращения при \(t_{\text{конд}}: \)

\[
\Delta t = t_{\text{конд}} - t_{\text{ст}};
\]

\(C = 0,728 — \) при конденсации на поверхности одиночных горизонтальных труб; \(C = 0,94 — \) при конденсации на поверхности вертикальных стенок (пучка труб) в приближенных условиях режима стекания пленки конденсата; \(C = 1,15 — \) то же, но с поправкой в 21 % на волнобразование в стекающей пленке конденсата; \(n = 0,25, \)

160
а) Среднее значение коэффициента теплоотдачи \([\text{Вт/}(m^2 \cdot K)]\) на поверхности пучка вертикальных труб высотой \(H\):

\[
\alpha = 1,15 \sqrt[4]{\frac{\lambda^2 \rho^2 g r}{\mu \Delta t H}},
\]

(4.49a)

где \(\lambda, \rho, g, r, \mu, \Delta t, H\) — для пленки конденсата при \(t_{пл} = 0,5\) \((t_{ kond} - t_{ct})\) в единицах С1.

б) Среднее значение коэффициента теплоотдачи \([\text{Вт/}(m^2 \cdot K)]\) на наружной поверхности одиночной горизонтальной трубы диаметром \(d\):

\[
\alpha = 0,728 \sqrt[4]{\frac{\lambda^2 \rho^2 g r}{\mu \Delta t d}}.
\]

(4.49b)

2. Коэффициенты теплоотдачи при пленочной конденсации в скорректированной модели Нуссельта.

Коррекция модели состоит в выборе определяющей температуры для вычисления физических свойств пленки конденсата. Принимая в качестве определяющей температуры \(t_{ kond}\), в соотношении (4.49) вводим поправочную функцию \(e_t\) по формуле [4.1, с. 134]:

\[
e_t = \left[\left(\frac{\lambda_{ct}}{\lambda}\right)^3 \frac{\mu}{\mu_{ct}}\right]^{1/8}.
\]

(4.50)

Индекс \(t_{ct}\) означает, что \(\lambda_{ct}\) и \(\mu_{ct}\) определяют при температуре поверхности стенки, соприкасающейся с пленкой конденсата. Значение \(e_t\) может быть весьма существенным для вязких конденсатов при больших \(\Delta t\). Для воды величину \(e_t\) в первом приближении принимают равной единице.

Скорректированным моделям (4.49) посредством соотношений (4.50) и

\[
r = \alpha \Delta t d ln(\bar{G})
\]

(4.51)

часто придают более простой для проектных расчетов вид, используя для этого данные о массовом расходе конденсирующегося пара \(\bar{G}\) и общем числе теплообменных труб \(n\).

а) В случае конденсации на пучке \(n\) вертикальных труб высотой \(H\) диаметром \(d\) среднее значение коэффициента теплоотдачи \([\text{Вт/}(m^2 \cdot K)]\):

\[
\alpha = 2,04 e_t \sqrt[4]{\frac{\lambda^2 \rho^2 r}{\mu \Delta t H}} = 3,78 e_t \lambda^{3/4} \sqrt[4]{\frac{\rho^2 d n}{\mu \bar{G}}}
\]

(4.52)

где значения величин \(\lambda, \rho, \mu\) берут при \(t_{ kond}\).

В частности, в этом случае для водяного пара, полагая \(e_t = 1\):

\[
\alpha = 2,04 \frac{A_t}{\sqrt{H \Delta t}}.
\]

(4.52a)

Значения функций \(B_t\) и \(A_t\) для воды приведены в табл. 4.6 при \(t_{ kond}\), где \(B_t = \lambda \rho^{2/3}/\mu^{1/3}\).
<table>
<thead>
<tr>
<th>Температура конденсации водяного пара, °C</th>
<th>100</th>
<th>112</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_t</td>
<td>6960</td>
<td>7100</td>
<td>7240</td>
<td>7420</td>
<td>7490</td>
<td>7520</td>
</tr>
<tr>
<td>B_t</td>
<td>1010</td>
<td>1040</td>
<td>1070</td>
<td>1120</td>
<td>1150</td>
<td>1170</td>
</tr>
</tbody>
</table>

6) В случае конденсации на наружной поверхности пучка горизонтальных труб длиной L при определении среднего значения коэффициента теплоотдачи α помимо функции ε, вводят еще правый множитель ε, учитывающий влияние числа труб по вертикали. Тогда осредненный по всему пучку коэффициент теплоотдачи α [Вт/(м2·К)]:

$$
\alpha = 0,7288\varepsilon t \sqrt{\frac{k^2\rho^2rg}{\mu \Delta t d}},
$$

где ε зависит от n_B (рис. 4.7).

Число труб n_B можно определить по ГОСТ 15118—79 (см. табл. 4.14).

Для водяного пара в случае конденсации на пучке горизонтальных труб при $\varepsilon_t = 1$:

$$
\alpha_{cp} = 1,28\varepsilon A_t/(d \Delta t)^{0,35}.
$$

Значения A_t и B_t — см. табл. 4.6.

При технических расчетах в тех случаях, когда второй коэффициент теплоотдачи значительно ниже, для конденсирующегося водяного пара можно принимать приближенно $\alpha_{конд} = 10000 \div 12000$ Вт/(м2·К).

в) Подставляя в формулы для $\alpha_{конд}$ значение $\Delta l_{конд} = q/\alpha_{конд}$ (где q — удельная тепловая нагрузка, Вт/м2), получаем:

для вертикальных поверхностей

$$
\alpha_{конд} = 1,21\lambda \left(\frac{\rho^2rg}{\mu H}\right)^{1/3} q^{-1/3},
$$

Рис. 4.7. Зависимость усредненного для всего пучка коэффициента ε числа труб по вертикали n_B и порядок определения n_B для коридорного (1) и шахматного (2) расположения труб.
для одиночных горизонтальных труб

$$\alpha_{кond} = 0,645\lambda \left(\frac{p^2 T g}{\mu d} \right)^{1/3} q^{-1/3}. \quad (4.56)$$

г) Конденсация пара внутри горизонтальных труб и змеевиков.

Общая критернальная зависимость для случая конденсации водяного пара приводится к виду [4.21]:

$$\alpha_{кond} = 1,36 A q^{0.5} l^{0.35} d^{-0.25} \quad (4.57)$$

или

$$\alpha_{кond} = 1,85 A^2 \Delta t_{кond} l^{0.7} d^{-0.5}, \quad (4.58)$$

где A — коэффициент, объединяющий физико-химические константы воды и пара (его значения в зависимости от температуры конденсации приведены на рис. 4.8); q — удельная тепловая нагрузка, Вт/м2; l — длина трубы, м; d — внутренний диаметр трубы, м.

При конденсации пара в змеевиках длина змеевика не должна быть очень большой, так как в нижней части длинных змеевиков скапливается конденсат, что ухудшает теплоотдачу; кроме того, уменьшается давление пара, что приводит к снижению полезной разности температур.

По практическим данным, для паровых змеевиков начальная скорость пара в змеевике не должна превышать ~ 30 м/с. При средней разности температур $\Delta t_{ср} = 30 \div 40$ К предельное наибольшее отношение длины змеевика к диаметру трубы L/d в зависимости от давления пара $p_{абс}$ составляет:

<table>
<thead>
<tr>
<th>$p_{абс}$</th>
<th>МПа</th>
<th>0,49</th>
<th>0,29</th>
<th>0,15</th>
<th>0,78</th>
</tr>
</thead>
<tbody>
<tr>
<td>(кгс/см2)</td>
<td>5</td>
<td>3</td>
<td>1,5</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>L/d макс</td>
<td>275</td>
<td>225</td>
<td>175</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

При других значениях $\Delta t_{ср}$ для паровых змеевиков приведенные значения L/d следует умножать на коэффициент $6/\sqrt{\Delta_t_{ср}}$.

Б. Конденсация пара, содержащего неконденсирующийся газ (например, воздух).

Если пар содержит воздух или другой неконденсирующийся газ, то теплоотдача при конденсации сильно ухудшается. На рис. 4.9 приведены полученные опытным путем значения отношения $e_t = \alpha_{в}/\alpha_{кond}$ в зависимости от концентрации Y воздуха в паре.

Здесь $\alpha_{кond}$ — коэффициент теплоотдачи при конденсации чистого пара, рассчитываемый по приведенным уравнениям; $\alpha_{в}$ — то же при содержании воздуха в паре; Y — относительная массовая концентрация воздуха в паре, кг воздуха/кг пара [или % (масс.)].

В. Конденсация чистого перегретого пара.

а) Если температура стенки выше температуры насыщения, то конденсации нет и теплоотдачу рассчитывают как для охлаждающегося газа.
6) Если температура стенки ниже температуры насыщения, то расчет теплоотдачи ведут по формулам (4.52) и (4.58), но вместо температуры конденсации r подставляют сумму температур конденсации и перегрева:

$$r' = r + c_p (t_\text{п} - t_\text{конд}),$$

(4.59)

где c_p — теплоемкость перегретого пара, Дж/(кг·К); $t_\text{п}$ — начальная температура перегретого пара, К; $t_\text{конд}$ — температура конденсации, К.

Зад Δt в формулах (4.52) и (4.58) при конденсации перегретого пара принимается также разность температуры конденсации пара и температуры стенки.

18. Теплоотдача при кипении жидкостей.

Уравнение теплоотдачи при кипении жидкостей существенно различаются в зависимости от вида термомеханического режима этого энергоемкого гетерогенного процесса, сопровождающегося фазовым превращением. По характеру и интенсивности кипения различают три основных режима процесса: 1) пузырьковый; 2) пузырчато-пленочный и 3) пленочный, причем наибольшее применение в химической технологии нашел первый режим, который в расчетной практике оценивают указанием области изменения удельной тепловой нагрузки ($q_{\text{кр.п}} < q < q_{\text{кр.1}}$).

Современные модели кипения в пузырьковом режиме опираются на представления о турбулизующем влиянии пузырьков паровой фазы, лимитирующем кинетику этого процесса, что позволяет значительно сократить его описание и выразить коэффициент теплоотдачи e без прямого обращения к методам статистики через обобщенный критерий Нуссельта Nu посредством модифицированного критерия Рейнольдса Re и критерия Прандтля Pr:

$$\text{Nu} = C \text{Re}^{n_1} \text{Pr}^{n_2},$$

(4.60)
где C, n_1, n_2 — постоянные; $Nu = \frac{\dot{U}}{\lambda}$; $Re = \frac{\dot{U} l}{\mu}$; l — характерный (модифицированный) линейный размер процесса теплообмена, являющийся параметрической функцией критического ламинарного радиуса пузыря R_{kr}, выраженного через основные физические свойства кипящего теплоносителя (изобарную теплоемкость c_p, плотности масс паровой ρ_p и жидкой ρ_n фаз, поверхностное натяжение σ, темперауру фазового превращения T_n и температуру кипения $T_{кип}$); \dot{w} — средняя скорость движения паровой фазы ($\dot{w} = \dot{w}_n$), определяется по удельной тепловой нагрузке $q_{\text{н}}$ и объемной темпераутре фазового превращения.

Используя явный вид такой зависимости, например, по Д. А. Лабунщву, в области $10^{-2} < Re < 10^4$, когда $C = 0,125$; $n_1 = 2/3$; $n_2 = 1/3$, т. е. из уравнения

$$Nu = 0,125 Re^{2/3} Pr^{1/3},$$

можно определить критерии Nu и найти из него среднее значение коэффициента теплообмена α при пузырьковом режиме кипения жидкости.

В пределах пузырькового режима кипения жидкостей в условиях свободного или вынужденного движения в трубах и продольных некруглых каналах можно использовать преобразованное уравнение (4.61), которому придают упрощенный вид, удобный для определения осреднённого значения коэффициента теплообмена α [в Вт (м2.К)] через удельную тепловую нагрузку q или движущую силу процесса $\Delta T_{кип}:

$$\alpha = b \sqrt[3]{\frac{\lambda^2 q^2}{v_{о}T_{кип}}},$$

где λ — коэффициент теплопроводности, q — мощность теплового потока, v — кинематической вязкости, $T_{кип}$ — температура кипения жидкости, движущей силы процесса $\Delta T_{кип} = (T_{ст} - T_{кип})$ выражают в единицах СП (табл. 4.2).

Численные значения безразмерной функции b, апробированной на множестве опытных данных по кипению различных жидкостей на поверхностях из нержавеющей стали, бронзы, никеля, меди и серебра, можно найти из графика зависимости b от отношения плотности жидкости ρ_j к плотности ее пара ρ_n (рис. 4.10). При составлении этого графика использовано уравнение вида:

$$b = 0,075 + 0,75 \left(\frac{\rho_n}{\rho_j - \rho_n}\right)^{2/3}.$$

Отклонения экспериментальных данных по величине $b =$$

$$\alpha \sqrt[3]{\frac{\lambda^2 q^2}{v_{о}T_{кип}}},$$

найденной в соответствии с обратным соотношением (4.62), от численных значений b, рассчитанных по формуле (4.62a), составили ±35% из-за влияния на интенсивность теплообмена материала теплообменных труб и чистоты поверхности нагрева.

165
Преобразованная формула (4.62) относительно абсолютного давления Π (в кгс/см2) применяется к определению коэффициента теплоотдачи кипящей воды имеет вид [4.11]:

$$\alpha = \frac{3.4110.18}{1 - 0.0045\Pi}.$$ (4.63)

Кроме приведенных выше расчетных формул (4.61) и (4.62) для $\alpha_{\text{кип}}$ можно использовать формулы других авторов (см. пример 4.22).

Величина критической тепловой нагрузки $q_{\text{кр.1}}$ при кипении жидкости на горизонтальных трубах в большом объеме определяется уравнением (при $\rho_{\text{ж}} \gg \rho_{\text{п}}$):

$$q_{\text{кр.1}} = 0.14r V \rho_{\text{п}} \left(1/\sigma g \rho_{\text{ж}} \right),$$ (4.64)

где r — теплота парообразования, Дж/кг.

Отклонения экспериментальных данных от рассчитанных по формуле (4.64) также лежат в пределах ±35%.

Для приближенного расчета коэффициента теплоотдачи при пузырьковом кипении жидкости в большом объеме на внешней поверхности пучков труб и в вертикальных испарителях в области умеренных тепловых нагрузок (до 0,4$q_{\text{кр.1}}$) и давлений $p_{\text{абс}} = 0.2 - 10$ кгс/см2 можно применить формулу:

$$\alpha_{\text{кип}} = 2.72q^{0.4}p^{0.7},$$ (4.65)

где q — множитель, учитывающий физические свойства жидкости; $p_{\text{абс}}$ выражено в кгс/см2.

Экспериментально найденные значения q (для кипения на поверхности труб из цветных металлов):

- Бензол: 0,31
- Газони: 0,27
- Гентан: 0,46
- Вода: 1
- 26% волный раствор глицерина: 0,83
- 25% волный раствор сахара: 0,57
- 9% волный раствор NaCl: 0,86
- 24% волный раствор NaCl: 0,62
- 10% волный раствор Na$_2$SO$_4$: 0,91
- Керосин: 0,31—0,50
- Метиловый спирт: 0,36
- Этиловый спирт: 0,45

19. Теплоотдача при тепловом излучении твердых тел.

Количество теплоты, переходящей от более нагретого тела к менее нагретому посредством лучения, определяется по уравнению:

$$Q = C_{1-2}F \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right].$$ (4.66)
Здесь \(Q \) — количество теплоты, передаваемое лучеиспусканием в единицу времени, Вт; \(F \) — площадь поверхности излучения, \(m^2 \); \(C_{1-2} \) — коэффициент излучения, \(\text{Вт}/(m^2\cdot K^4) \); \(T_1 \) — температура поверхности более нагретого тела, К; \(T_2 \) — температура поверхности менее нагретого тела, К; \(\phi \) — угловой коэффициент, безразмерный.

Коэффициент излучения \(C_{1-2} \) зависит от взаимного расположения и степени черноты \(\varepsilon \) излучающих поверхностей, имеющих температуры \(T_1 \) и \(T_2 \).

а) Если одно тело, площадь поверхности излучения которого равна \(F_1 \), расположено внутри полого тела с площадью поверхности излучения \(F_2 \), то \(F = F_1 \), угловой коэффициент \(\phi = 1 \) и

\[
C_{1-2} = \frac{1}{C_1 + \frac{1}{C_2 F_1} - \frac{1}{C_2 F_2}},
\]

где \(C_1 = \varepsilon_1 C_a \) — коэффициент лучеиспускания меньшего тела; \(C_2 = \varepsilon_2 C_a \) — коэффициент лучеиспускаия большего (окружающего) тела; \(C_a = 5,7 \, \text{Вт}/(m^2\cdot K^4) \) — коэффициент излучения абсолютно черного тела; \(\varepsilon_1 \) и \(\varepsilon_2 \) — степени черноты поверхности меньшего и большего тела.

Значения \(\varepsilon \) для некоторых материалов:

<table>
<thead>
<tr>
<th>Материал</th>
<th>(\varepsilon)</th>
<th></th>
<th>Материал</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алюминий</td>
<td>0,05—0,07</td>
<td>Краска масляная</td>
<td>0,78—0,96</td>
<td></td>
</tr>
<tr>
<td>Асбест</td>
<td>0,96</td>
<td>Лак</td>
<td>0,8—0,98</td>
<td></td>
</tr>
<tr>
<td>Вода</td>
<td>0,93</td>
<td>Медь</td>
<td>0,57—0,87</td>
<td></td>
</tr>
<tr>
<td>Гипс</td>
<td>0,78—0,9</td>
<td>Свинец</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>Дерево строганое</td>
<td>0,9</td>
<td>Стекло</td>
<td>0,94</td>
<td></td>
</tr>
<tr>
<td>Железо (сталь) окисленное</td>
<td>0,74—0,96</td>
<td>Чугун шероховатый окисленный</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>Кладка кирпичная</td>
<td>0,93</td>
<td>Штукатурка</td>
<td>0,93</td>
<td></td>
</tr>
</tbody>
</table>

б) Если площадь \(F_2 \) очень велика по сравнению с \(F_1 \) (например, аппарат в цехе), т. е. отношение \(F_1/F_2 \) близко к нулю, то коэффициент излучения \(C_{1-2} = C_1 \).

в) Если \(F_1 = F_2 \) (две параллельные бесконечно большие поверхности), то

\[
C_{1-2} = \frac{1}{C_1 + \frac{1}{F_1} - \frac{1}{C_2}}.
\]

Суммарный коэффициент теплоотдачи лучеиспусканием и конвекцией:

\[
\alpha = \alpha_n + \alpha_k,
\]

где

\[
\alpha_n = \frac{Q_n}{(T_1 - T_2) F} = \frac{C_{1-2} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]}{T_1 - T_2};
\]

\(\alpha_k \) — коэффициент теплоотдачи конвекцией, определяемый по соответствующим формулам для свободного или вынужденного движения.
Для расчета тепловых потерь аппаратов, находящихся в закрытых помещениях, при температуре поверхности аппарата до 150 °C можно пользоваться приближенной формулой:

\[\alpha = 9,74 + 0,07\Delta t, \]
(4.71)
где \(\alpha \) — суммарный коэффициент теплоотдачи лученоскапанием и конвекцией, \(\text{Bt}/(\text{m}^2\cdot\text{K}) \); \(\Delta t \) — разность температур поверхности аппарата и окружающего воздуха, K.

Теплопередача в поверхностных теплообменниках

Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку. Другую группу составляют теплообменники смещения, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.

20. Уравнение теплопередачи:

\[Q = KF \Delta t_{cp}. \]
(4.72)

Здесь \(Q \) — тепловой поток (расход передаваемой теплоты), \(\text{Bt} \); \(K \) — коэффициент теплопередачи, \(\text{Bt}/(\text{m}^2\cdot\text{K}) \); \(F \) — площадь поверхности теплопередачи, \(\text{m}^2 \); \(\Delta t_{cp} \) — средняя разность температур горячего и холодного теплоносителя, K.

Удельная тепловая нагрузка (удельный тепловой поток):

\[q = Q/F = K \Delta t_{cp}. \]
(4.73)

Для плоской поверхности коэффициент теплопередачи \(K \) в формулах (4.72) и (4.73) равняется:

\[K = \frac{1}{\frac{1}{\alpha_T} + \sum r_{ct} + \frac{1}{\alpha_X}}, \]
(4.74)

где \(\alpha_T \) и \(\alpha_X \) — коэффициенты теплоотдачи для горячего и холодного теплоносителя, \(\text{Bt}/(\text{m}^2\cdot\text{K}) \); \(\sum r_{ct} \) — сумма термических сопротивлений всех слоеев, из которых состоит стенка, включая слой загрязнений, \((\text{m}^2\cdot\text{K})/\text{Bt} \).

Уравнения (4.72)–(4.74) с достаточной точностью можно применять и для расчета теплопередачи через цилиндрическую стенку, если \(d_{vh} > 0,5d_{nap} \).

Площадь поверхности теплопередачи трубчатых аппаратов \(F_{an} \) (в \(\text{m}^2 \)) определяются по формуле:

\[F_{an} = \pi d_{cp} n L. \]
(4.75)

Здесь \(d_{cp} = d_{vh} \), если \(a_{nap} \gg a_{vh} \); \(d_{cp} = 0,5(d_{nap} + d_{vh}) \), если \(a_{nap} \ll a_{vh} \); \(n \) — число труб; \(L \) — длина труб, м.

Для трубчатого теплообменника, состоящего из \(n \) труб длиной каждая \(L \) (в м), уравнение теплопередачи может быть представлено в виде:

\[Q = K_L n L \Delta t_{cp}. \]
(4.76)
Здесь коэффициент теплопередачи на 1 м длины K_L (в Вт/(м·К)) равен:

$$K_L = \frac{1}{\alpha_{вн}d_{вн}} + \sum \frac{1}{2\lambda} \ln \frac{d_{вн}}{d_{вн}} + \frac{1}{\alpha_{нар}d_{нар}} + \sum \frac{r_{загр}}{d_{загр}},$$ \hspace{1cm} (4.77)

где λ — коэффициент теплопроводности материала стенки, Вт/(м·К).

Тепловая проводимость загрязнений на стенках ($1/r_{загр}$) зависит от рода теплоносителя, его температуры и скорости, а также от материала стенки, температуры нагревающей среды и длительности работы аппарата без очистки, т. е. в конечном счёте от рода осадка или продукта коррозии. Точные данные о $r_{загр}$ можно получить только опытным путём.

Ориентировочные значения тепловой проводимости загрязнений приведены в табл. XXXI.

При редких чистках аппарата или сильной коррозии значение $1/r_{загр}$ может уменьшаться до 500 Вт/(м²·К) и ниже.

21. Средняя разность температур $\Delta t_{ср}$, входящая в уравнение теплопередачи, определяется следующим образом.

а) Для противотока и прямотока:

$$\Delta t_{ср} = \frac{\Delta t_6 - \Delta t_M}{\ln (\Delta t_6/\Delta t_M)} = \frac{\Delta t_6 - \Delta t_M}{2,3 \lg (\Delta t_6/\Delta t_M)},$$ \hspace{1cm} (4.78)

где Δt_6 и Δt_M — большая и меньшая разности температур на концах теплообменника.

Следует отметить, что из уравнения (4.78) вытекает: если $\Delta t_6 = 0$ или $\Delta t_M = 0$, то $\Delta t_{ср} = 0$; если $\Delta t_6 = \Delta t_M$, то $\Delta t_{ср} = \Delta t_6 = \Delta t_M$.

Если отношение $(\Delta t_6/\Delta t_M) < 2$, то с достаточной точностью вместо уравнения (4.78) можно применять уравнение

$$\Delta t_{ср} = (\Delta t_6 + \Delta t_M)/2.$$ \hspace{1cm} (4.79)

Формулы (4.72), (4.78) и (4.79) применимы при условии, что в теплообменнике значения коэффициента теплопередачи K и удельной теплоемкости c для каждого из теплоносителей можно считать постоянными вдоль всей поверхности теплообмена.

В тех случаях, когда вдоль поверхности теплообмена значительно меняется величина коэффициента теплопередачи K (или величина c), применение уравнений (4.72) и (4.78) становится недопустимым.

б) Для смешанного тока в многоходовых теплообменниках и для перекрестного тока:

$$\Delta t_{ср} = e_\Delta t \Delta t_{пр},$$ \hspace{1cm} (4.80)

где $e_\Delta t$ — поправочный коэффициент к средней разности температур $\Delta t_{пр}$, вычисленной для противотока.
Значение коэффициента e_{AT} берется из специальных графиков [13, 4.1]. Примеры таких графиков даны на рис. VIII.

В многоходовых теплообменниках с простым смешанным током (один ход в межтрубном пространстве и четное число ходов в трубном — см. рис. 4.15 и 4.20) среднюю разность температур можно рассчитать по формуле [13]:

$$
\Delta t_{cp} = \frac{A}{2,3 \lg \frac{\Delta t_0 + t_m + A}{\Delta t_0 + t_m - A}},
$$

где Δt_0 и Δt_m — большая и меньшая разности температур на входе теплообменника при противотоке с теми же начальными и конечными температурами теплоносителей; $A = \sqrt{\delta T^2 + \delta p^2}$; $\delta T = T_\text{нач} - T_\text{кон}$ — изменение температуры горячего теплоносителя; $\delta t = t_\text{кон} - t_\text{нач}$ — изменение температуры холодного теплоносителя.

22. Определение средних температур теплоносителей.

В большинстве критериальных уравнений теплоотдачи значения физико-химических констант теплоносителя отнесены к его средней температуре, которая находится следующим образом.

Для того теплоносителя, у которого температура изменяется в теплообменнике на меньшее число градусов, средняя температура определяется как средняя арифметическая между начальной и конечной:

$$
t_{cp,1} = \frac{(t_\text{нач} + t_\text{кон,1})}{2}.
$$

Для второго теплоносителя среднюю температуру находят по формуле:

$$
t_{cp,2} = t_{cp,1} \pm \Delta t_{cp}.
$$

Это уравнение справедливо и тогда, когда температура первого теплоносителя постоянна вдоль поверхности теплообмена.

Теплопередача при непосредственном соприкосновении потоков

23. Обобщенное уравнение для определения коэффициента теплопередачи от охлаждающегося ненасыщенного газа к жидкости в колонных аппаратах с насадками:

$$
K_i = 0,01 \text{Re}_p^{0.17} \text{Re}_w^{0.17} \text{Pr}_T^{0.33}.
$$

Здесь $K_i = Kd_p/\lambda_T$ — критерий Кирпичева; $\text{Re}_p = 4d_p\rho_p/(\mu_p)$ — критерий Рейнольдса для газа; $\text{Re}_w = 4L/(\rho_w \mu_w)$ — критерий Рейнольдса для жидкости; $\text{Pr}_T = c_p\mu_T/\lambda_T$ — критерий Прандтля для газа; K — коэффициент теплопередачи от газа к жидкости, $Bt/(m^2 \cdot K)$; $d_p = 4V_{cp}/\sigma$ — эквивалентный диаметр насадки, m; V_{cp} — свободный объем насадки, m^3/m^3; σ — удельная поверхность насадки, m^2/m^3; μ_p — фиктивная скорость газа в аппарате (отнесенная к полному поперечному сечению аппарата), m/c; L — плотность орошения, $kg/(m^2 \cdot c)$; λ_T — коэффициент теплопроводности газа, $Bt/(m \cdot K)$; μ_T — динамический коэффициент вязкости газа, Па·с; ρ_T — плотность газа, kg/m^3; μ_w — динамический коэффициент вязкости жидкости, Па·с.

Формула (4.83) получена по экспериментальным данным для охлаждения воздуха от 80 до 2 °C при удельном орошении водой, равном 3,5—10 $m^3/(m^2 \cdot ч)$.

170
24. Обобщенное уравнение для коэффициента испарения с поверхности жидкости в турбулентный газовый поток при вынужденном его движении:

$$Nu_r' = 0,027 \operatorname{Re}_r^{0.8} (Pr_r')^{0.33},$$ \hspace{1cm} (4.81)

где $Nu_r' = \beta d/D_r$ — диффузионный критерий Нуссельта; $Pr_r' = v_r/D_r$ — диффузионный критерий Прандтля для газа; β — коэффициент испарения, м/с; D_r — коэффициент диффузии, м2/с; v_r — кинематический коэффициент вязкости, м2/с.

Для случая охлаждения воздухом воды, стекающей в пленкой внутри каналов, по которым проходит воздух ($Pr_r' = 0,63$):

$$Nu_r = 0,019 \operatorname{Re}_r^{0.83}.$$ \hspace{1cm} (4.85)

Ориентировочные значения коэффициентов теплоотдачи и теплопередачи

В табл. 4.7 приведены приближенные значения коэффициентов теплоотдачи (с округлением) для воды и воздуха, вычисленные по вышеприведенным формулам для основных случаев конвективной теплоотдачи, а в табл. 4.8 — ориентировочные значения коэффициентов теплопередачи, полученные практически для различных случаев теплообмена.

Таблица 4.7

<table>
<thead>
<tr>
<th>Вид теплоотдачи</th>
<th>Вода</th>
<th>Воздух ($P_{абс} = 0,1$ МПа)</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вынужденное турбулентное течение:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>а) в трубах и каналах</td>
<td>$1200-5800$</td>
<td>$35-60$</td>
<td>$d = 30$ мм. Приведенные значения α соответствуют скоростям: воды — от 0,2 до 1,5 м/с, воздуха — 8—15 м/с</td>
</tr>
<tr>
<td>б) при перепендикулярном котекании труб</td>
<td>$3100-10000$</td>
<td>$70-100$</td>
<td>Шахматный пучок; $\varepsilon_b = 1$</td>
</tr>
<tr>
<td>Свободное движение</td>
<td>$230-500$</td>
<td>$3-9$</td>
<td>Давление атмосферное. Значения α соответствуют $\Delta t = 5 + 15$ К</td>
</tr>
<tr>
<td>Напуск паров у резервуара с неагрегированным паром</td>
<td>$2000-24000$</td>
<td></td>
<td>Давление избыточного пара (абс.) 0,4 МПа; $d = 30$ мм. Значения α соответствуют $\Delta t = 35 + 5$ К</td>
</tr>
</tbody>
</table>

171
<table>
<thead>
<tr>
<th>Вид теплообмена</th>
<th>Вынужденное движение</th>
<th>Свободное движение</th>
</tr>
</thead>
<tbody>
<tr>
<td>От газа к газу (при невысоких давлениях)</td>
<td>10—40</td>
<td>4—12</td>
</tr>
<tr>
<td>От газа к жидкости (газовые холодильники)</td>
<td>10—60</td>
<td>6—20</td>
</tr>
<tr>
<td>От конденсирующегося пара к газу (воздухоподогреватели)</td>
<td>10—60</td>
<td>6—12</td>
</tr>
<tr>
<td>От жидкости к жидкости (вода)</td>
<td>800—1700</td>
<td>140—340</td>
</tr>
<tr>
<td>От жидкости к жидкости (углеводороды, масла)</td>
<td>120—270</td>
<td>30—60</td>
</tr>
<tr>
<td>От конденсирующегося пара к воде (конденсаторы, подогреватели)</td>
<td>800—3500</td>
<td>300—1200</td>
</tr>
<tr>
<td>От конденсирующегося пара к органическим жидкостям (подогреватели)</td>
<td>120—340</td>
<td>60—170</td>
</tr>
<tr>
<td>От конденсирующегося пара органических веществ к воде (конденсаторы)</td>
<td>300—800</td>
<td>230—460</td>
</tr>
<tr>
<td>От конденсирующегося пара к кипящей жидкости (испарители)</td>
<td>—</td>
<td>300—2500</td>
</tr>
</tbody>
</table>

ПРИМЕРЫ

Пример 4.1. Аппарат диаметром 2 м и высотой 5 м покрыт слоем теплоизоляции из асбеста толщиной 75 мм. Температура стенки аппарата 146°C, температура наружной поверхности изоляции 40°C. Определить потери теплоты (теплового потока) через слой изоляции.

Решение. Средняя площадь, через которую проходит теплота:

\[
F_{cp} = \pi \left(D_{cp} L + 2 \frac{D^2}{4} \right) = 3,14 \left(2,075 \cdot 5 + 0,5 \cdot 2^2 \right) = 38,8 \text{ м}^2.
\]

Коэффициент теплопроводности асбеста \(\lambda = 0,151 \text{ Вт/(м·К)} \) находим по табл. XXVIII.

Тепловой поток через изоляцию:

\[
Q = \frac{\lambda}{\delta} (t_t - t_x) F_{cp} = \frac{0,151}{0,075} (146 - 40) 38,8 = 8280 \text{ Вт}.
\]

Пример 4.2. Рассчитать коэффициент теплопроводности жидкого нитробензола при 120°C по формуле (4.7).

Решение. Удельная теплоемкость нитробензола (табл. XXVI) \(c = 1380 \text{ Дж/(кг·К)} \).

Плотность нитробензола при 30°С \(\rho \approx 1200 \text{ кг/м}^3 \) (табл. IV).

Коэффициент теплопроводности нитробензола при 30°С по формуле (4.7):

\[
\lambda_20 = A \rho^{3/2} \sqrt{
ho/M} = 4,22 \cdot 10^{-8} \cdot 1380 \cdot 1200^{3/2} \sqrt{1200/123} = 0,149 \text{ Вт/(м·К)},
\]

где \(A = 4,22 \cdot 10^{-8} \) для неассоциированных жидкостей; \(M = 123 \text{ кг/кумоль} \) — мольная масса нитробензола.

Коэффициент теплопроводности нитробензола при 120°С по формуле (4.8):

\[
\lambda_t = \lambda_20 \left[1 - e (t - 30) \right] = 0,149 \left[1 - 1,0 \cdot 10^{-3} (120 - 30) \right] = 0,136 \text{ Вт/(м·К)}.
\]

По экспериментальным данным (рис. X) \(\lambda_t = 0,137 \text{ Вт/(м·К)} \).
Пример 4.3. Рассчитать коэффициент теплопроводности 25% водного раствора хлористого натрия при 80 °C. Плотность 25% раствора хлористого натрия ρ = 1189 кг/м³.

Решение. По номограмме (рис. XI) удельная теплоемкость 25% раствора хлористого натрия при 30 °C равна c = 3390 Дж/(кг·К).

Мольная масса раствора:

\[M = 0,907 \cdot 18 + 0,093 \cdot 58,5 = 21,7 \text{ кг/кмоль}. \]

где 0,093 = \[\frac{25/58,5}{(25/58,5) + (75/18)} \] — мольная доля хлористого натрия в растворе.

Коэффициент теплопроводности 25% раствора хлористого натрия при 30 °C по формуле (4.7):

\[\lambda_{30} = 3,58 \cdot 10^{-8} \cdot 3390 \cdot 1189 \sqrt[3]{1189/21,7} = 0,548 \text{ Вт/(м·К)}. \]

Коэффициент теплопроводности раствора при 80 °C по формуле (4.9):

\[\lambda_{80} = 0,548 \frac{(0,674/0,615)}{0,60} = 0,60 \text{ Вт/(м·К)}, \]

где 0,674 и 0,615 Вт/(м·К) — коэффициенты теплопроводности воды при 80 и 30 °C (рис. X).

Пример 4.4. Вычислить коэффициент теплопроводности для жидкого метана при t = −160,6 °C и сопоставить полученное значение с экспериментальным.

Решение. Жидкий метан относится к неассоциированным жидкостям.

\[\lambda = Acρ \frac{3}{\sqrt{ρ/M}} = 4,22 \cdot 10^{-8} \cdot 3,47 \cdot 10^{3} \cdot 423 \sqrt{423/16} = 0,184 \text{ Вт/(м·К)}, \]

где A = 4,22 \cdot 10^{-8} для неассоциированных жидкостей; c = 3,47 \cdot 10^{3} \text{ Дж/(кг·К)} — удельная теплоемкость жидкого метана при T = 112,6 K; ρ = 423 кг/м³ — плотность жидкого метана; M = 16 кг/кмоль — мольная масса метана.

По справочнику [4.15] коэффициент теплопроводности жидкого метана при t = −160,6 °C равен 0,194 Вт/(м·К). Погрешность при вычислении по формуле (4.7) составляет:

\[\frac{0,194 - 0,184}{0,184} \cdot 100 = 5,4\%. \]

Пример 4.5. Рассчитать коэффициент теплопроводности сухого воздуха при 300 °C.

Решение. По формуле (4.10):

\[\lambda = Bcρμ = 1,9 \cdot 0,748 \cdot 10^{8} \cdot 2,97 \cdot 10^{-5} = 0,0422 \text{ Вт/(м·К)}. \]

Здесь B = 1,9 для двухатомных газов; c — удельная теплоемкость при постоянном объеме, определяется из отношения \(c_P/c_v = 1,4 \):

\[c_v = c_p/1,4 = 1,05 \cdot 10^{8} / 1,4 = 0,748 \cdot 10^{8} \text{ Дж/(кг·К)}; \]

\[c_p = 1,05 \cdot 10^{8} \text{ Дж/(кг·К)} — удельная теплоемкость сухого воздуха при 300 °C; \]

\[μ = 2,97 \cdot 10^{-5} \text{ Па·с} — динамический коэффициент вязкости воздуха при 300 °C. \]
Пример 4.6. Вычислить коэффициент теплопроводности при 0 °C для газовой смеси состава: H₂ — 50%, CO — 40%, N₂ — 10% (по объему).

Решение. Правило аддитивности неприменимо. Приближенно можно определить коэффициент теплопроводности смеси газов по формуле (4.10). Выпишем значения физико-химических свойств для отдельных компонентов смеси:

<table>
<thead>
<tr>
<th>Компонент</th>
<th>ρ, кг/м³</th>
<th>c₀, 10⁻³ Дж/(кг·К)</th>
<th>k = \frac{c_p}{c_v}</th>
<th>μ, 10⁻¹ Па·с</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>0,09</td>
<td>10,14</td>
<td>1,41</td>
<td>0,00842</td>
</tr>
<tr>
<td>CO</td>
<td>1,25</td>
<td>0,75</td>
<td>1,4</td>
<td>0,0166</td>
</tr>
<tr>
<td>N₂</td>
<td>1,25</td>
<td>0,75</td>
<td>1,4</td>
<td>0,017</td>
</tr>
</tbody>
</table>

Находим массовый состав газовой смеси:

<table>
<thead>
<tr>
<th>Компонент</th>
<th>M (об.) %</th>
<th>M (масс.) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>50</td>
<td>6,7</td>
</tr>
<tr>
<td>CO</td>
<td>40</td>
<td>74,6</td>
</tr>
<tr>
<td>N₂</td>
<td>10</td>
<td>18,7</td>
</tr>
</tbody>
</table>

Итого: 100 %

Вычисляем c₀ для смеси газов:

\[c₀ = 0,067 \cdot 10,14 \cdot 10^3 + 0,746 \cdot 0,75 \cdot 10^3 + 0,187 \cdot 0,75 \cdot 10^3 = 1,379 \cdot 10^3 \text{ Дж/(кг·К).} \]

Находим динамический коэффициент вязкости газовой смеси по формуле (1.12) и по табл. XI:

\[μ_{cm} = \frac{(0,5 \cdot 8,13 \cdot 0,00842 + 0,4 \cdot 61,4 \cdot 0,0166 + 0,1 \cdot 59,5 \cdot 0,017) \cdot 10^{-3}}{0,5 \cdot 8,13 + 0,4 \cdot 61,4 + 0,1 \cdot 59,5} = 0,0156 \cdot 10^{-3} \text{ Па·с.} \]

Вычисляем коэффициент B в формуле (4.10):

\[B = 0,25 (9 \cdot 1,4 - 5) = 1,9. \]

Определяем коэффициент теплопроводности газовой смеси:

\[λ_{cm} = Bc₀μ_{cm} = 1,9 \cdot 1,379 \cdot 10^4 \cdot 0,0156 \cdot 10^{-3} = 0,041 \text{ Вт/(м·К).} \]

Если рассчитать коэффициент теплопроводности газовой смеси по правилу аддитивности, воспользовавшись данными табл. XXX, то получим:

для аддитивности по объему
\[λ_{cm} = 0,0926 \text{ Вт/(м·К);} \]

по массе
\[λ_{cm} = 0,0317 \text{ Вт/(м·К).} \]
Пример 4.7. Стенка печи состоит из двух слоев: огнеупорного кирпича \((\delta_1 = 500 \text{ мм}) \) и строительного кирпича \((\delta_2 = 250 \text{ мм}) \). Температура внутри печи 1300 °C, температура окружающего пространства 25 °C. Определить: а) потери теплоты с 1 м² поверхности стенки и б) температуру \(t_3 \) на границе между огнеупорным и строительным кирпичом. Коэффициент теплоотдачи от печных газов к стенке \(\alpha_1 = 34,8 \text{ Вт/(м}^2\cdot\text{К}) \); коэффициент теплоотдачи от стенки к воздуху \(\alpha_2 = 16,2 \text{ Вт/(м}^2\cdot\text{К}) \). Коэффициент теплопроводности огнеупорного кирпича \(\lambda_1 = 1,16 \text{ Вт/(м} \cdot \text{К}) \); коэффициент теплопроводности строительного кирпича \(\lambda_2 = 0,58 \text{ Вт/(м} \cdot \text{К}) \).

Решение. Схема процесса теплопередачи через стенку печи изображена на рис. 4.11.

а) Коэффициент теплопередачи

\[
K = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{34,8} + \frac{0,5}{0,16} + \frac{0,25}{0,58} + \frac{1}{16,2}} = 1,05 \text{ Вт/(м}^2\cdot\text{К})
\]

Потери теплоты с 1 м² поверхности стенки:

\[
q = K (t_1 - t_b) = 1,05 (1300 - 25) = 1340 \text{ Вт/м}^2.
\]

б) Температура \(t_3 \) на границе между огнеупорным и строительным кирпичом может быть найдена из соотношений

\[
q = (t_1 - t_3) \left(\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} \right), \quad q = \alpha_1 (t_1 - t_2) = \frac{\lambda_1}{\delta_1} (t_2 - t_3).
\]

Отсюда

\[
t_2 = t_1 - \frac{q}{\alpha_1} = 1360 - \frac{1340}{34,8} = 1261 \text{ °C};
\]

\[
t_1 = t_2 - \frac{q\delta_1}{\lambda_1} = 1261 - \frac{1340 \cdot 0,5}{1,16} = 684 \text{ °C}.
\]

Строительный кирпич может применяться до 800 °C. Следовательно, температура на внутренней поверхности строительного кирпича \(t_3 = 684 \text{ °C} \) допустима.

Пример 4.8. Определить температуры внутренней \(t_2 \) и наружной \(t_3 \) поверхностей стенки теплообменника, а также температуру \(t_4 \) наружной поверхности изоляции, которой покрыт аппарат. Температура жидкости в теплообменнике \(t_1 = 80 \text{ °C} \), температура наружного воздуха \(t_5 = 10 \text{ °C} \). Теплообменник сделан из стали; толщина стальной стенки \(\delta_{ct} = 5 \text{ мм} \), толщина изоляции \(\delta_{iz} = 50 \text{ мм} \). Коэффициент теплоотдачи от жидкости к стенке аппарата \(\alpha_1 = 232 \text{ Вт/(м}^2\cdot\text{К}) \); коэффициент теплоотдачи от поверхности изоляции к воздуху \(\alpha_2 = 10,4 \text{ Вт/(м}^2\cdot\text{К}) \); коэффициент теплопроводности изоляции \(\lambda_{iz} = 0,12 \text{ Вт/(м} \cdot \text{К}) \).

Решение. На рис. 4.12 дан схематический разрез стенки аппарата, покрытого изоляцией.
Коэффициент теплопередачи:

\[
K = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_\text{ст}}{\lambda_\text{ст}}} + \frac{\delta_\text{из}}{\lambda_\text{из}} + \frac{1}{\alpha_2} = \frac{1}{\frac{1}{232} + \frac{0,005}{46,5} + \frac{0,05}{0,12} + \frac{1}{10,4}} = 1,86 \text{ Вт}/(м²·К),
\]

где \(\lambda_\text{ст} = 46,5 \text{ Вт}/(м·К)\) (табл. XXVIII).

Удельный тепловой поток:

\[
q = K (t_1 - t_6) = 1,86 (80 - 10) = 130 \text{ Вт}/м².
\]

Температуры \(t_2, t_3\) и \(t_4\) определяются из соотношения:

\[
q = \alpha_1 (t_1 - t_2) = \frac{\lambda_\text{ст}}{\delta_\text{ст}} (t_2 - t_3) = \alpha_2 (t_4 - t_6).
\]

Температура внутренней поверхности стенки аппарата:

\[
t_2 = t_1 - \frac{q}{\alpha_4} = 80 - \frac{130}{232} = 79,4 ^{\circ}\text{C}.
\]

Температура наружной поверхности стенки аппарата:

\[
t_3 = t_2 - q \frac{\delta_\text{ст}}{\lambda_\text{ст}} = 79,4 - \frac{130 \cdot 0,005}{46,5} \approx 79,4 ^{\circ}\text{C}.
\]

Температура наружной поверхности изоляции:

\[
t_4 = \frac{q}{\alpha_2} + t_5 = \frac{130}{10,4} + 10 = 22,4 ^{\circ}\text{C}.
\]

Как видим, при наличии изоляции термическим сопротивлением стальной стенки можно пренебречь \((t_2 \approx t_3)\).

Пример 4.9. Определить среднюю температуру стенки в паровом подогревателе, в котором водяным паром \((\rho_{\text{возд}} = 0,4 \text{ МПа})\) подогревается: а) воздух при атмосферном давлении; б) вода. Средняя температура как воздуха, так и воды 30 °C. Толщина стенки стальных труб \(\delta_\text{ст} = 4 \text{ мм.} \) Коэффициенты теплоотдачи для пара, воздуха и воды взять приближенно по средним данным табл. 4.7 (турбулентное течение в трубах). Учтем наличие ржавчины на обеих сторонах стенки. Тепловая пропиодность одного слоя ржавчины: \(1/r_{\text{пр}} = 2320 \text{ Вт}/(м²·К).\) Обозначение температуры — см. на рис. 4.13.
Решение. Температуры поверхностей стенки t_2 и t_3 найдем из соотношения:

$$q = \alpha_1 (t_1 - t_2) = \alpha_2 (t_3 - t_4).$$

Температура конденсации водяного пара при $p_{абс} = 4$ кгс/см2 равняется 143°С (табл. LVII).

а) Паром нагревается воздух.
Коэффициент теплопередачи:

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\lambda_{ct}} + \frac{1}{r_{pк}}} =$$

$$= \frac{1}{\frac{1}{13300} + \frac{1}{2320} + \frac{0.004}{46.5} + \frac{1}{2320} + \frac{1}{46.4}} = 44.3 \text{ Вт/(м}^2\cdot\text{К).}$$

Здесь коэффициент теплоотдачи для конденсирующегося пара $\alpha_1 = 13300$ Вт/(м2·К), для воздуха $\alpha_2 = 46.4$ Вт/(м2·К), коэффициент теплопроводности стали (табл. XXVIII) $\lambda_{ct} = 46.5$ Вт/(м·К).

Удельный тепловой поток:

$$q = K (t_1 - t_4) = 44.3 (143 - 30) = 5010 \text{ Вт/м}^2.$$

Температура t_2:

$$t_2 = t_1 - \frac{q}{\alpha_1} = 143 - \frac{5010}{13300} = 142.6^\circ\text{C}.$$

Температура t_3:

$$t_3 = t_4 + \frac{q}{\alpha_2} = 30 + \frac{5010}{46.4} = 138^\circ\text{C}.$$

Средняя температура стенки:

$$t_{ср} = (t_2 + t_3)/2 = 140^\circ\text{C}.$$

б) Паром нагревается вода.
Коэффициент теплопередачи:

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\lambda_{ct}} + \frac{1}{r_{pк}}} =$$

$$= \frac{1}{\frac{1}{13300} + \frac{1}{2320} + \frac{0.004}{46.5} + \frac{1}{2320} + \frac{1}{3420}} = 761 \text{ Вт/(м}^2\cdot\text{К).}$$

Здесь коэффициент теплоотдачи для воды $\alpha_2 = 3420$ Вт/(м2·К).
Удельная тепловая нагрузка:

\[q = K (t_1 - t_4) = 761 (143 - 30) = 86\,000 \text{ Вт/м}^2. \]

Температура \(t_2 \):

\[t_2 = t_1 - \frac{q}{\alpha_1} = 143 - \frac{86\,000}{13\,300} = 136,5^\circ\text{C}. \]

Температура \(t_3 \):

\[t_3 = t_4 + \frac{q}{\alpha_2} = 30 + \frac{86\,000}{3420} = 55,2^\circ\text{C}. \]

Средняя температура стенки:

\[t_{ср} = (t_2 + t_3)/2 = (136,5 + 55,2)/2 \approx 96^\circ\text{C}. \]

Пример 4.10. В противоточный трубчатый конденсатор поступает 200 кг/ч аммиака под давлением \(p_{abc} = 1,19 \text{ МПа} \) при температуре 95 \(^{\circ}\text{C} \). Конденсатор охлаждается водой, поступающей при температуре 15 \(^{\circ}\text{C} \). Жидкий аммиак выходит из аппарата при температуре конденсации.

Какое количество воды надо подавать в конденсатор, если наименьшая разность температур аммиака и воды в конденсаторе допускается в 5 \(^{\circ}\text{C} \); какую температуру будет иметь вода на выходе из конденсатора?

Решение. По \(T-S \) диаграмме для аммиака (рис. XXVI) или по табл. XLVIII находим, что температура конденсации аммиака под давлением \(p_{abc} = 1,19 \text{ МПа} \) равняется 30 \(^{\circ}\text{C} \). Следовательно, входящий в конденсатор с температурой 95 \(^{\circ}\text{C} \) аммиак находится в состоянии перегретого пара. Для охлаждения его при постоянном давлении \(p_{abc} = 1,19 \text{ МПа} \) от 95 \(^{\circ}\text{C} \) до начала конденсации, т. е. до 30 \(^{\circ}\text{C} \), необходимо отнять теплоты:

\[Q_1 = 200 \frac{(1647\times10^3 - 1467\times10^3)}{3600} = 0\,000 \text{ Вт}, \]

где \((1647\times10^3 - 1467\times10^3) \text{ Дж/кг} \) — разность удельных энтальпий паров аммиака при давлении \(p_{abc} = 1,19 \text{ МПа} \) и температурах 95 и 30 \(^{\circ}\text{C} \) — см. диаграмму \(T-S \) (рис. XXVI).

Для того чтобы затем сконденсировать пар аммиака в жидкость, необходимо отнять теплоты:

\[Q_2 = 200 \frac{(1467\times10^3 - 323\times10^3)}{3600} = 63\,600 \text{ Вт}, \]

где \(323\times10^3 \text{ Дж/кг} \) — удельная энтальпия жидкого аммиака при \(p_{abc} = 1,19 \text{ МПа} \) и \(t = 30^{\circ}\text{C} \).

Таким образом, водой должно быть отнято теплоты:

\[Q = Q_1 + Q_2 = 10\,000 + 63\,600 = 73\,600 \text{ Вт}. \]

Изменение температуры аммиака в конденсаторе в зависимости от количества отданной им теплоты изображено на рис. 4.14.
Исходя из условия, что разность температур аммиака и воды в любом сечении конденсатора не должна быть меньше 5 °C = 5 K, принимаем температуру воды в том сечении конденсатора, где начинается конденсация аммиака и имеется наименьшая разность температур, равной 30 — 5 = 25 °C. Удельная теплоемкость воды при 0—100 °C равна 4,19·10³ Дж/(кг·K). Тогда необходимый расход воды может быть найден из уравнения теплового баланса участка конденсации:

\[63 600 = G_w \cdot 4,19 \cdot 10^3 (25 - 15), \]
откуда \(G_w = 1,515 \) кг/с.

Температуру воды на выходе из конденсатора \(t_2 \) определим из уравнения теплового баланса конденсатора:

\[73 600 = 1,515 \cdot 4,19 \cdot 10^3 (t_2 - 15), \]
откуда

\[t_2 = \frac{73 600}{1,515 \cdot 4,19 \cdot 10^3} + \frac{288}{299,6} = 26,6 \text{ °C}. \]

Пример 4.11. Теплota крекинг-остатка используется для подогрева нефти. Определить среднюю разность температур в теплообменнике между обогревающим крекинг-остатком и нагреваемой нефтью, если крекинг-остаток имеет температуры \(t_{нач} = 300 °C, t_{кон} = 200 °C, \) а нефть \(t_{нач} = 25 °C, t_{кон} = 175 °C. \)

Решение. Рассмотрим два случая [см. формулу (4.78)].

1 случай. Протяжён — обе жидкости движутся в одном направлении:

\[
\begin{align*}
300 &\rightarrow 200 \\
25 &\rightarrow 175 \\
\Delta t_6 &= 275 \\
\Delta t_m &= 25 \\
\frac{\Delta t_6}{\Delta t_m} &= \frac{275}{25} > 2.
\end{align*}
\]

Следовательно,

\[\Delta t_{ср} = \frac{275 - 25}{2,3 \lg (275/25)} = 104 °C = 104 \text{ K.} \]

2 случай. Противоток — жидкости движутся в противоположных направлениях:

\[
\begin{align*}
300 &\rightarrow 200 \\
175 &\leftarrow 25 \\
\Delta t_m &= 125 \\
\Delta t_6 &= 175 \\
\frac{\Delta t_6}{\Delta t_m} &= \frac{175}{125} < 2.
\end{align*}
\]
Следовательно,
\[\Delta t_{ср} = \frac{(125 + 175)}{2} = 150 \, ^\circ C = 150 \, К. \]
Если рассчитать среднюю разность температур для противотока как среднюю логарифмическую, получим 149 \, ^\circ C = 149 \, К.
Из приведенного расчета следует, что при прочих равных условиях средняя разность температур при противотоке больше, чем при прямотоке.
Необходимо отметить, что в случае противотока обогреваемая жидкость (нефть) может быть нагрета до температуры, гораздо более высокой, чем 175 \, ^\circ C (например, до 290 \, ^\circ C), а крекинг-остаток может быть охлажден много ниже 200 \, ^\circ C. Это является основным преимуществом противотока.

Пример 4.12. Определить среднюю разность температур в многоходовом теплообменнике, имеющем один ход в межтрубном пространстве и два хода в трубном (рис. 4.15):

Начальная температура горячего теплоносителя	\(T_1 = 80 \, ^\circ C \)
Конечная	\(T_2 = 40 \, ^\circ C \)
Начальная	\(t_1 = 10 \, ^\circ C \)
Конечная	\(t_2 = 34 \, ^\circ C \)

Решение. Воспользуемся формулой (4.81), откуда
\[A = \sqrt{57^2 + 61^2} = \sqrt{40^2 - 24^2} = 46,6. \]

Температурная схема при противотоке:
\[80 \rightarrow 40 \]
\[34 \rightarrow 10 \]
\[\Delta t_b = 46, \quad \Delta t_m = 30. \]

Средняя разность температур в многоходовом теплообменнике:
\[\Delta t_{ср} = \frac{A}{2,3 \, \lg \frac{\Delta t_b + \Delta t_m + A}{\Delta t_b + \Delta t_m - A}} = \frac{46,6}{2,3 \, \lg \frac{46 + 30 + 46,6}{46 + 30 - 46,6}} = 32 \, ^\circ C = 32 \, К. \]

Сделаем расчет по формуле (4.80):
\[\Delta t_{ср} = \varepsilon_{дт} \Delta t_{дт}. \]
Вычислим среднюю разность температур для противотока:
\[\Delta t_{пр} = (46 + 30) \cdot 2 = 38^\circ C = 38 \, К. \]

Найдем величины \(P \) и \(R \) (см. рис. VIII):
\[P = \frac{t_3 - t_1}{T_1 - t_1} = \frac{34 - 10}{80 - 10} = 0,34; \]
\[R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{80 - 40}{34 - 10} = 1,66. \]

По графику (рис. VIII, a) определяем значение поправочного коэффициента \(\varepsilon_{Δt} \). При \(P = 0,34 \) и \(R = 1,66 \) находим \(\varepsilon_{Δt} = 0,9. \)

Следовательно, средняя разность температур в многоходовом теплообменнике:
\[\Delta t_{ср} = \varepsilon_{Δt} \Delta t_{пр} = 0,9 \cdot 32 = 28,8^\circ C = 28,8 \, К. \]

Пример 4.13. Вычислить коэффициент теплоотдачи для воды, подогреваемой в трубчатом теплообменнике, состоящем из труб диаметром 40×2,5 мм. Вода идет по трубам со скоростью 1 м/с. Средняя температура воды 47,5 \(^\circ\)C. Температура стенки трубы 95 \(^\circ\)C; длина трубы 2 м.

Решение. Определяем режим течения:
\[Re = \frac{\omega dp}{\mu} = \frac{1 \cdot 0,035 \cdot 989}{0,57 \cdot 10^{-3}} = 60 800, \]
где 0,57 \cdot 10^{-3} Па·с — динамический коэффициент вязкости воды при 47,5 \(^\circ\)C (табл. VI); \(\rho = 989 \) кг/м³ — плотность воды при 47,5 \(^\circ\)C (табл. XXXIX).

Значение \(Re > 10000 \). Коэффициент теплоотдачи определяем по номограмме (рис. XII), построенной по формуле (4.17):
\[Nu = 0,021 \varepsilon_1 Re^{0,8} Pr^{0,43} (Pr/Pr_{кр})^{0,25}. \]
Здесь \(\varepsilon_1 = 1 \) для \(L/d = 2000/35 = 57 \) (табл. 4.3), \(Pr/Pr_{кр} = 3,74/1,85 = 2,02, \) где \(Pr = 3,74 \) при \(t_{ср. в} = 47,5 \, ^\circ\)C; \(Pr_{кр} = 1,85 \) при \(t_{кр} = 95 \, ^\circ\)C (табл. XXXIX).
По номограмме находим \(Nu = 300 \), откуда
\[\alpha = \frac{Nu \lambda}{d} = \frac{300 \cdot 0,643}{0,035} = 5510 \, Вт/(м². К), \]
где \(\lambda = 0,643 \) Вт/(м·К) — коэффициент теплопроводности воды при 47,5 \(^\circ\)C (табл. XXXIX).

Пример 4.14. В трубах кожухотрубчатого теплообменника нагревается бензин. Внутренний диаметр труб 53 мм, длина труб 3 м, скорость бензина в трубах 0,08 м/с, средняя температура бензина 40 \(^\circ\)C, температура поверхности загрязнения стенки, соприкасающейся с бензином, 70 \(^\circ\)C. Определить коэффициент теплоотдачи бензина.
Решение. Определяем режим течения бензола при \(t = 40 ^ {\circ} C \):

\[
\text{Re} = \frac{\omega d \rho}{\mu} = \frac{0,08 \cdot 0,53 \cdot 858}{0,492 \cdot 10^{-3}} = 7400 < 10000.
\]

Здесь \(\mu = 0,492 \cdot 10^{-3} \text{ Па}\cdot\text{с} \) — динамический коэффициент вязкости бензола при 40 \(^{\circ} C \) (табл. IX); \(\rho = 858 \text{ кг/м}^3 \) — плотность бензола при 40 \(^{\circ} C \) (табл. IV).

Для выбора расчетной формулы при \(\text{Re} < 10000 \) определяем критерий \(\text{Gr} \), \(\text{Pr} \) и \(\text{Re} \) при определяющей температуре \(t = 0,5 (t_{\text{н.ср}} + t_{\text{ст}}) = 0,5 (40 \div 70) = 55 ^{\circ} C \):

\[
\text{Gr} = \frac{d^3 \rho^2 \beta' \Delta t \rho}{\mu^2} = \frac{0,053 \cdot 841^2 \cdot 0,0394 \cdot 9,81}{0,413 \cdot 10^{-3}} = 239 \cdot 10^8,
\]

\[
\text{Pr} = \frac{(\mu / \lambda)}{\alpha} = \frac{1800 \cdot 0,413 \cdot 10^{-3}}{0,14} = 5,31; \quad \text{Re} = \frac{\omega d \rho}{\mu} = \frac{0,08 \cdot 0,53 \cdot 841}{0,413 \cdot 10^{-3}} = 8630,
\]

где \(\rho = 881 \text{ кг/м}^3 \) — плотность бензола при 55 \(^{\circ} C \) (табл. IV); \(\beta' \Delta t = (v_t - v_2) / \rho = (0,53 - 825,5) / 825,5 = 0,0394; \quad \rho_1 = 858 \text{ и } \rho_2 = 825,5 \text{ кг/м}^3 \) — плотности бензола при 40 и 70 \(^{\circ} C \); \(\mu = 0,413 \cdot 10^{-3} \) Па\cdot\text{с} — динамический коэффициент вязкости бензола при 55 \(^{\circ} C \) (табл. IX); \(c = 1800 \text{ Дж}/(\text{кг} \cdot \text{К}) \) — удельная теплоемкость бензола при 55 \(^{\circ} C \) (рис. XI); \(\lambda = 0,14 \text{ Вт}/(\text{м} \cdot \text{К}) \) — коэффициент теплопроводности бензола при 55 \(^{\circ} C \) (рис. X).

Произведение \((\text{GrPr}) = 239 \cdot 10^8 \cdot 5,31 = 12,7 \cdot 10^8\). При значениях \(10^8 < (\text{GrPr}) < 12 \cdot 10^8 \) и \(\text{Re} > 3500 \) применяются для горизонтальных труб формула (4.27), а для вертикальных — формула (4.28). В нашем случае \((\text{GrPr}) > 12 \cdot 10^8\). Однако для приближенного расчета используем эти же формулы.

Горизонтальное расположение труб [формула (4.27)]:

\[
\text{Nu} = 0,022 \text{Re}^{0,8} \cdot \text{Pr}^{0,1} \cdot (\mu / \mu_{\text{ст}})^{0,11} = 0,022 \cdot 8630^{0,8} \cdot 5,31^{0,11} (0,413 / 0,36)^{0,11} = 61,6.
\]

Здесь \(\mu_{\text{ст}} = 0,36 \cdot 10^{-3} \text{ Па}\cdot\text{с} \) — динамический коэффициент вязкости бензола при \(t_{\text{ст}} = 70 ^{\circ} C \) (табл. IX).

\[
\alpha_{\text{гор}} = \text{Nu} \lambda / d = 61,6 \cdot 0,14 / 0,053 = 162,7 \text{ Вт}/(\text{м}^2 \cdot \text{К}).
\]

Вертикальное расположение труб [формула (4.28)]:

\[
\text{Nu} = 0,037 \text{Re}^{0,7} \cdot \text{Pr}^{0,1} \cdot (\mu / \mu_{\text{ст}})^{0,11} = 0,037 \cdot 8630^{0,7} \cdot 5,31^{0,11} (0,413 / 0,36)^{0,11} = 65,6;
\]

\[
\alpha_{\text{верт}} = \text{Nu} \lambda / d = 65,6 \cdot 0,14 / 0,053 = 173 \text{ Вт}/(\text{м}^2 \cdot \text{К}).
\]

Пример 4.15. В трубном пространстве теплообменника нагревается толуол. Внутренний диаметр труб 21 мм, длина труб 4 м. Скорость толуола 0,05 м/с. Средняя температура толуола 30 \(^{\circ} C \). Температура поверхности стенки, соприкасающейся с толуолом, 50 \(^{\circ} C \). Определить коэффициент теплоотдачи толуола.

Решение. Определяем режим течения толуола при его средней температуре 30 \(^{\circ} C \):

\[
\text{Re} = \frac{\omega d \rho}{\mu} = \frac{0,05 \cdot 0,021 \cdot 856}{0,522 \cdot 10^{-3}} = 1720,
\]

где \(\rho = 856 \text{ кг/м}^3 \) — плотность толуола при 30 \(^{\circ} C \) (табл. IV); \(\mu = 0,522 \times 10^{-3} \text{ Па}\cdot\text{с} \) — динамический коэффициент вязкости толуола при 30 \(^{\circ} C \) (табл. IX).
Для выбора расчетной формулы при Re < 10 000 рассчитываем критерии Gr, Pr и Re при средней температуре t = 0,5 (30 + 50) = 40 ºC:

$$Gr = \frac{d^3 \rho \beta \Delta t g}{\mu^2} = \frac{0,021^3 \cdot 847^2 \cdot 1,11 \cdot 10^{-3} (50 - 40) \cdot 9,81}{0,466^2 \cdot 10^{-8}} = 3,33 \cdot 10^6.$$

Здесь $\rho = 847 \text{ кг/м}^3$ — плотность толуола при 40 ºC (табл. IV); $\beta = 1,11 \cdot 10^{-3} \text{ К}^{-1}$ — коэффициент объемного расширения толуола при 40 ºC (табл. XXXII); $\mu = 0,466 \cdot 10^{-3} \text{ Па} \cdot \text{с} — динамический коэффициент вязкости толуола при 40 ºC (табл. 1X).

$$Pr = \frac{c\mu}{\lambda} = 1718 \cdot 0,466 \cdot 10^{-3} / 0,14 = 5,72,$$

где $c = 1718 \text{ Дж/(кг} \cdot \text{К)}$ — удельная теплоемкость толуола при 40 ºC (рис. XI); $\lambda = 0,14 \text{ Вт/(м} \cdot \text{К)}$ — коэффициент теплопроводности толуола при 40 ºC (рис. X).

$$Re = \frac{wd\rho}{\mu} = \frac{0,05 \cdot 0,021 \cdot 847}{0,466 \cdot 10^{-3}} = 1900.$$

Произведение $(GrPr) = 3,33 \cdot 10^6 \cdot 5,72 = 19 \cdot 10^6 > 8 \cdot 10^5$.

Расчетные формулы:

а) Для горизонтальных труб при Re < 3500 [формула (4.25)]:

$$Nu = 0,8 \left(\frac{Re}{d} \right)^{0,4} (GrPr)^{0,1} \left(\frac{\mu}{\mu_{ct}} \right)^{0,14} =$$

$$= 0,8 \left(\frac{1900 \cdot 5,72}{4} \right)^{0,4} (19 \cdot 10^6)^{0,1} \left(\frac{0,466}{0,42} \right)^{0,14} = 21,75.$$

Здесь $Re = RePr = 1900 \cdot 5,72$; $\mu_{ct} = 0,42 \cdot 10^{-3} \text{ Па} \cdot \text{с} — динамический коэффициент вязкости толуола при 50 ºC (табл. 1X).

Таким образом,

$$\alpha_{гор} = Nu \lambda / d = 21,75 \cdot 0,14 / 0,021 = 145 \text{ Вт/(м}^2 \cdot \text{К).}$$

б) Для вертикальных труб при несовпадении свободной и вынужденной конвекции (при движении жидкости сверху вниз при нагревании) [формула (4.28)]:

$$Nu = 0,037Re^{0,75}Pr^{0,4} \left(\frac{\mu}{\mu_{ct}} \right)^{0,11} = 0,037 \cdot 1900^{0,75} \cdot 5,72^{0,4} (0,466/0,42)^{0,11} =$$

$$= 21,17,$$

где $\mu_{ct} = 0,42 \cdot 10^{-3}$ Па·с — динамический коэффициент вязкости толуола при 50 ºC (табл. 1X).

Следовательно,

$$\alpha_{верт} = Nu \lambda / d = 21,17 \cdot 0,14 / 0,021 = 141 \text{ Вт/(м}^2 \cdot \text{К).}$$

Пример 4.16. Через трубное пространство кожухотрубчатого теплообменника прокачивается рассол хлористого кальция концентрации 24,7% (масс.) при средней температуре $t_{гор} = -20$ ºC со скоростью 0,1 м/с. Внутренний диаметр труб 21 мм, длина труб 3 м. Средняя температура поверхности загрязнения стенки, соприкасающейся с рассолом, $t_{ст} = -10$ ºC.
Определить коэффициент теплоотдачи хлористого кальция.

Решение. Критерий Рейнольдса при средней температуре рассола $t_{ср.п} = -20^\circ C$ (при концентрации $\sim 25\%$ (масс.)):

$$Re' = \frac{\omega dp}{\mu} = \frac{0,1\cdot0,021\cdot1248}{99,96\cdot10^{-4}} = 262,$$

где $\rho = 1248$ кг/м3 — плотность рассола при $t_{ср.п} = -20^\circ C$ (табл. IV); $\mu = 99,96\cdot10^{-4}$ Па·с — динамический коэффициент вязкости рассола при $t_{ср.п} = -20^\circ C$ (табл. L1).

Для выбора расчетной формулы при $Re < 10\,000$ находим критерии Gr, Pr и Re при определяющей температуре $t = 0,5\left(t_{ct} + t_{ср.п}\right) = 0,5\left(-10\right) + (-20) = -15^\circ C$.

$$Gr = \frac{\pi^2 \rho^2 \Delta l g}{\mu^2} = \frac{0,0213\cdot1243^2\cdot0,00361\cdot9,81}{81,32^2\cdot10^{-8}} = 0,77\cdot10^4;$$

$$Pr = \frac{\mu}{\lambda} = \frac{2861\cdot81,32\cdot10^{-4}}{0,467} = 49,8; \quad Re = \frac{\omega dp}{\mu} = \frac{0,1\cdot0,021\cdot1246}{81,32\cdot10^{-4}} = 322.$$

Здесь $\rho = 1246$ кг/м3 — плотность рассола при $t = -15^\circ C$ (табл. IV); $\beta\Delta l = (\nu_2 - \nu_1)/(\nu_1 - \nu_2) = (\rho_1 - \rho_2)/(\rho_1 - \rho_2) = (1248 - 1243,5)/1243,5 = 0,00361$; $\nu_2 = 1248$ и $\nu_2 = 1243,5$ кг/м3 — плотности рассола при $t_{ср.п} = 20^\circ C$ и $t_{ct} = -10^\circ C$ (табл. IV); $\mu = 81,32\cdot10^{-4}$ Па·с — динамический коэффициент вязкости рассола при $t = -15^\circ C$ (табл. L1); $c = 2861$ Дж/(кг·K) — удельная теплоемкость рассола при $t = -15^\circ C$ (табл. L1); $\lambda = 0,467$ Вт/(м·K) — коэффициент теплопроводности рассола при $t = -15^\circ C$ (табл. L1).

Произведение $(GrPr) = 0,77\cdot10^4\cdot49,8 = 3,84\cdot10^5 < 8\cdot10^5$ — расчетная формула как для горизонтальных, так и для вертикальных труб (4,23):

$$Nu = 1,55\left(Re\frac{d}{L}\right)^{1/3}\left(\frac{\mu}{\mu_{ct}}\right)^{0,14} = 1,55\left(322\cdot49,8\cdot0,021\cdot3\right)^{1/3}\left(\frac{81,32}{62,69}\right)^{0,14} = 1,55\cdot9,13^{1/3}\cdot1,3^{0,14} = 1,55\cdot4,5\cdot1,037 = 7,24,$$

где $\mu_{ct} = 62,69\cdot10^{-4}$ Па·с — динамический коэффициент вязкости рассола при $t_{ct} = -10^\circ C$ (табл. L1).

Коэффициент теплоотдачи рассола:

$$\alpha = Nu \frac{\lambda}{d} = 7,24\cdot0,467/0,021 = 161 \text{ Вт/(м}^2\cdot\text{К)}.$$

Пример 4.17. В условиях предыдущего примера рассчитать коэффициент теплоотдачи рассола при его скорости 1,24 м/с.

Решение. Определяем режим течения раствора хлористого кальция:

$$Re = \frac{\omega dp}{\mu} = \frac{1,24\cdot0,021\cdot1246}{81,32\cdot10^{-4}} = 4000.$$

При значениях (GrPr) = $3,84\cdot10^5 < 8\cdot10^5$ в пределах 2300 $< Re = 4000 < 10\,000$ приближенный расчет (с запасом) коэффициента теплоотдачи осуществляется по графику (рис. 4.1). При $Re = 4000$ находим:

$$\frac{Nu}{Pr^{0,43} (Pr/Pr_{ct})^{0,25}} = 12,$$

184
откуда

\[\text{Nu} = 12 \text{Pr}^{0.43} \left(\frac{\text{Pr}}{\text{Pr}_{cp}} \right)^{0.25} = 12 \cdot 49,8^{0.43} \left(49,8/37,77 \right)^{0.25} = 69. \]

Здесь \(\text{Pr}_{cp} = 2874 \cdot 62,69 \cdot 10^{-4}/0,477 = 37,77 \) при \(t_{cp} = -10^\circ C \) (табл. LI и LII).

Следовательно,

\[\alpha = \text{Nu} \lambda/d = 69 \cdot 0,467/0,021 = 1535 \text{ Вт/(м}^2 \cdot \text{К).} \]

Пример 4.18. Определить коэффициенты теплоотдачи воздуха для двух случаев: а) однородное поперечное обтекание под углом 90\(^\circ\) многорядного пучка шахматно расположенных труб (рис. 4.2); скорость воздуха в наиболее узком сечении 12 м/с; б) движение воздуха через межтрубное пространство (с поперечными перегородками) кожухотрубчатого теплообменника; расчетная скорость воздуха 12 м/с (рис. 4.4). В обоих случаях наружный диаметр труб 44,5 мм, средняя температура воздуха 200 \(^\circ\)C, давление атмосферное.

Решение в е. а) Однородное обтекание пучка труб.
Критерий Рейнольдса:

\[\text{Re} = \frac{\nu d_{p}}{\mu} = \frac{12 \cdot 0,0445 \cdot 0,745}{0,026 \cdot 10^{-3}} = 15300, \]

где \(\rho = 1,293 \frac{273}{473} = 0,745 \text{ кг/м}^3 \) — плотность воздуха при 200 \(^\circ\)C; \(\mu = 0,026 \times 10^{-3} \text{ Па} \cdot \text{с} \) — динамический коэффициент вязкости воздуха при 200 \(^\circ\)C (рис. VI).

По формуле (4.32):

\[\text{Nu} = 0,356 \varepsilon_{p} \text{Re}^{0,6} = 0,356 \cdot 1,15 \cdot 300^{0,6} = 115. \]

Здесь \(\varepsilon_{p} = 1 \) (табл. 4.5).

Коэффициент теплоотдачи:

\[\alpha = \text{Nu} \lambda/d = 115 \cdot 0,0395/0,0445 = 102 \text{ Вт/(м}^2 \cdot \text{К),} \]

где \(\lambda = 0,0395 \text{ Вт/(м} \cdot \text{К) — коэффициент теплопроводности воздуха при 200 \(^\circ\)C} \) (табл. XXX).

б) Течение воздуха в межтрубном пространстве теплообменника с поперечными перегородками в кожухе.
Если задана расчетная скорость, то расчет аналогичен предыдущему, но в формулы для определения Nu или \(\alpha \) вводится коэффициент \(\varepsilon_{p} = 0,6 \) (см. стр. 157):

\[\varepsilon_{p} \alpha = 0,6 \cdot 102 = 61 \text{ Вт/(м}^2 \cdot \text{К).} \]

Пример 4.19. В вертикальном кожухотрубчатом теплообменнике, состоящем из 61 труб диаметром 32х2,5 мм и высотой 1,25 мм, стекает сверху толкой пленкой по внутренней поверхности труб 13 мбар четыреххлористого углерода. Средняя температура четыреххлористого углерода 50 \(^\circ\)C, температура внутренней поверхности труб 24 \(^\circ\)C.
Определить коэффициент теплоотдачи от четыреххлористого углерода к стенке в двух случаях: а) четыреххлористый углерод стекает тонкой пленкой по внутренней поверхности труб; б) четыреххлористый углерод проходит по трубам, заполняя все их поперечное сечение.

Решение. а) Стекание пленкой. В зависимости от режима течения коэффициент теплоотдачи будем определять по одной из формул (4.41) или (4.42). В обеих формулах значения физико-химических констант надо брать при температуре пограничного слоя (пленки):

\[
\nu_p = (\nu + \nu_c)/2 = (50 + 24)/2 = 37°C.
\]

Критерий Рейнольдса [формула (4.43)]:

\[
Re = \frac{4G}{\eta dp} = \frac{4 \cdot 13 \cdot 1560}{3600 \cdot 3 \cdot 14 \cdot 0.027 \cdot 61 \cdot 0.77 \cdot 10^{-3}} = 5660 > 2000.
\]

Здесь \(\mu = 0,77 \cdot 10^{-3} \) Па·с — динамический коэффициент вязкости четыреххлористого углерода при 37°C (табл. 1X).

Стекание пленки турбулентное. Применяя формулу (4.41):

\[
Ga = \frac{H^3 \rho^2 g}{\mu^2} = \frac{1,25^3 \cdot 1560^2 \cdot 9.81}{0.77^2 \cdot 10^{-6}} = 78,6 \cdot 10^{12}.
\]

При 37 °C находим по номограмме (рис. XIII) Pr = 6. Тогда

\[
\mathrm{Nu} = 0,01 (GaPrRe)^{1/3} = 0,01 (78,6 \cdot 10^{12} \cdot 6 \cdot 5660)^{1/3} = 13 \, 900,
\]

откуда

\[
\alpha_{p} = \frac{Nu \lambda / H}{13 \, 900 \cdot 0,109 / 1,25} = 1210 \, \text{Вт}/(\text{м}^2 \cdot \text{К}),
\]

где \(\lambda = 0,109 \, \text{Бт}/(\text{м}^2 \cdot \text{К}) — коэффициент теплопроводности четыреххлористого углерода при 37°C.

б) Сплошное заполнение труб. Скорость течения четыреххлористого углерода:

\[
\nu = \frac{13}{61 \cdot 0,785 \cdot 0,027^2 \cdot 3600} = 0,103 \, \text{м/с}.
\]

Критерий Рейнольдса:

\[
Re = \frac{\omega dp/\mu}{0,103 \cdot 0,027 \cdot 1536/(0,65 \cdot 10^{-3})} = 6570,
\]

где 1536 кг/м³ — плотность четыреххлористого углерода при 50°C (табл. IV); 0,65 · 10^{-3} Па·с — вязкость четыреххлористого углерода при 50°C (табл. 1X).

Критерий Рейнольдса Re = 6570, следовательно, режим движения соответствует переходной области.

Из графика (рис. 4.1) для Re = 6,6 · 10³ имеем:

\[
\mathrm{Nu} = 22,6 Pr^{0,43} (Pr_{ct})^{0,25} = 22,6 \cdot 5,4^{0,43} (5,4/6,6)^{0,25} = 40.
\]

Здесь Pr = 5,4 — критерий Прандтля для четыреххлористого углерода при 50°C (рис. XIII); Pr = 6,6 — то же при 24°C (рис. XIII).
Коэффициент теплоотдачи при полном заполнении трубок жидкостью:

$$\alpha = \frac{Nu \lambda/d}{40.0,10/0,027} \approx 150 \text{ Вт/(м}^2\cdot\text{K)},$$
где $$\lambda = 0,10 \text{ Вт/(м}^2\cdot\text{K)}$$ — теплопроводность четыреххлористого углерода при 50 °C (рис. X).

Отношение $$\alpha_{пл}/\alpha = 1210/150 \approx 8.$$

Таким образом, в условиях данного примера коэффициент теплоотдачи при стекании четыреххлористого углерода тонкой пленкой в 8 раз больше коэффициента теплоотдачи при сплошном заполнении всех трубок теплообменника жидкостью.

Пример 4.20. Изопропиловый спирт нагревается в баке в условиях свободной конвекции горячей водой, подаваемой насосом через ряд горизонтальных труб наружным диаметром 30 мм. Определить коэффициент теплоотдачи для изопропилового спирта, если его средняя температура 60 °C, а средняя температура наружной поверхности труб 70 °C.

Решение. Коэффициент теплоотдачи при свободном движении жидкости около горизонтальных труб рассчитываем по формуле (4.46):

$$Nu = 0,5 (Gr Pr)^{0.25} (Pr/Pr_{et})^{0.25}.$$

Значения констант, входящих в критерий Gr = $$d^3 \rho \beta \Delta t g/\mu^2,$$ для определяющей температуры 60 °C: $$\rho = 752 \text{ кг/м}^3$$ (табл. IV); $$\mu = 0,8 \cdot 10^{-3} \text{ Па} \cdot \text{с}$$ (табл. IX). Величину $$\beta \Delta t$$ находим по уравнению:

$$\beta \Delta t = (v_{t2} - v_{t1})/v_{t1},$$
где $$v_{t2}$$ — удельный объем изопропилового спирта при 70 °C; $$v_{t1}$$ — то же при 60 °C.

Удельные объемы можно рассчитать по уравнению:

$$v_t = v_0 (1 + at + bt^2 + ct^3).$$

В справочнике [13, т. 1] для изопропилового спирта даны следующие значения коэффициентов (округленно): $$a = 1,043 \cdot 10^{-3}; b = 0,443 \cdot 10^{-8}; c = 2,73 \cdot 10^{-9}.$$ Тогда

$$\beta \Delta t = \frac{a (t_2 - t_1) + b (t_2^2 - t_1^2) + c (t_2^3 - t_1^3)}{1 + at_1 + bt_1^2 + ct_1^3} = \frac{1,043 \cdot 10^{-2} \cdot (70 - 60) + 0,443 \cdot 10^{-8} \cdot (70^2 - 60^2) + 2,73 \cdot 10^{-9} \cdot (70^3 - 60^3)}{1 + 1,043 \cdot 10^{-3} \cdot 60 + 0,443 \cdot 10^{-8} \cdot 60^2 + 2,73 \cdot 10^{-9} \cdot 60^3} = 0,0135.$$

Критерий Грата: $$Gr = \frac{d^3 \rho \beta \Delta t g}{\mu^2} = \frac{0,03 \cdot 752 \cdot 0,443 \cdot 10^{-8} \cdot 2,73 \cdot 10^{-9} \cdot 9,81}{(0,8 \cdot 10^{-3})^2} = 3,16 \cdot 10^3.$$

* По табл. III при $$\beta = 1,12 \cdot 10^{-3} \text{ K}^{-1}$$ и $$\beta \Delta t = 0,0112.$$

187
По номограмме (рис. XIII) находим для изопропилового спирта: при 60 °C $Pr = 19$; при 70 °C $Pr_{ct} = 16,5$. Следовательно,

$$Nu = 0,5 \left(GrPr\right)^{0,25} \left(Pr/Pr_{ct}\right)^{0,25} = 0,5 \left(3,16 \cdot 10^8 \cdot 19\right)^{0,25} \left(19/16,5\right)^{0,25} = 46.$$

Коэффициент теплопроводности изопропилового спирта при 60 °C находим по формуле (4.8):

$$\lambda_1 = \lambda_0 \left[1 - \varepsilon (t - 0)\right] = 0,154 \left[1 - 1,4 \cdot 10^{-3} \cdot 60\right] = 0,141 \text{ Вт/(м⋅К)},$$

где $\lambda_0 = 0,154$ Вт/(м⋅К) — коэффициент теплопроводности изопропилового спирта при 0 °C [13, т. 1]; $\varepsilon = 1,4 \cdot 10^{-3}$ (принимаем как для пропилового спирта).

Коэффициент теплоотдачи:

$$\alpha = Nu\lambda/d = 46 \cdot 0,141/0,03 = 216 \text{ Вт/(м}^2\cdot\text{К)}.$$

Пример 4.21. Определить коэффициент теплоотдачи от конденсирующегося насыщенного пара бензола к наружной поверхности пучка вертикальных труб при атмосферном давлении. Температура стенки трубы 75 °C. Высота трубок в конденсаторе 4 м.

Решение. Коэффициент теплоотдачи при конденсации насыщенного пара бензола находим по формуле (4.52):

$$\alpha_{конд} = 2,04e_1 \sqrt{\frac{\lambda^3 \rho r}{\mu \Delta H}}.$$

Физические свойства жидкого бензола при температуре конденсации 80,2 °C: $\lambda = 0,13$ Вт/(м⋅К) (рис. X); $\rho = 815$ кг/м³ (табл. IV); $\mu = 0,316 \cdot 10^{-3}$ Па·с (табл. IX); $r = 384$ кДж/кг (табл. XLV). Значение e_1 принимаем равным 1 — см. пояснение к формуле (4.50). Следовательно,

$$\alpha = 2,04 \sqrt{\frac{0,13^3 \cdot 815^3 \cdot 384 \cdot 10^3}{0,316 \cdot 10^{-3} \cdot 5,2 \cdot 4}} = 1102 \text{ Вт/(м}^2\cdot\text{К)},$$

где 5,2 K = 5,2 °C — разность температуры конденсации и температуры стенки 80,2 — 75).

Пример 4.22. В вертикальных трубах испарителя (куб ректификационной колонны) кипит толуол с небольшим содержанием бензола при средней температуре 110 °C. Температура конденсирующегося водяного пара (в межтрубном пространстве) 136 °C. Диаметр труб 25×2 мм.

Определить коэффициент теплопередачи.

Принять коэффициент теплоотдачи от конденсирующегося водяного пара к стенке $\alpha_1 = 10 000$ Вт/(м²⋅К), температуру поверхности стенки, соприкасающейся с толуолом, $t_{ст.2} = 128,5$ °C. Влияние примеси бензола на теплоотдачу не учитывать.
Решение. Коэффициент теплоотдачи от стенки к кипящему толуолу по формуле (4.62):

$$
\alpha_2 = \alpha_{кнп} = \frac{\lambda_t^2 \rho_t (\Delta T_{кнп})^2}{\mu_t \sigma T_{кнп}} = \frac{0.093 \cdot 0.116^2 \cdot 777 (128.5 - 110)^2}{0.251 \cdot 10^{-3} \cdot 18.35 \cdot 10^{-3} (273 + 110)} = 1630 \text{ Вт/(м}^2\cdot \text{К).}
$$

Здесь физические свойства жидкого толуола при $T_{кнп} = 110 \ ^\circ\text{C}$: $\rho_t = 777 \ \text{кг/м}^3$ (табл. IV); $\lambda_t = 0.116 \ \text{Вт/(м} \cdot \text{К)}$ (рис. X); $\mu_t = 0.251 \cdot 10^{-3} \ \text{Па} \cdot \text{с}$ (табл. IX); $\sigma = 18.35 \cdot 10^{-3} \ \text{Н/м} = $ — поверхностное натяжение толуола при $110 ^\circ\text{C}$ (табл. XXIV). Плотность паров толуола $\rho_p = \frac{22.4}{(273 + 110)} = 2.9 \ \text{кг/м}^3$ (92.1 кг/кмоль — мольная масса толуола). Движущая сила процесса: $\Delta T_{кнп} = 128.5 - 110 = 18.5 \ ^\circ\text{C} = 18.5 \ \text{К}$. Коэффициент $b = 0.093$ (из рис. 4.10).

Принимаем тепловые проводимости загрязнений стенки со стороны пара и толуола по $1/r = 5800 \ \text{Вт/(м}^2\cdot \text{К)}$ (табл. XXXI). Коэффициент теплопроводности стали $\lambda = 46.5 \ \text{Вт/(м} \cdot \text{К)}$ (табл. XXVIII). Тогда

$$
\frac{1}{\sum r_{et}} = \frac{1}{5800} + \frac{0.002}{46.5} + \frac{1}{5800} = 2580 \ \text{Вт/(м}^2\cdot \text{К).}
$$

Коэффициент теплопередачи:

$$
K = \frac{1}{\frac{1}{10000} + \frac{1}{2580} + \frac{1}{1630}} = 910 \ \text{Вт/(м}^2\cdot \text{К).}
$$

Средняя разность температур при кипении: $\Delta t_{оp} = 136 — 110 = 26 \ ^\circ\text{C} = 26 \ \text{К}$. Тогда плотность теплового потока:

$$
q = K \Delta t_{оp} = 910 \cdot 26 = 23600 \ \text{Вт/м}^2.
$$

Для определения коэффициента теплоотдачи от стенки к кипящей в большом объеме жидкости можно также использовать следующие формулы:

1) по С. С. Кутателадзе [4.2],

$$
Nu_{ncu} = 7.0 \cdot 10^{-4} (Re K_p)^{0.7} Pr^{0.35},
$$

где $Nu = \alpha_{кнп}/\lambda$; $Re = q \rho_a / (\rho_a v_a)$; $K_p = \rho / \sigma$; $Pr = v_a / c_p / \lambda$; $l = \sqrt{c_p / l (\rho_a - \rho_a)}$ — определяющий линейный размер (см. стр. 165).

Для плотности теплового потока $q = 20000 \ \text{Вт/м}^2$:

$$
Re = \frac{1.555 \cdot 10^{-3} \cdot 777}{362.5 \cdot 10^3 \cdot 2.9 \cdot 0.251 \cdot 10^{-3}} = 4.578 \cdot 10^{-3} q;
$$

$$
I = \sqrt{\frac{18.35 \cdot 10^{-3}}{9.81 (777 - 2.9)}} = 1.555 \cdot 10^{-3} \ \text{м;}
$$

$$
K_p = 1.013 \cdot 10^8 \cdot 1.555 \cdot 10^{-3}/18.35 \cdot 10^{-3} = 8584;
$$

$$
Pr = \frac{0.251 \cdot 10^{-3} \cdot 0.45 \cdot 190}{0.116} = 4.08,
$$

где $c_p = 0.45 \cdot 190 \ \text{Дж/(кг} \cdot \text{К).}$

189
Тогда $\text{Nu}_{исп} = 15.34$, откуда
$$\alpha_{кнн} = \frac{\text{Nu}_{исп} \lambda}{l} = \frac{15.34 \cdot 0.116}{1,555 \cdot 10^{-3}} = 1145 \text{ Вт/(м}^3 \cdot \text{К)}.$$

2) По А. М. Кутепову [4.5],
$$\text{Nu}_{исп} = C \left(\text{Pe}K_l^{0,63}K_\tau^{0,5} \right)^n \text{ или Nu}_{исп} = CN^n,$$
где $C = \text{Pe}K_l^{0,63}K_\tau^{0,35}$.

При $N \gg 10^7 \ Q = 3.2 \cdot 10^{-5}$ и $n = 0.7$, при $10^8 < N < 10^9$
$C = 0.101$ и $n = 0.25$.

Здесь $\text{Nu}_{исп} = \alpha_{кнн} \cdot \text{Re} \cdot \frac{q \cdot l}{r \rho \cdot a} = \text{RePr}$,

$$K_l = \frac{\rho_v \rho_v}{\rho_v - \rho_v} \frac{r}{c_p T_v} \frac{g V}{\sigma/\text{lg} (\rho_v - \rho_v)}; \quad K_\sigma = \frac{r}{g V \sigma/\text{lg} (\rho_v - \rho_v)}.$$

Для $q = 20000 \ \text{Вт/м}^2$:

$$\text{Re} = 4.578 \cdot 10^{-3} \cdot 20000 = 91.56; \quad \text{Re} = \text{RePr} = 91.56 \cdot 4.08 \approx 373.6;$$

$$K_l = \frac{2.9}{777} \cdot \frac{2.9}{2.9} \cdot \frac{362.5 \cdot 10^3}{0.45 \cdot 4190 (273 + 110)} \cdot \frac{362.5 \cdot 10^3}{9.81 \cdot 18.35 \cdot 10^{-3} \cdot 9.81 (777 - 2.9)} = 174; \quad K_l^{0.63} = 25.76;$$

$$K_\sigma = \frac{r}{g V} \frac{\sigma/\text{lg} (\rho_v - \rho_v)}{e} = \frac{r}{g l} = \frac{362.5 \cdot 10^3}{9.81 \cdot 1.555 \cdot 10^{-3}} = 23.79 \cdot 10^6;$$

$$K_\sigma^{0.5} = 4.877 \cdot 10^5;$$

$$N = \text{Pe}K_l^{0.63}K_\sigma^{0.5} = 373.6 \cdot 25.76 \cdot 4.877 \cdot 10^3 = 4.68 \cdot 10^7.$$

Для этих значений N: $Q = 3.2 \cdot 10^{-5}$; $n = 0.75$. Тогда

$$\text{Nu}_{исп} = CN^n = 3.2 \cdot 10^{-5} \cdot 565800 = 18.106,$$
откуда

$$\alpha_{кнн} = \frac{\text{Nu}_{исп} \lambda}{l} = \frac{18.106 \cdot 0.116}{1,555 \cdot 10^{-3}} = 1350 \frac{\text{Вт}}{\text{м}^2 \cdot \text{К}}.$$

Рассходжение расчетных данных по приведенным формулам $\pm 20\%$.

Пример 4.23. Метиловый спирт (100 %) нагревается в трубном пространстве одноходового кожухотрубчатого теплообменника от 15 до 40 °C. Противотоком в межтрубном пространстве течет вода, которая охлаждается от 90 до 40 °C. Теплообменник состоит из 111 стальных труб диаметром 25×2 мм. Скорость метилового спирта в трубах 0,75 м/с.
Определить необходимую поверхность теплопередачи теплообменника и длину трубчатки, если принять коэффициент теплоотдачи от воды к стенке 840 Вт/(м²·К), суммарную тепловую проводимость обоих загрязнений стенки 1700 Вт/(м²·К) и среднюю температуру загрязнений поверхности стенки со стороны спирта 38 °С.

Решение. Средняя разность температур:

\[
\Delta t_0 = 90 - 40 = 50 \\
\Delta t_m = 40 - 15 = 25.
\]

Опношение \(\Delta t_0 / \Delta t_m = 50 / 25 = 2 \), следовательно, можно принять среднюю арифметическую разность температур \(\Delta t_{ср} = \frac{0,5 (50 + 25)}{} = 37,5 \text{ К} \).

Средняя температура спирта:

\[
t_2 = 0,5 (40 + 15) = 27,5 \text{ °C}.
\]

Массовый расход спирта:

\[
\bar{\rho}_2 = n \cdot 0,785 d_2^2 w_2 \rho_2 = 111 \cdot 0,785 \cdot 0,021^2 \cdot 0,75 \cdot 785 = 22,6 \text{ кг/с},
\]
где \(\rho_2 = 785 \text{ кг/м}^3 \) — плотность метилового спирта при 27,5 °C (табл. IV).

Количество передаваемой теплоты:

\[
Q = \bar{\rho}_2 c_2 (t_{кон.2} - t_{нач.2}) = 22,6 \cdot 2520 (40 - 15) = 1,424 \cdot 10^8 \text{ Вт},
\]
где \(c_2 = 2520 \text{ Дж/(кг·К)} \) — удельная теплоемкость спирта при 27,5 °C (рис. XI).

Критерий Рейнольдса для спирта:

\[
Re_2 = \frac{w_2 d_2 \rho_2}{\mu_2} = \frac{0,75 \cdot 0,021 \cdot 785}{0,53 \cdot 10^{-3}} = 23 000.
\]

Здесь \(\mu_2 = 0,53 \cdot 10^{-3} \text{ Па·с} \) — динамический коэффициент вязкости спирта при 27,5 °C (табл. IX).

Критерий Прандтля для спирта:

\[
Pr = \frac{c_2 \mu_2 / \lambda_2}{2520 \cdot 0,53 \cdot 10^{-3} / 0,212} = 6,3,
\]
где \(\lambda_2 = 0,212 \text{ Вт/(м·К)} \) — коэффициент теплопроводности спирта при 27,5 °C (рис. X).

Режим течения спирта турбулентный, поэтому принимаем для расчета формулу (4.17), полагая \(\varepsilon_1 = 1 \):

\[
Nu_2 = 0,021 Re_2^{0,3} Pr_2^{0,13} (Pr_2 / Pr_{ср})^{3,25} = 0,021 \cdot 23 000^{0,8} \cdot 6,3^{0,43} (6,3 / 5,94)^{0,25} =
\]

\[
= 145.
\]

Здесь

\[
Pr_{ср} = (c_2 \mu_2 / \lambda_2)_{ср} = 2589 \cdot 0,48 \cdot 10^{-3} / 0,209 = 5,94,
\]
где \(c_2, \mu_2 \) и \(\lambda_2 \) определены при \(t_{ср} = 38 \text{ °C} \).
Тогда

\[
\alpha_2 = \frac{Nu_2 \lambda_2}{d_2} = \frac{145 \cdot 0,212}{0,021} = 1460 \text{ Вт/(м}^2\cdot\text{К)}.
\]

Коэффициент теплопередачи:

\[
K = \frac{1}{\frac{1}{\alpha_1} + \frac{d_{ct}}{\lambda_{ct}} + \Sigma r_{ap} + \frac{1}{\alpha_2}} = \frac{1}{\frac{840}{0,002} + \frac{1}{46,5} + \frac{1}{1700} + \frac{1}{1460}} = 400 \text{ Вт/(м}^2\cdot\text{К)}.
\]

где \(\lambda_{ct} = 46,5 \text{ Вт/(м} \cdot\text{К)}\) — коэффициент теплопроводности стали (табл. XXVIII).

Поверхность теплообмена:

\[
F = \frac{Q}{K \Delta t_{ср}} = \frac{1,424 \cdot 10^6}{400 \cdot 37,5} = 95 \text{ м}^2.
\]

Длина трубчатки по среднему диаметру труб:

\[
L = \frac{F}{\pi d_{ср}} = \frac{95}{111 \cdot 3,14 \cdot 0,023} = 11,85 \text{ м}.
\]

Здесь \(d_{ср} = (0,025 + 0,021)/2 = 0,023 \text{ м}.

По ГОСТ 15122—79 для теплообменника с кожухом 400 мм и числом труб 111 трубчатка имеет длину 2; 3; 4 и 6 м. Чтобы обеспечить запас поверхности теплообмена, принимаем 5 аппаратов с трубчатой длиной 3 м.

Запас поверхности теплообмена будет равен:

\[
\Psi = \frac{3,5 - 11,85}{11,85} \cdot 100 = 25\%.
\]

Для принятых теплообменников \(L/d = 3000/25 = 120 > 50\). Следовательно, величина \(\varepsilon_1 = 1\) принятая правильно.

Пример 4.24. Воздух подогревается в трубном пространстве двухходового кожухотрубчатого теплообменщика с 2 до 90 \(^\circ\text{C}\) при среднем давлении (абсолютном) 810 мм рт. ст. Объемный расход воздуха при нормальных условиях (0 \(^\circ\text{C}\) и 760 мм рт. ст.) составляет \(v_0 = 8290 \text{ м}^3/\text{ч.}\) Общее число труб — 450, на один ход трубного пространства — 225. Диаметр труб равен 38\(\times\)2 мм. В межтрубное пространство подается насыщенный водяной пар под давлением (абсолютным) 2 кгс/см\(^2\) (~0,2 МПа).

Определить необходимую поверхность теплообмена и длину трубчатки. Принять коэффициент теплопередачи равным коэффициенту теплоотдачи воздуха.

Решение. Массовый расход воздуха:

\[
\overline{\delta}_2 = \overline{\nu}\overline{\varphi}_0/3600 = 8290 \cdot 1,293/3600 = 2,98 \text{ кг/с},
\]

где \(\varphi_0 = 1,293 \text{ кг/м}^3\) — плотность воздуха при нормальных условиях (табл. V).
Средняя разность температур:
\[\Delta t_{cp} = \frac{(119,6 - 2) - (119,6 - 90)}{2,3 \lg \frac{119,6 - 2}{119,6 - 90}} = \frac{88}{2,3 \lg 3,973} = 63,79 \, ^\circ C. \]

Средняя температура воздуха:
\[t_{cp. 2} = t_{kon} - \Delta t_{cp} = 119,6 - 63,79 \approx 55,8 \, ^\circ C. \]

Плотность воздуха при средних рабочих условиях:
\[\rho_2 = \rho_0 \frac{pT_0}{p_0T} = 1,293 \frac{810 \cdot 273}{760 (273 + 55,8)} = 1,144 \, \text{кг/м}^3. \]

Объемный расход воздуха при средних рабочих условиях:
\[v_2 = \frac{\rho_2}{\rho_2} = 2,98 / 1,144 = 2,6 \, \text{м}^3/\text{с}. \]

Скорость воздуха в трубах:
\[w_2 = \frac{v_2}{l_2} = \frac{2,6}{225 \cdot 0,785 - 0,034} = 12,76 \, \text{м/с}, \]
где \(l_2 \) — площадь поперечного сечения труб (на один ход).

Критерий Рейнольдса для воздуха при 55,8 \(^\circ\)C:
\[Re_2 = \frac{w_2 d_2 \rho_2}{\mu_2} = \frac{12,76 \cdot 0,034 \cdot 1,144}{0,02 \cdot 10^{-3}} = 24,800, \]

Здесь \(\mu_2 = 0,02 \cdot 10^{-3} \) Па·с — динамический коэффициент вязкости для воздуха при 55,8 \(^\circ\)C (рис. VI).

Режим движения воздуха турбулентный [формула (4.22)]:
\[Nu_2 = 0,018 Re_2^{0,8} e_i = 0,018 \cdot 24,800^{0,8} \cdot 1 = 59. \]

Следовательно,
\[\alpha_2 = Nu_2 \lambda_2 / d_2 = 59 \cdot 0,0284 / 0,034 = 49,3 \, \text{Вт/(м}^2 \cdot \text{К}). \]

Здесь \(\lambda_2 = 0,0284 \, \text{Вт/(м} \cdot \text{К}) — коэффициент теплопроводности воздуха при 55,8 \(^\circ\)C (табл. XXX), Величину \(e \) принимаем равной 1, предполагая, что \(L/d \) будет больше 50.

Количество передаваемой теплоты:
\[Q = \bar{c}_2 s_2 (t_{kon. 2} - t_{нач. 2}) = 2,98 \cdot 1006 (90 - 2) = 263 800 \, \text{Вт,} \]
где \(s_2 = 1006 \, \text{Дж/(кг} \cdot \text{К}) — удельная теплоемкость воздуха при 55,8 \(^\circ\)C (табл. XXVII).

Поверхность теплообмена (по заданию \(K \approx \alpha_2 \)):
\[F = \frac{Q}{K \Delta t_{cp}} = \frac{263 800}{49,3 \cdot 63,79} = 83,9 \, \text{м}^2, \]

Ввиду того, что коэффициент теплоотдачи для воздуха много меньше коэффициента теплоотдачи для пара \(\alpha_2 \ll \alpha_1 \), расчет...
нную поверхность определяем по внутреннему диаметру труб

d' = 0,034 м.

Длина трубчатки по расчету:

\[L = \frac{F}{225 \cdot \pi \cdot 0.034} = \frac{83.9}{225 \cdot 3.14 \cdot 0.034} = 3.49 \text{ м}. \]

По ГОСТ 15121—79 длины трубчатки для двухходового ко-
жухотрубчатого теплообменника с диаметром кожуха 800 мм и
числом труб 450/225 составляют 2; 3; 4 и 6 м. Принимаем \(L = \)
= 4 м.

Запас поверхности теплообмена:

\[\varphi = \frac{4 - 3.49}{3.49} \cdot 100 \approx 15\%. \]

Проверка принятой величины \(\varepsilon_t \):

\[L/d = 4000/34 = 117 > 50. \]

Таким образом, величина \(\varepsilon_t = 1 \) была принята правильно.

Пример 4.25. В выпарном аппарате со стальными трубами вы-
сотой 4 м и толщиной стенок \(\delta = 2 \) мм кипит под разрежением
0,64 кгс/см\(^2\) при средней температуре 80 °C 20% водный раствор
аммиачной селитры. Греющий пар имеет давление (абсолютное)
1,1 кгс/см\(^2\) (\(\sim 0,11 \) МПа).

Определить удельную тепловую нагрузку и коэффициент теп-
лопередачи.

Р е ш е н и е. Температура конденсации греющего пара 101,7 °C
(табл. LVII). Средняя разность температур:

\[\Delta t_{cp} = 101,7 - 80 = 21,7 \text{ °C} = 21,7 \text{ К}. \]

Коэффициент теплоотдачи для конденсирующегося греющего
водяного пара находим по формуле (4.55):

\[\alpha_n = 1,21 \lambda \left(\frac{\rho^2 g}{\mu H} \right)^{1/3} q^{-1/3} = \]

\[= 1,21 \times 0,583 \left(\frac{957^2 \times 2257 \times 10^3 \times 9,81}{0,278 \times 10^{-6} \times 4} \right)^{1/3} q^{-1/3} = 2,17 \times 10^5 q^{-0,33}. \]

Физико-химические свойства конденсата взяты из табл.
XXXIX. Для 20% раствора аммиачной селитры при 80 °C
[5.1]: \(\lambda = 0,445 \cdot 1,16 = 0,517 \text{ Вт/(м·К)}; \rho_ne = 1051 \text{ кг/м}^3; \mu = \]
\(= 41 \cdot 10^{-6} \cdot 9,81 = 0,402 \cdot 10^{-3} \text{ Па·с}; \sigma = 65,3 \cdot 10^{-3} \text{ Н/м} \) (принимая
такое же изменение \(\sigma \) с температурой, как у воды); \(\rho_n = \frac{18 \cdot 273 \cdot 0,36}{22,4 \cdot 353,1} = 0,224 \text{ кг/м}^3 \) (где \(\rho_o = M/22,4 = 18/22,4 \)).
Коэффициент теплоотдачи для кипящего раствора находим по формуле (4.62):

\[
\alpha_p = b \left(\frac{\lambda^2 \rho_{ж}}{\mu \sigma T^{2/3}} \right) q^{2/3} =
= 0,078 \left(\frac{0,517 \cdot 1051}{0,402 \cdot 10^{-3} \cdot 65,3 \cdot 10^{-3}} \right)^{1/3} q^{2/3} = 2,43q^{0,67}.
\]

Здесь значение коэффициента \(b = 0,078 \) определено при \(\rho_{ж}/\rho_\pi = 1051/0,224 = 4700 \) по формуле (4.62a):

\[
b = 0,075 \left[1 + 10 \left(\frac{\rho_{ж}}{\rho_\pi} - 1 \right)^{-2/3} \right].
\]

Сумма термических сопротивлений стенки и загрязнений (табл. XXVIII и XXXI):

\[
\sum r_{ст} = \frac{\delta_{ст}}{\lambda_{ст}} + r_{загр.1} + r_{загр.2} =
= 0,002 + \frac{1}{46,5} + \frac{1}{5800} = 3,88 \cdot 10^{-4} \text{ (м}^2 \cdot \text{К)/Вт,}
\]
где \(\lambda_{ст} = 46,5 \text{ Вт/(м} \cdot \text{К) — коэффициент теплопроводности стали (табл. XXVIII).} \]

Коэффициент теплопередачи:

\[
K = \frac{1}{\alpha_\pi} + \sum r_{ст} + \frac{1}{\alpha_p} = \frac{1}{2,17 \cdot 10^5 q_{-0,33} + 3,88 \cdot 10^{-4} + \frac{1}{2,43q^{0,67}}}
\]

Удельная тепловая нагрузка:

\[
q = K \Delta t_{ср} = \frac{21,7}{0,461 \cdot 10^{-5} q_{0,33} + 3,88 \cdot 10^{-4} + 0,412q_{-0,67}}
\]

Откуда

\[
0,461 \cdot 10^{-5} q_{1,33} + 3,88 \cdot 10^{-4} q + 0,412q_{0,33} - 21,7 = 0.
\]

Это уравнение решаем графически, задаваясь значениями \(q \) (рис. 4.16). \(y \) — левая часть уравнения. При \(y = 0 \) находим \(q = 21 \ 000 \text{ Вт/м}^2\).

Коэффициент теплопередачи:

\[
K = q/\Delta t_{ср} = 21 \ 000/21,7 = 968 \text{ Вт/(м}^2 \cdot \text{К).}
\]

Пример 4.26. Определить поверхность противоточного теплообменника, в котором горячая жидкость (поглотительное масло) в количестве 3 т/ч охлаждается от 100 до 25 °C холодной жидкостью, нагревающейся от 20 до 40 °C. Известно, что коэф-

Рис. 4.16. Графическое определение \(q \) (к примеру 4.25).
фициент теплопередачи следующим образом изменяется с температурой масла:

\[
T, ^\circ C & 100 & 80 & 60 & 40 & 30 & 25 \\
K, Вт/(м²·К) & 354 & 350 & 342 & 308 & 232 & 166
\]

Удельная теплоемкость масла 1,67 · 10⁴ Дж/(кг·К).

Решение. По условию задачи коэффициент теплопередачи сильно меняется вдоль поверхности теплообмена, поэтому среднюю логарифмическую разность температур применить нельзя. Воспользуемся уравнением теплопередачи в дифференциальной форме:

\[G_Г c_Г \frac{dT}{dF} = -K (T - t) \frac{dT}{K (T - t)}, \]

откуда

\[F = -G_Г c_Г \int_{T_к}^{T_н} \frac{dT}{K (T - t)} = G_Г c_Г \int_{T_к}^{T_н} \frac{dT}{K (T - t)}, \]

где \(T, t \) — температура горячей и холодной жидкости соответственно.

Интеграл \(\int_{T_к}^{T_н} \frac{dT}{K (T - t)} \) решаем графическим путем.

Предварительно найдем данные, необходимые для построения графика с ординатой \(\frac{1}{K (T - t)} \) и абсциссой — температурой горячей жидкости \(T \). Сначала из уравнения теплового баланса

\[G_Г c_Г (T_н - T) = G_Х c_Х (T_н - t) \]

определим отношение:

\[\frac{G_Г c_Г}{G_Х c_Х} = \frac{t_н - t_к}{T_н - t_к} = \frac{40 - 20}{100 - 25} = 0,267. \]

Следовательно,

\[t = t_н - \frac{G_Г c_Г}{G_Х c_Х} (T_н - T) = 40 - 0,267 (100 - T). \]

Задаваясь значениями \(T \), находим по этому уравнению соответствующие температуры холодной жидкости \(t \). Полученные данные сводим в табл. 4.9.

По данным табл. 4.9 строим график (рис. 4.17). Площадь под кривой \(S = \int_{T_к}^{T_н} \frac{dT}{K (T - t)} \) определяем приближенно по формуле трапеций:

\[S = \frac{T_н - T_к}{n} \left(\frac{y_0 + y_n}{2} + y_1 + y_2 + \ldots + y_{n-1} \right). \]

196
<table>
<thead>
<tr>
<th>T</th>
<th>t</th>
<th>$T-t$</th>
<th>K</th>
<th>$\frac{1}{K(T-t)} \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>40,0</td>
<td>60,0</td>
<td>354</td>
<td>0,47</td>
</tr>
<tr>
<td>80</td>
<td>34,7</td>
<td>45,3</td>
<td>350</td>
<td>0,63</td>
</tr>
<tr>
<td>60</td>
<td>29,3</td>
<td>30,7</td>
<td>342</td>
<td>0,95</td>
</tr>
<tr>
<td>40</td>
<td>24,0</td>
<td>16,0</td>
<td>308</td>
<td>2,30</td>
</tr>
<tr>
<td>30</td>
<td>21,3</td>
<td>8,7</td>
<td>232</td>
<td>4,96</td>
</tr>
<tr>
<td>25</td>
<td>20,0</td>
<td>5,0</td>
<td>166</td>
<td>12,07</td>
</tr>
</tbody>
</table>

Примем $n = 10$ и составим табл. 4.10, взяв из графика значения ординат y. По данным табл. 4.10 находим:

$$S = \frac{T_n - T_k}{n} \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y \right) =$$

$$= \frac{100 - 25}{10} \left(\frac{12,07 + 0,47}{2} + 12,2 \right) \times 10^{-4} = 138 \times 10^4 \text{ (м}^2 \cdot \text{К)/Вт.}$$

Требуемая площадь поверхности теплообмена:

$$F = G_{x_t} \int_{T_k}^{T_n} \frac{dT}{K(T-t)} = \frac{3000}{3600} \frac{1,57 \cdot 10^3 \cdot 138 \cdot 10^{-4}}{19,2} = 19,2 \text{ м}^2.$$

Если определить площадь под кривой более точно (планиметрированием), получим $F = 18,9 \text{ м}^3$.

Для сравнения рассчитаем требуемую поверхность теплообмена, если принять постоянным значение коэффициента теплопередачи K (при средней температуре) и применить среднюю логарифмическую разность температур:

$$\Delta t_6 = 60 \quad \Delta t_m = 5;$$

$$\Delta t_{cp} = \frac{60 - 5}{2,3 \lg (60/5)} = 22,2 ^\circ \text{С} =$$

$$= 22,2 \text{ К.}$$

Средняя температура охлаждающей жидкости:

$$T_{cp} = t_{cp} + \Delta t_{cp} = 30 + 22,2 = 52,2 ^\circ \text{С.}$$

При этой температуре $K = \approx 329 \text{ Вт/(м}^2 \cdot \text{К).}$

Рис. 4.17 (к примеру 4.26).
<table>
<thead>
<tr>
<th>Т. °C</th>
<th>Номер ординаты</th>
<th>(y = \frac{1}{K (T - t)} \times 10^4)</th>
<th>Т. °C</th>
<th>Номер ординаты</th>
<th>(y = \frac{1}{K (T - t)} \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>12,07</td>
<td>70</td>
<td>6</td>
<td>0,74</td>
</tr>
<tr>
<td>32,5</td>
<td>1</td>
<td>3,85</td>
<td>77,5</td>
<td>7</td>
<td>0,65</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>2,30</td>
<td>85</td>
<td>8</td>
<td>0,58</td>
</tr>
<tr>
<td>47,5</td>
<td>3</td>
<td>1,60</td>
<td>92,5</td>
<td>9</td>
<td>0,50</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>1,13</td>
<td>100</td>
<td>10</td>
<td>0,47</td>
</tr>
<tr>
<td>62,5</td>
<td>5</td>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Расход передаваемой теплоты:

\[Q = \frac{3000}{3600} \cdot 1,67 \cdot 10^3 \times (100 - 25) = 104 500 \text{ Вт}. \]

Площадь поверхности теплообмена:

\[F = \frac{Q}{K \Delta t_{\text{ср}}} = \frac{104 500}{329 \cdot 22,2} = 14,3 \text{ м}^2. \]

Как видим, расчет по этому методу дает большую ошибку в сторону уменьшения требуемой поверхности теплообмена.

Пример 4.27. Толуол (горячая жидкость) в количестве \(G_1 = 1400 \text{ kg} \) загружен в сосуд, в котором имеется змеевик. Через змеевик пропускается вода (холодная жидкость). Толуол охлаждается от температуры \(T_1 = 105 \text{ °C} \) до \(T_2 = 25 \text{ °C} \) в течение \(t \) ч. Вода повышает свою температуру от \(t_1 = 13 \text{ °C} \) до \(t \). Конечная температура воды в периодическом процессе все время уменьшается по мере понижения температуры толуола. В конце процесса охлаждения толуола через \(t \) ч температура \(t \) становится равной \(t_2 \) (<\(T_3 \)).

Сколько времени \(t \) потребуется для охлаждения толуола и каков будет общий расход воды \(G_x \), если поверхность теплообмена змеевика \(F = 3,2 \text{ м}^2 \), а значение коэффициента теплоотдачи принять постоянным и равным \(K = 255 \text{ Вт/(м}^2 \cdot \text{К)} \)?

Решение. Схема процесса:

в сосуде (толуол охлаждается): \(T_1 = 105 \text{ °C} \), через \(t \) ч \(T_2 = 25 \text{ °C} \); в змеевике (вода нагревается): \(t_1 = 13 \text{ °C} \), через \(t \) ч \(t_2 \) = ?

Принимаем \(t_2 = 18 \text{ °C} \).

Уравнение теплообмена:

\[Q = KF \Delta t_{\text{ср. охл}} t. \]

Средняя разность температур для периодического процесса охлаждения жидкости в сосуде [1]:

\[\Delta t_{\text{ср. охл}} = \frac{T_1 - T_2}{\ln \frac{T_1 - t_1}{T_2 - t_1}} \left(\frac{A - 1}{A \ln A} \right) = \]

\[= \frac{105 - 25}{105 - 13} \left(\frac{1,714 - 1}{1,714 \ln 1,714} \right) = 30,36 \text{ °C} \approx 30,36 \text{ K}. \]
Величина A постоянна для всего процесса охлаждения. Для любого момента времени, когда температура охлаждаемой жидкости равна T:

$$A = \frac{T - t_1}{T - t_2}.$$

При расчете поверхности теплообмена принимаем $T = T_2 = 25^\circ C$:

$$A = \frac{T_2 - t_1}{T_2 - t_3} = \frac{25 - 13}{25 - 18} = 1,714.$$

Средняя конечная температура охлаждающей жидкости (воды):

$$t_{ср} = \Delta t_{ср. охл} \ln A + t_1 = 30,36 \ln 1,714 + 13 = 29,35^\circ C.$$

Количество теплоты, отдаваемое толуолом воде:

$$Q = G_r c_r (T_1 - T_2) = 1400 \cdot 1,8 \cdot 10^3 \cdot (105 - 25) = 2016 \cdot 10^5 \text{ Дж}.$$

Здесь $c_r = 1,8 \cdot 10^3 \text{ Дж/(кг} \cdot \text{К)}$ — удельная теплоемкость толуола при средней температуре $65^\circ C$ (рис. XI).

Время охлаждения толуола:

$$\tau = \frac{Q}{K F \Delta t_{ср. охл}} = \frac{2016 \cdot 10^5}{255 \cdot 3,2 \cdot 30,36} = 8137 \text{ с} = 2,26 \text{ ч.}$$

Общий расход охлаждающей воды:

$$G_x = \frac{Q}{c_x (t_{ср} - t_1)} = \frac{2016 \cdot 10^5}{4190 (29,35 - 13)} = 2943 \text{ кг.}$$

Пример 4.28. Бутиловый спирт (холодная жидкость) в количестве $G_x = 1800$ кг загружен в сосуд, в котором имеется змеевик. Через змеевик пропускается вода (горячая жидкость). Бутиловый спирт нагревается от температуры $t_1 = 20$ до $t_2 = 60$ $^\circ C$ в течение τ ч. Вода понижает свою температуру от $T_1 = 90$ $^\circ C$ до T_2. Конечная температура воды в периодическом процессе все время увеличивается по мере повышения температуры спирта. В конце процесса нагревания через τ ч температура станет равной T_2 ($> t_2$).

Сколько времени τ потребуется для нагрева спирта и какой должен быть общий расход горячей воды G_r, если поверхность теплопередачи змеевика $F = 4,3$ м2, а значение коэффициента теплопередачи принять постоянным и равным $K = 280$ Вт/(м$^2 \cdot$К)?

Решение. Схема процесса:

в сосуде (бутиловый спирт нагревается): $t_1 = 20$ $^\circ C$ через τ ч $t_2 = 60$ $^\circ C$;

в змеевике (вода охлаждается): $T_1 = 90$ $^\circ C$ через τ ч $T_2 = ?$

Принимаем $T_2 = 70$ $^\circ C$.

Уравнение теплопередачи:

$$Q = K F \Delta t_{ср. нагр\tau}.$$
Средняя разность температур для периодического процесса нагрева жидкости в сосуде [1]:

$$
\Delta t_{ср. нагр} = \frac{t_2 - t_1}{T_1 - t_1} \left(A - 1 \right) = \frac{\ln t_1}{\ln T_1 - t_2} \left(A - 1 \right) = \frac{60 - 20}{90 - 20} \left(\frac{3 - 1}{3 \ln 3} \right) = 28,65 ^\circ C = 28,65 \text{ K.}
$$

Величина A постоянна для всего процесса нагрева. Для любого момента времени, когда температура нагреваемой жидкости будет равна t:

$$
A = \frac{T_1 - t}{T_2 - t} = \frac{90 - 60}{70 - 60} = \frac{30}{10} = 3.
$$

При расчете поверхности теплообмена определяют A для $t = t_2 = 60 ^\circ C$.

Средняя конечная температура горячей воды:

$$
T_{ср} = T_1 - \Delta t_{ср. нагр} \ln A = 90 - 28,65 \ln 3 = 58,52 ^\circ C.
$$

Количество теплоты, отдаваемое водой спирту:

$$
Q = C_x c_x (t_2 - t_1) = 1800 \cdot 2,56 \cdot 10^3 (50 - 20) = 1843 \cdot 10^8 \text{ Дж.}
$$

Здесь $c_x = 2,56 \cdot 10^3 \text{ Дж/(кг} \cdot \text{ K)}$ — удельная теплоемкость бутилового спирта при средней температуре 40°C (рис. XI).

Время нагрева спирта:

$$
\tau = \frac{Q}{K F \Delta t_{ср. нагр}} = \frac{1843 \cdot 10^8}{280 \cdot 4,3 \cdot 28,65} = 5343 \text{ c} = 1,48 \text{ ч.}
$$

Общий расход горячей воды:

$$
G = \frac{Q}{c_r (T_1 - T_{ср})} = \frac{1843 \cdot 10^8}{4190 (90 - 58,52)} = 1397 \text{ кг.}
$$

Пример 4.29. Определить потерю теплоты лученспусканием поверхностью стального аппарата цилиндрической формы, находящегося в помещении, стену которого выкрашены масляной краской. Размеры аппарата: $H = 2 \text{ м}; D = 1 \text{ м}$. Размеры помещения: высота 4 м; длина 10 м; ширина 6 м. Температура стенки аппарата 70 °C, температура воздуха в помещении 20 °C.

Определить также общую потерю теплоты аппарата лученспусканием и конвекцией.

Решение. Потерю теплоты излучением вычислим по формуле (4.66) и (4.67):

$$
Q_\lambda = C_{1-2} F_1 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right];
$$

$$
C_{1-2} = \frac{1}{C_1} + \frac{1}{C_2} - \frac{1}{C_4} \frac{F_1}{F_2}.
$$
В нашем случае:

\[T_1 = 273 + 70 = 343 \text{ K}; \quad T_2 = 273 + 20 = 293 \text{ K}; \]

\[F_1 = \pi D H + 2 \cdot 0,785 D^2 = 3,14 \cdot 1.2 + 2 \cdot 0,785 \cdot 1^2 = 7,85 \text{ м}^2; \]

\[F_2 = 2 \cdot (4,5 + 4,10 + 5,10) = 248 \text{ м}^2. \]

Так как площадь \(F_2 \) велика по сравнению с площадью \(F_1 \), то коэффициент излучения \(C_{1-2} \approx C_1 \).

Для окисленной стали среднее значение степени черноты \(\varepsilon = 0.85 \) [см. формулу (4.67)]. Следовательно, \(C_1 = 5.7 \cdot 0.85 = 4.84 \text{ Вт} / (\text{м}^2 \cdot \text{К}) \).

Потеря теплоты лучепропусканием:

\[Q_\alpha = C_1 F_1 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] = 4.84 \cdot 7.85 \cdot (3.43^4 - 2.93^4) = 2490 \text{ Вт}. \]

Общую потерю теплоты лучепропусканием и конвекцией найдем по формуле:

\[Q = \alpha F_1 (t_\text{от} - t_\text{возд}). \]

Здесь \(\alpha \) — суммарный коэффициент теплоотдачи лучепропусканием и конвекцией — определяется по формуле (4.71):

\[\alpha = 9.74 + 0.07 \Delta t = 9.74 + 0.07 (70 - 20) = 13.2 \text{ Вт} / (\text{м}^2 \cdot \text{К}). \]

Общая потеря теплоты аппаратом:

\[Q = 13.2 \cdot 7.85 (70 - 20) = 5200 \text{ Вт}. \]

Пример 4.30. Определить необходимую толщину слоя изоляции аппарата, внутри которого температура 154 °C. Изоляционный материал — совелит. Температура наружной поверхности изоляции не должна быть выше 40 °C.

Решение. Примем температуру окружающего воздуха \(t_0 = 20 \text{ °C} \) и определим суммарный коэффициент теплоотдачи в окружающую среду лучепропусканием и конвекцией по уравнению (4.71):

\[\alpha = 9.74 + 0.07 \Delta t = 9.74 + 0.07 (40 - 20) = 11.1 \text{ Вт} / (\text{м}^2 \cdot \text{К}). \]

Удельный тепловой поток:

\[q = \alpha (t_\text{от} - t_0) = 11.1 (40 - 20) = 222 \text{ Вт} / \text{м}^2. \]

Принимая приближенно, что все термическое сопротивление сосредоточено в слое изоляции, можно написать

\[q = K (t_\text{вн} - t_0) \approx \frac{\lambda}{\delta} (t_\text{вн} - t_0), \]

откуда толщина слоя изоляции:

\[\delta = \frac{\lambda}{q} (t_\text{вн} - t_0) = \frac{0.098}{222} (154 - 20) = 0.059 \text{ м}, \]

где \(\lambda = 0.098 \text{ Вт} / (\text{м} \cdot \text{К}) \) — коэффициент теплопроводности совелита (табл. XXVIII).
Пример 4.31. Вдоль плоской стенки аппарата продуваются воздух со скоростью 3 м/с при средней температуре 90 °С и давлении 900 мм рт. ст. Снаружи аппарат покрыт слоем теплоизоляции (совелит) толщиной 40 мм. Определить количество теплоты q, теряемое с 1 м² стенки аппарата.

Длина стальной стенки 5 м, толщина 5 мм; температура воздуха в помещении 20 °С. Учесть загрязнение внутренней стенки аппарата.

Решение. Находим коэффициент теплоотдачи от горячего воздуха к стенке [расчетная формула (4.40)]. Значение критерия Нуссельта:

\[\text{Nu}_1 = 0,032 \text{Re}^{0,8} \times 0,032 (9,07 \cdot 10^8)^{0,8} = 1867. \]

Здесь \(\text{Re} = \frac{\omega L \rho_1}{\mu_1} = \frac{3,5 \cdot 1,149}{0,019 \cdot 10^{-3}} = 9,07 \cdot 10^{15} \), \(\rho_1 = 1,293 \times 900 \cdot 273 = \frac{900 \cdot 273}{760 (273+90)} = 1,149 \text{ кг/м}^3 \) — плотность воздуха при рабочих условиях; \(\mu_1 = 0,019 \times 10^{-3} \text{ Па·с} \) — динамический коэффициент вязкости воздуха при 90 °C (рис. VI).

Следовательно,

\[\alpha_1 = \text{Nu}_1 \lambda_1 / L = 1867 \cdot 0,0316 / 5 = 11,8 \text{ Вт/(м}^2 \cdot \text{К).} \]

где \(\lambda_1 = 0,0316 \text{ Вт/(м} \cdot \text{К)} \) — коэффициент теплопроводности воздуха при 90 °C (табл. XXX).

Суммарный коэффициент теплоотдачи лучен израсходованием и конвекцией от наружной поверхности изоляции в окружающую среду:

\[\alpha_2 = 9,74 + 0,07 (t_{ст.2} - t_{возд}). \]

Ввиду того, что \(t_{ст.2} \) — температура наружной поверхности изоляции — неизвестна, для первого приближения принимаем \(\alpha_2 \approx 10 \text{ Вт/(м}^2 \cdot \text{К).} \)

Тепловую проводимость загрязнения внутренней поверхности стенки принимаем по табл. XXXI для теплоносителя — воздуха: \(1/r_{возд.1} = 2800 \text{ Вт/(м}^2 \cdot \text{К).} \)

Коэффициент теплопередачи (ориентировочный):

\[K = \frac{1}{11,8 + 1/2800 + 0,005 + 0,04 + 1/10} = \]

\[= \frac{1}{0,4934 + 1/10} = 1,685 \text{ Вт/(м}^2 \cdot \text{К).} \]

Здесь коэффициент теплопроводности совелита \(\lambda = 0,098 \text{ Вт/(м} \cdot \text{К), для стали \lambda_{ст} = 45,5 \text{ Вт/(м} \cdot \text{К)} — см. табл. XXVIII.} \)

Уточнение \(\alpha_2 \):

\[\Delta t_2 = t_{ст.2} - t_{возд} = K \Delta t_{возд} / \alpha_2 = 1,685 \cdot (90 - 20) / 10 = 11,8 \text{ К;} \]

\[\alpha_2 = 9,74 + 0,07 \times 11,8 = 10,57 \text{ Вт/(м}^2 \cdot \text{К).} \]

202
Уточненное значение коэффициента теплопередачи:

\[K = \frac{1}{0,4934 + (1/10,57)} = 1,7 \text{ Вт/(м}^2\cdot\text{K)\).} \]

Удельные потери теплоты:

\[q = K \Delta t_{cp} = 1,7 \times (90 - 20) = 119 \text{ Вт/м}^2. \]

Пример 4.32. Цеолит NaX подвергается десорбции — нагреву в токе горячего воздуха в непрерывнодействующем аппарате со взвешенным слоем цеолита. Средняя температура воздуха 190 °C. Цеолит поступает в аппарат с начальной температурой 20 °C. Диаметр зерна цеолита 4 мм, плотность его 1100 кг/м\(^3\), удельная теплоемкость 870 Дж/(кг•K), коэффициент тепловопроводности 0,24 Вт/(м\cdot К). Число псевдоожижения * 4. Определить время, необходимое для нагрева зерна цеолита от 20 °C до средней температуры 185 °C.

Решение. Прогрев зерна цеолита представляет собой нестационарный процесс тепловопроводности в твердом теле. Решение уравнений нестационарной тепловопроводности (при постоянстве теплофизических характеристик нагреваемого тела)

\[\alpha \nabla^2 t = \frac{\partial t}{\partial t} \]

совместно с граничными и начальными условиями приводит [4.2] к уравнению

\[\frac{t_k - t_h}{t_{o, c} - t_h} = f (Bi, Fo), \quad (a) \]

правая часть которого — сложная функция критериев Био (Bi) и Фурье (Fo).

Для зерна, имеющего форму шара радиусом \(R \):

\[Bi = \frac{\alpha R}{\lambda_t}; \quad Fo = \frac{\alpha t}{R^2} = \frac{\lambda_t \tau}{c_t \rho_t R^2}. \]

В последних уравнениях \(t_h, t_k, t_{o, c} — начальная и конечная температуры нагреваемого тела, температура окружающей среды; \(\alpha — коэффициент теплоотдачи от окружающей среды к поверхности нагреваемого тела; \(\lambda_t, c_t, \rho_t — коэффициент теплопроводности, удельная теплоемкость и плотность твердого тела; \(\alpha — коэффициент температуропроводности твердого тела (зерна). \]

На рис. 4.18 приведен график уравнения (a) для шара [4.1, 4.12].

Определяем коэффициент теплоотдачи \(\alpha \) от воздуха к поверхности зерна цеолита во взвешенном слое. Предварительно найдем значение критерия Архимеда по уравнению (3.3):

\[\text{Ar} = \frac{d^3 \rho_t c_t g}{\mu_c^2} = \frac{0,004^3 \times 1100 \times 0,763 \times 9,81}{25,7^2 \times 10^{-12}} = 8 \cdot 10^5, \]

* Отношение рабочей скорости воздуха к критической (скорости псевдоожижения).
Рис. 4.18 (к примеру 4.32).

где \(\rho_0 = 0,763 \) кг/м\(^3\) и \(\mu_c = 25,7 \times 10^{-8} \) Па·с — плотность и динамический коэффициент вязкости среды (воздуха) при 190 °C [4.1].

По графику (рис. 3.8) находим при \(\text{Ar} = 8 \times 10^5 \) и \(\varepsilon = 0,4 \) критерий Лищенко \(L_y_{кр} = 2,75 \). Отсюда по уравнению (3.4а) определяем критическую скорость пвзводоожжения:

\[
w_{кр} = \sqrt[3]{\frac{L_y_{кр} \mu_c \rho_T}{\rho_c^3}} = \sqrt[3]{\frac{2,75 \times 25,7 \times 10^{-8} \times 9,81 \times 1100 \times 0,763^3}{}} \approx 1,09 \text{ м/с.}
\]

Рабочая скорость воздуха (отнесенная к полному поперечному сечению аппарата):

\[w = 4w_{кр} = 4 \cdot 1,09 = 4,36 \text{ м/с.}\]

По этой скорости рассчитываем критерий Лищенко

\[L_y = \frac{\omega^3 \rho^2_0}{\mu_c \rho_T g} = \frac{4,36^3 \cdot 0,763^2}{25,7 \cdot 10^{-8} \cdot 9,81} = 174\]

и по рис. 3.8 при \(\text{Ar} = 8 \cdot 10^5 \) находим порозность взвешенного слоя \(\varepsilon = 0,67 \).

Критерий Рейнольдса для потока воздуха:

\[\text{Re} = \frac{w d \rho_0}{\rho_c} = \frac{4,36 \cdot 0,004 \cdot 0,763}{0,67 \cdot 25,7 \cdot 10^{-8}} = 773.\]

Критерий Прандтля \(\text{Pr} = c_T / \lambda = 1020 \cdot 25,7 \cdot 10^{-6} / 0,0385 = 0,681. \)

Определяем критерий Нуссельта по уравнению [11]:

\[\text{Nu} = 0,4 \text{Re}^{0.67} \text{Pr}^{0.33} = 0,4 \cdot 773^{0.67} \cdot 0,681^{0.33} = 30,2.\]

Коэффициент теплоотдачи от воздуха к поверхности зерна:

\[\alpha = \text{Nu} \lambda_c / d = 30,2 \cdot 0,0385 / 0,004 = 290 \text{ Вт/(м²·К),}\]

где \(\lambda_c = 0,0385 \) Вт/(м·К) — коэффициент теплопроводности воздуха при 190 °C [4.1].

Критерий Бюо:

\[\text{Bi} = \alpha R / \lambda_T = 290 \cdot 0,002 / 0,24 = 2,42.\]

Симплекс разностей температур:

\[\frac{t_k - t_н}{t_о.с - t_н} = \frac{185 - 20}{190 - 20} = 0,97.\]

По этим данным находим по графику (рис. 4.18) значения критерия Fo = 1, откуда время прогрева зерна цеолита:

\[\tau = \text{Fo} c_T \rho_T R^2 / \lambda_T = 1,870 \cdot 1100 \cdot 0,002^2 / 0,24 \approx 16 \text{ с.}\]
4.1. Во сколько раз увеличится термическое сопротивление стенки стального змеевика, свернутого из трубы диаметром $38 \times 2,5$ мм, если покрыть ее слоем эмали толщиной 0,5 мм? Считать стенку плоской. Коэффициент теплопроводности эмали 1,05 Вт/(м·К).

4.2. Паропровод длиной 40 м, диаметром $51 \times 2,5$ мм покрыт слоем изоляции толщиной 30 мм; температура наружной поверхности изоляции $t_2 = 45^\circ$C, внутренней $t_1 = 175^\circ$C. Определить количество теплоты, теряемое паропроводом в 1 ч. Коэффициент теплопроводности изоляции $\lambda = 0,116$ Вт/(м·К).

4.3. Стальная труба диаметром 60 \times 3 мм изолирована слоем пробки толщиной 30 мм и сверху еще слоем совелита (85 % магнезии + 15% асбеста) толщиной 40 мм. Температура стенки трубы -110°C, а наружной поверхности изоляции 10°C. Вычислить часовую потерю холодна с 1 м длины трубы.

4.4. Как изменится потеря холодна в условиях предыдущей задачи, если внутренний слой сделать совелитовым ($\delta = 40$ мм), а наружный — пробковым ($\delta = 30$ мм)?

4.5. Найти температуру внутренней поверхности обмуровки аппарата (рис. 4.19), если температура на наружной поверхности ее 35°C. Толщина обмуровки 260 мм. Термометр, заделанный на глубину 50 мм от наружной поверхности, показывает температуру 70°C.

4.6. Вычислить коэффициент теплопроводности для: а) жидкого хлороформа при $t = 20$°C; б) сернистого газа при $t = 160$°C и абсолютном давлении 1 кгс/см² (~0,1 МПа); в) 25% водного раствора хлористого кальция при $t = 30$°C.

4.7. Необходимо испарять 1600 кг/ч жидкости, кипящей при $t = 137$°C и поступающей в испаритель при этой температуре. Удельная теплота испарения жидкости $r = 377.10^3$ Дж/кг. Температура греющего пара должна быть не ниже 150°C. Определить расход греющего пара: а) сухого насыщенного, $p_{абс} = 4$ кгс/см² (~0,4 МПа); б) перегретого до 250°C, $p_{абс} = 4$ кгс/см² (~0,4 МПа); в) перегретого до 250°C, $p_{абс} = 3$ кгс/см² (~0,3 МПа). Удельная теплоемкость перегретого пара 2,14 10^3 Дж/(кг·К).

Изобразить процессы изменения состояния греющего пара на диаграмме $T - S$. Конденсат греющего пара отводится при температуре конденсации.

4.8. До какой температуры будут нагреты глухим паром 2 т раствора хлористого кальция, если расход греющего пара ($p_{абс} = 2$ кгс/см², т. е. ~0,2 МПа) за 2,5 ч составил 200 кг, а расход теплоты на нагрев аппарата и потери

Рис. 4.19 (к контрольной задаче 4.5).
теплоты в окружающую среду составляют в среднем 2030 Вт? Начальная температура раствора 10 °C. Удельная теплоемкость раствора 2,5 × 10³ Дж/(кг·К).

4.9. Определить количество передаваемой теплоты в противоточном конденсаторе, в котором конденсируется 850 кг/ч пара сероуглерода под атмосферным давлением. Пар сероуглерода поступает в конденсатор с температурой 90 °C. Жидкий сероуглерод выходит из конденсатора при температуре на 8 °C ниже температуры конденсации. Удельная теплоемкость пара сероуглерода 0,67 × 10³ Дж/(кг·К).

4.10. В кожухотрубчатый конденсатор поступает 120 кг/ч сухого насыщенного пара диоксида углерода под давлением раб = 60 кгс/см² (~ 6,0 МПа). Жидкий диоксид углерода выходит из конденсатора под тем же давлением при температуре конденсации. Принимая разность температур диоксида углерода и воды на выходе воды из конденсатора 5 К, определить необходимый расход воды, если она поступает в конденсатор с температурой 10 °C.

4.11. Колонна для ректификации жидкого воздуха покрыта слоем тепловой изоляции из шлаковой ваты толщиной 250 мм. Температура жидкости внутри колонны — 190 °C, температура воздуха в помещении 20 °C. Какое количество теплоты может проникать из окружающего воздуха в колонну через 1 м² поверхности, если пренебречь термическими сопротивлениями со стороны жидкости, окружающего воздуха и металлической стенки колонны?

4.12. Как изменится коэффициент теплопередачи в аппарате, если заменить стальные трубы диаметром 38 × 2,5 мм на медные такого же размера: а) в паровом калорифере для воздуха, в котором αвода = 41 Вт/(м²·К), αгр. пар = 11 600 Вт/(м²·К); б) в выпарном аппарате, в котором αтоп. пар = 2320 Вт/(м²·К), αгр. пар = 11 600 Вт/(м²·К). Загрязнений поверхности не учитывать.

4.13. Как изменится величина коэффициента теплопередачи в теплообменном аппарате, выполненном из стальных труб толщиной 3 мм, если на поверхности труб отложится слой накипи (водяного камня) толщиной 2 мм: а) в водяном холодильнике для газа, в котором αвода = 58 Вт/(м²·К), αводы = 580 Вт/(м²·К); б) в выпарном аппарате, в котором αкис. пар = 2780 Вт/(м²·К), αгр. пар = 11 600 Вт/(м²·К)?

4.14. Какая наибольшая удельная тепловая нагрузка (в Вт/м²) может быть в испарителе толуола, если стальные трубы испарителя толщиной 4 мм с обеих сторон покрыты ржавчиной? Толщина одного слоя ржавчины 0,6 мм. Испаритель обогревается насыщенным паром (рплот = 3 кгс/см², т. е. ~0,3 МПа). Толуол кипит под атмосферным давлением. Считать, что термическое сопротивление стенки и двух слоев ржавчины значительно больше суммы остальных термических сопротивлений.
4.15. Горячий концентрированный раствор, выходящий из выпарного аппарата с температурой 106 °С, используется для подогрева до 50 °С холодного разбавленного раствора, поступающего на выпарку с температурой 15 °С. Концентрированный раствор охлаждается до 60 °С. Определить среднюю разность температур для прямоточной и противоточной схем.

4.16. В многоходовом кожухотрубчатом теплообменнике, имеющем четыре хода в трубном пространстве и один ход в межтрубном (рис. 4.20), толуол охлаждается водой от 106 до 30 °С. Вода, проходящая по трубам, нагревается от 10 до 34 °С. Определить среднюю разность температур в теплообменнике.

4.17. 1930 кг/ч бутилового спирта необходимо охлаждать от 90 до 50 °С в противоточном теплообменнике поверхностью 6 м². Охлаждение производится водой с начальной температурой 18 °С. Коэффициент теплопередачи в теплообменнике 230 Вт/(м²·К); Δtср считать как среднюю арифметическую. Сколько кубических метров воды в 1 ч надо пропускать через теплообменник?

4.18. На складе оборудования имеется кожухотрубчатый теплообменник, состоящий из 19 латунных труб диаметром 18 × 2 мм, длиной 1,2 м. Достаточна ли его поверхность для конденсации 350 кг/ч насыщенного пара этилового спирта, если принять коэффициент теплопередачи равным 700 Вт/(м²·К), начальную температуру воды 15 °С, а конечную 35 °С? Конденсация спирта предполагается при атмосферном давлении, жидкий спирт отводится при температуре конденсации.

4.19. Кожухотрубчатый противоточный теплообменник (рис. 4.21) перед контактным аппаратом на сернокислотном заводе
имеет поверхность теплообмена 360 м². Очищенный газ колчеданных печей поступает в межтрубное пространство теплообменника при 300 °C, выходит при 430 °C. Горячий газ из контактного аппарата входит в трубы теплообменника при 560 °C. Расход газа 10 т/ч, удельная теплоемкость газа в среднем 1,05 × 10³ Дж/(кг·К). Потери теплоты через кожух теплообменника составляют 10% от количества теплоты, полученого нагревающимся газом. Определить коэффициент теплообмена в теплообменнике.

4.20. Определить коэффициент теплообмена в спиральном теплообменнике по следующим данным: поверхность теплообмена 48 м²; в аппарате подогревается 85,5 т/ч воды от 77 до 95 °C; нагревание производится насыщенным паром при р насы = 23 кПа.

4.21. Определить необходимую поверхность противоточного теплообменника при охлаждении 0,85 м³/ч сероуглерода от температуры кипения под атмосферным давлением до 22 °C. Охлаждающая вода нагревается от 14 до 25 °C; αНа₂ = 270 Вт/(м²·К); αН₂О = 720 Вт/(м²·К). Толщина стальной стенки 3 мм. Учесть наличие загрязнений — ржавчины и накипи, приняв Σ r зарг = 0,00069 (м²·К)/Вт. Определить также расход воды.

4.22. Требуется конденсировать 10 т/ч насыщенного пара n-гексана при 70 °C. Охлаждение конденсатора может быть осуществлено: а) водой, нагреваемой от 16 до 36 °C; б) воздухом, нагреваемым от 25 до 48 °C. Коэффициент теплоотдачи для конденсирующегося пара гексана в обоих случаях принять равным 1700 Вт/(м²·К). Коэффициенты теплоотдачи для воды и воздуха взять ориентировочно (средние значения) по табл. 4.7, для воды — при турбулентном течении по трубам, для воздуха — при поперечном обтекании труб. Жидкий гексан отводится при температуре конденсации. Термические сопротивления стенки и загрязнений не учитывать. Удельная теплота конденсации гексана 33,3 × 10³ Дж/кг. Определить расходы воды и воздуха (в м³/ч) и требуемые поверхности теплообмена.

4.23. Метан под избыточным давлением 5 кгс/см² (~0,5 МПа) проходит по межтрубному пространству кожухотрубчатого теплообменника параллельно трубам со скоростью 4,6 м/с. Средняя температура метана 75 °C. Теплообменник состоит из 37 стальных труб диаметром 18 × 2 мм, заключенных в кожух, внутренний диаметр которого 190 мм. Определить коэффициент теплоотдачи.

4.24. 3700 кг/ч метилового спирта подогреваются от 10 до 50 °C, проходя по трубному пространству теплообменника, состоящего из 19 труб диаметром 16 × 2 мм. Определить коэффициент теплоотдачи, если принять температуру стенки 60 °C.

4.25. В кожухотрубчатом теплообменнике по трубам диаметром 46 × 3 мм проходит со скоростью 0,7 м/с вода, которая нагревается. Определить коэффициент теплоотдачи, если средняя температура поверхности стенки, соприкасающейся с водой, 90 °C, а средняя температура воды 46 °C.
4.26. Определить коэффициент теплоотдачи для воздуха, охлаждаемого под абсолютным давлением 2 кгс/см² (~0,2 МПа) от 90 до 30 °C в межтрубном пространстве кожухотрубчатого теплообменника с поперечными перегородками. Трубы диаметром 25 × 2 мм расположены по ходу газа в шахматном порядке. Скорость воздуха в вырезе перегородки (в самом узком сечении пучка труб) 8 м/с (рис. 4.22, б).

4.27. Воздух атмосферного давления нагревается насыщенным водяным паром в кожухотрубчатом конденсаторе с трубками диаметром 25 × 2 мм. Средняя температура воздуха 60 °C. Сравнить коэффициенты теплоотдачи для двух случаев: 1) воздух проходит по трубам со скоростью 10 м/с (L/d > 50), греющий пар конденсируется в межтрубном пространстве (рис. 4.22, а); 2) воздух проходит по межтрубному пространству, снабженному поперечными перегородками. Скорость воздуха в вырезе перегородки (в самом узком сечении пучка труб) 10 м/с (рис. 4.22, б), греющий пар конденсируется в трубах. Принять коэффициент теплоотдачи пара 11 600 Вт/(м²·К).

4.28. При теплообмене двух турбулентных потоков (Re > 10 000) у первого потока α₁ = 230 Вт/(м²·К), у второго α₂ = 400 Вт/(м²·К). Во сколько раз увеличится коэффициент теплоотдачи, если скорость первого потока возрастет в 2 раза, а скорость второго — в 3 раза (при прочих неизменных условиях)? Термическое сопротивление стенки не учитывать.

4.29. Определить коэффициент теплоотдачи для 98 % серной кислоты, проходящей по кольцевому (межтрубному) пространству горизонтального теплообменника типа «труба в трубе» со скоростью 0,9 м/с. Средняя температура кислоты 72 °C, средняя температура стенки 58 °C. Наружная труба теплообменника имеет диаметр 54 × 4,5 мм, внутренняя — 26 × 3 мм.

4.30. Четыреххлористый углерод нагревается в трубном пространстве горизонтального кожухотрубчатого теплообменника. Средняя температура четыреххлористого углерода 26 °C, скорость его в трубах 0,15 м/с. Средняя температура поверхности загрязнения труб, соприкасающейся с четыреххлористым углеродом, 34 °C. Диаметр труб 25 × 2 мм. Определить коэффициент теплоотдачи четыреххлористого углерода.
4.31. Через трубное пространство кожухотрубчатого теплообменника прокачивается раствор хлористого кальция (23,8 %), который нагревается при средней температуре —20 °C. Скорость рассола в трубах 0,5 м/с, средняя температура поверхности стенки, соприкасающейся с раствором, —10 °C. Коэффициент объемного расширения рассола 0,35-10^{-3} \text{К}^{-1}, внутренний диаметр труб 0,021 м, длина труб 4 м. Определить коэффициент теплоотдачи для рассола.

4.32. Раствор хлористого натрия [21,2 % (масс.)] нагревается в трубном пространстве кожухотрубчатого теплообменника от —15 до —12 °C. Внутренний диаметр труб 21 мм, длина труб 3 м. Скорость рассола в трубах 0,3 м/с. Средняя температура поверхности загрязнения стенки, соприкасающейся с рассолом, \(t_\text{c} = —6,5 \, ^\circ\text{C} \). Определить коэффициент теплоотдачи от рассола к стенке. Коэффициент объемного расширения рассола \(\beta = 0,35 \cdot 10^{-3} \, \text{К}^{-1} \).

4.33. Этилацетат охлаждается в трубном пространстве горизонтального кожухотрубчатого теплообменника. Внутренний диаметр труб 21 мм, длина труб 3 м. Средняя температура охлаждаемого этилацетата \(t_\text{ср} = 50 \, ^\circ\text{C} \), средняя температура поверхности загрязнения стенки со стороны этилацетата \(t_\text{с} = 40 \, ^\circ\text{C} \). Скорость этилацетата 0,04 м/с. Определить коэффициент теплоотдачи от этилацетата к стенке. Коэффициент теплопроводности \(\lambda = 0,1128 \, \text{Вт} / (\text{м} \cdot \text{К}) \).

4.34. Бензин охлаждается в трубах горизонтального кожухотрубчатого теплообменника. Внутренний диаметр труб 21 мм, длина труб 4 м. Средняя температура охлаждаемого бензина 50 °C, средняя температура поверхности загрязнения стенки со стороны бензина \(t_\text{с} = 30 \, ^\circ\text{C} \). Скорость бензина 0,05 м/с. Определить коэффициент теплоотдачи от бензина к стенке.

4.35. В вертикальном кожухотрубчатом теплообменнике бензин прокачивается через трубы снизу вверх при охлаждении от 70 до 30 °C. Внутренний диаметр труб 21 мм, высота труб 4 м. Скорость бензина 0,05 м/с. Средняя температура поверхности загрязнения стенки со стороны бензина 30 °C. Определить коэффициент теплоотдачи от бензина к вертикальной поверхности стенки.

4.36. Вода нагревается в условиях свободного движения. Наружный диаметр горизонтальных труб 76 мм. Определить коэффициент теплоотдачи, если температуру поверхности трубы принять равной 45 °C. Средняя температура воды 25 °C.

4.37. В условиях свободной конвекции охлаждается толуол. Средняя температура толуола 50 °C. Диаметр горизонтальных труб 38×2 мм. Температура наружной поверхности загрязнения труб, соприкасающейся с толуолом 30 °C. Определить коэффициент теплоотдачи толуола.

4.38. Вертикальный кожухотрубчатый теплообменник состоит из 91 трубы диаметром 57×3 мм, высотой 4 м. По внутренней поверхности труб стекает пленкой вода в количестве 52 м³/ч,
которая нагревается от 18 до 25 °C. Средняя температура внутренней поверхности труб 26 °C. Определить коэффициент теплоотдачи.

4.39. По вертикальной стенке пленочного холодильника стекает пленкой 60% серная кислота в количестве 2,1 дм³/ч на 1 м ширины стенки. Высота холодильника 5 м. Средняя температура поверхности стенки 24 °C, средняя температура кислоты 50 °C. Вычислить коэффициент теплоотдачи для кислоты, если коэффициент теплопроводности ее равняется 0,43 Вт/(м·К).

4.40. Вычислить коэффициент теплоотдачи кипящего под атмосферным давлением 20 % водного раствора хлористого натрия. Разность температур греющей поверхности и кипящего раствора 10 К. Для кипящего раствора λ = 0,658 Вт/(м·К).

4.41. В кубе ректификационной колонны под атмосферным давлением внутри вертикальных труб высотой 4 м кипит толуол с небольшим содержанием бензола (наличие бензола не учитывать). Диаметр труб 25×2 мм. Определить коэффициент теплоотдачи к кипящему толуолу. Принять температуру поверхности загрязнения стенки со стороны толуола 125,3 °C.

4.42. В межтрубном пространстве вертикального кожухотрубчатого теплообменника, состоящего из 261 трубы диаметром 25×2 мм, конденсируется под атмосферным давлением 4 т/ч насыщенного пара метилового спирта. Определить коэффициент теплоотдачи.

4.43. Насыщенный водяной пар конденсируется на наружной поверхности пучка горизонтальных труб. Наружный диаметр труб 38 мм. Расположение труб шахматное. Расчетное число труб по высоте 11. Температура конденсации 160 °C. Определить средний коэффициент теплоотдачи, приняв температуру наружной поверхности труб 152 °C. Пар содержит 0,5 относительных % воздуха.

4.44. Метиловый спирт (100%) нагревается в трубном пространстве одноходового кожухотрубчатого теплообменника от 15 до 42 °C. Противотоком в межтрубном пространстве течет вода, которая охлаждается от 90 до 40 °C. Теплообменник с кожухом 400 мм состоит из 111 стальных труб диаметром 25×2 мм. Скорость метилового спирта в трубах 0,75 м/с. Коэффициент теплоотдачи для воды 840 Вт/(м²·К), суммарная тепловая проводимость стенки и обоих загрязнений стенки 1700 Вт/(м²·К), средняя температура поверхности загрязнения, соприкасающейся со спиртом, 38 °C. Определить требуемую площадь поверхности теплообмена.

4.45. Воздух подогревается в трубном пространстве одноходового кожухотрубчатого теплообменника с 20 до 90 °C при среднем абсолютном давлении 810 мм рт. ст. Расход воздуха, считая при нормальных условиях, составляет 7770 м³/ч. В теплообменнике 197 труб диаметром 38×2 мм. В межтрубное пространство подается насыщенный водяной пар под абсолютным давлением 2 кгс/см² (~0,2 МПа). Коэффициент теплоотдачи пара
10 000 Вт/(м²·К), суммарная тепловая проводимость стенки и обоих ее загрязнений 1700 Вт/(м²·К). Определить требуемую площадь поверхности теплообмена.

4.46. Воздух атмосферного давления в количестве 5200 м³/ч (при нормальных условиях) нагревается в трубном пространстве кожухотрубчатого теплообменника с 2 до 90 °C. Число труб 111. Диаметр труб 38×2 мм. Абсолютное давление греющего водяного пара 2 кгс/см² (∼0,2 МПа). Определить требуемую длину труб и расход греющего пара, если его влажность 6%. Принять \(K ≈ α_{возд} \).

4.47. По змеевику проходит 1,5 т/ч толуола, охлаждающегося от 90 до 30 °C. Охлаждение (противотоком) проводится водой, нагревающейся от 15 до 40 °C. Труба змеевика стальная диаметром 57×3,5 мм; \(α_{возд} = 580 \text{ Вт/(м²·К)} \). Диаметр витка змеевика 0,4 м. Определить необходимую длину змеевика и расход воды. Термическое сопротивление стенки и ее загрязнений принять равным 0,0007 (м²·К)/Вт, а отношение Pr/Pr_{ct} для толуола равным 0,75.

4.48. В теплообменнике типа «труба в трубе», состоящем из двух концентрических труб: внутренней диаметром 44,5×3,5 мм и наружной диаметром 89×5 мм, охлаждается от 70 до 30 °C толуол в количестве 1900 кг/ч. Толуол проходит по кольцевому пространству между наружной и внутренней трубой; по внутренней протекает охлаждающая вода, нагревающаяся от 14 до 21 °C. Средняя температура поверхности загрязнения со стороны толуола 26 °C, со стороны воды 20 °C. Определить коэффициент теплоярдации. Учесть термические сопротивления загрязнений стенки со стороны толуола и со стороны воды (среднего качества).

Расчет сделать: а) без учета влияния Pr/Pr_{ct}; б) с учетом влияния Pr/Pr_{ct}.

4.49. Вертикальная стенка выпарного аппарата покрыта слоем изоляции [\(\lambda = 0,12 \text{ Вт/(м·К)} \)] толщиной 45 мм. Температура кипящего раствора 120 °C, температура воздуха в помещении 20 °C. Определить потерю теплоты излучением и конвекцией с 1 м³ в 1 ч, принявая температуру поверхности стенки, соприкасающейся с кипящим раствором, равной температуре последнего.

4.50. По горизонтальному паропроводу диаметром 51×2,5 мм, длиной 50 м проходит насыщенный пар под давлением \(p_{об} = = 4 \text{ кгс/см}^2 (∼0,4 \text{ МПа}) \). Определить количество конденсата, образующегося в течение суток в неизолированном трубопроводе. Температура воздуха в цехе 15 °C.

4.51. Во сколько раз уменьшится потеря теплоты, если паропровод, рассматриваемый в предыдущей задаче, покрыт теплоизоляционным слоем толщиной 40 мм с коэффициентом тепло проводности 0,093 Вт/(м·К).

4.52. Аппarat изолирован слоем шамотного кирпича толщиной 125 мм [\(\lambda = 0,68 \text{ Вт/(м·К)} \)] и слоем изоляционной массы [\(\lambda = = 0,12 \text{ Вт/(м·К)} \)]. Температура наружной поверхности металлич
ческой стенки аппарата 500 °C. Найти достаточную толщину изоляционного слоя, чтобы температура его наружной поверхности не превышала 50 °C при температуре воздуха в цехе 25 °C.

4.53. В сушилке, вдоль ее плоской стенки длиной 6 м, проходит со скоростью 2,5 м/с горячий воздух атмосферного давления, имеющий среднюю температуру 85 °C. Стальная стенка сушилки толщиной 5 мм изолирована снаружи слоем теплоизоляции толщиной 30 мм. Температура воздуха в помещении 18 °C. Определить количество теплоты, теряемой в 1 ч с 1 м² стенки сушилки путем конвекции и излучением. Учесть тепловую проводимость загрязнения внутренней стенки сушилки.

ПРИМЕРЫ РАСЧЕТА ТЕПЛООБМЕННИКОВ

Аппараты теплообменные кожухотрубчатые с неподвижными трубными решетками и кожухотрубчатые с температурным компенсатором на кожухе применяются в тех случаях, когда нет необходимости в механической очистке межтрубного пространства (очистка от осадка возможна только для трубного пространства). Поэтому в трубное пространство подают ту жидкость (воду или водные растворы), которая при нагревании или охлаждении может выделить неарсениевый осадок на стенках труб, а в межтрубное пространство подают чистую жидкость или конденсирующий пар.

Конечную температуру охлаждающей воды не следует принимать выше 45—50 °C во избежание значительного образования накипи.

Кожухотрубчатые теплообменные аппараты с неподвижными трубами решетками и с поперечными перегородками в межтрубном пространстве, применяемые в химической, нефтяной и других отраслях промышленности, обозначаются индексами и классифицируются:
— по назначению (первая буква индекса): Т — теплообменники; Х — холодильники; К — конденсаторы; И — испарители;
— по конструкции (вторая буква индекса): Н — с неподвижными трубными решетками; Л — с температурным (лиnzовым) компенсатором на кожухе;
— по расположению (третья буква индекса): Г — горизонтальные; В — вертикальные.

Основные сведения о кожухотрубчатых теплообменных аппаратах с неподвижными трубными решетками по ГОСТам 15119—79, 15120—79, 15121—79 и 15122—79 для труб 25×2 мм из стали марок 10 и 20 приведены в табл. 4.11, 4.12, а также в Приложении (табл. XXXIV и XXXV).

Размещение отверстий под трубы в трубных решетках и основные размеры — см. ГОСТ 15118—79. Примеры размещения отверстий в трубных решетках приведены на рис. II и III (см. Приложение).

Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками типа TH, XH, KH, IN можно применять только в тех случаях, когда разность температур кожи (tк) и трубы (tт) будет меньше максимальной, приведенной в табл. XXXV.

Если разность tк и tт окажется больше максимально допустимой, то используют кожухотрубчатый теплообменный аппарат с линзовым компенсатором типа TK, КК, ХК, ИК или с плавающей головкой (ГОСТ 14246—79).

Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками, предназначенные для аммиачных и углеводородных холодильных установок (ГОСТ 22485—77 и ГОСТ 22486—77), в этом пособии не приводятся.

Пример 4.1. Рассчитать теплообменный аппарат для охлаждения 1,1 кг/с диэтилового эфира от 725 до 10 °C рассолом — раствором хлористого кальция [23,8 % (масс.)], поступающим из холодильной машины. Рассол нагревается от 15 до 12 °C. Давление в линиях эфира и рассола менее 0,3 МПа. Со-
Применение кожухотрубчатых теплообменных аппаратов со стальными трубами

\(p_{\text{раб}} \) — предельные рабочие давления, зависящие от характеристик и температуры среды: 1 кгс/см\(^2 \approx 0.1 \) МПа

<table>
<thead>
<tr>
<th>Тип аппарата</th>
<th>Применение и нормы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>в кожухе</td>
</tr>
</tbody>
</table>

Теплообменники ТН и ТК

- Нагревание и охлаждение жидкых и газообразных сред
- Температура теплообменивающихся сред от \(-70\) до \(+350\) \(^{\circ}\)C

\(p_{\text{усл для ТН от 6 до 25 кгс/см}} \) для ТК от 6 до 16 кгс/см\(^2\)

\(p_{\text{усл для 6 до 16 кгс/см}} \)

Конденсаторы КН и КК

- Конденсируемая среда
- Температура от 0 до \(+350\) \(^{\circ}\)C

\(p_{\text{усл для КН от 6 до 25 кгс/см}} \) для КК от 6 до 16 кгс/см\(^2\)

Охлаждающая среда

Вода или другая не-токсичная и невзрыво- и непожароопасная среда

Температура от \(-20\) до \(+60\) \(^{\circ}\)C

\(p_{\text{усл от 6 до 16 кгс/см}} \)

Холодильники ХН и ХК

- Охлаждаемая среда
- Температура от \(-20\) до \(+300\) \(^{\circ}\)C

\(p_{\text{усл для ХН от 6 до 40 кгс/см}} \) для ХК от 6 до 16 кгс/см\(^2\)

Испарители ИН и ИК

- Греющая среда
- Температура греющей и испаряемой среды от \(-30\) до \(+350\) \(^{\circ}\)C

\(p_{\text{усл для ИН от 6 до 40 кгс/см}} \) для ИК от 6 до 16 кгс/см\(^2\)

поставить несколько вариантов аппаратов, отличающихся гидродинамическим режимом течения теплоносителей.

Решение. Общая часть. 1. Определим расход теплоты и расход рассола.

Примем индекс «1» для горячего теплоносителя (дизельового эфира), индекс «2» — для холодного теплоносителя (рассола).

Преварительно найдем среднюю температуру рассола:

\[t_2 = 0,5 \left(\frac{15 + (-12)}{2} \right) = -13,5 \, ^{\circ}\text{C}; \]

среднюю температуру дизельового эфира:

\[t_1 = t_2 + \Delta t_{\text{ср}} = -13,5 + 16 = +2,5 \, ^{\circ}\text{C}; \]

где \(\Delta t_{\text{ср}} \) — средняя разность температур, равная при противотоке теплоносителей 16 К.

\[
\begin{align*}
\Delta t_{\text{ср}} &= \frac{\Delta t_6 - \Delta t_M}{\ln (\Delta t_6/\Delta t_M)} = \frac{37 - 5}{\ln (37/5)} = 16 \text{ K}.
\end{align*}
\]
| Диаметр
кошута
внутренний
D, мм | Число
труб n | Длина
труб l, м | 1,0 | 1,5 | 2,0 | 3,0 | 4,0 | 6,0 | 9,0 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Поверхность теплообмена F, м²</td>
<td>S₉·10²</td>
<td>S₉м·10²</td>
<td>Sв. п·10²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>159 *</td>
<td>13</td>
<td>1,0</td>
<td>1,5</td>
<td>2,0</td>
<td>3,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5</td>
</tr>
<tr>
<td>273 *</td>
<td>37</td>
<td>3,0</td>
<td>4,5</td>
<td>6,0</td>
<td>9,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,3</td>
</tr>
<tr>
<td>325 *</td>
<td>62</td>
<td>7,5</td>
<td>10,0</td>
<td>14,5</td>
<td>19,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2,1</td>
</tr>
<tr>
<td>400</td>
<td>111</td>
<td>17</td>
<td>26</td>
<td>35</td>
<td>52</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3,8</td>
</tr>
<tr>
<td>600</td>
<td>257</td>
<td>61</td>
<td>81</td>
<td>121</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8,9</td>
</tr>
<tr>
<td>800</td>
<td>465</td>
<td>109</td>
<td>146</td>
<td>219</td>
<td>329</td>
<td>16,1</td>
<td>7,9</td>
<td>6,9</td>
<td>23</td>
</tr>
<tr>
<td>1000</td>
<td>747</td>
<td>176</td>
<td>235</td>
<td>352</td>
<td>528</td>
<td>25,9</td>
<td>14,3</td>
<td>10,6</td>
<td>29</td>
</tr>
<tr>
<td>1200</td>
<td>1083</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>340</td>
<td>510</td>
<td>765</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Одноходовые

325 *	56	6,5	9,0	13,0	17,5	—	—	—	1,0	1,5	1,3	8	180
400	100	—	16,0	24,0	31,0	47	—	—	1,7	2,5	2,0	10	250
600	240	—	38	57	75	113	—	—	4,2	4,5	4,0	16	300
800	442	—	69	104	139	208	312	7,7	7,0	6,5	22	350	
1000	718	—	161	226	338	507	12,4	13,0	10,6	28	520		
1200	1048	—	—	—	—	329	494	740	17,9	16,5	16,4	34	550

Двухходовые

600	206	—	—	32	49	65	97	—	1,8	4,5	4,0	14	300
800	404	—	—	63	95	127	190	285	3,0	7,0	6,5	20	350
1000	666	—	—	157	209	314	471	5,5	13,0	10,6	26	520	
1200	986	—	—	—	—	310	464	697	8,4	16,5	16,4	32	550

Четырехходовые

600	196	—	—	31	46	61	91	—	1,1	4,5	3,7	14	300
800	384	—	—	60	90	121	181	271	2,2	7,0	7,0	20	350
1000	642	—	—	151	202	302	454	3,6	13,0	10,2	26	520	
1200	958	—	—	—	—	301	451	677	5,2	16,5	14,2	32	550

Шестihходовые

...
С учетом потерь холода в размере 5% расход теплоты:

\[Q = 1,05G_1c_1 \left(t_{1H} - t_{1H} \right) = 1,05 \cdot 1,1 \cdot 2140 \left[25 - (-10) \right] = 86500 \text{ Вт}; \]

расход рассола:

\[G_2 = \frac{Q}{c_2 \left(t_{2K} - t_{2H} \right)} = \frac{86500}{2900 \left[-12 - (-15) \right]} = 9,9 \text{ кг/с}, \]

где \(c_1 = 2140 \text{ Дж/(кг} \cdot \text{К}) \) и \(c_2 = 2900 \text{ Дж/(кг} \cdot \text{К}) \) — удельные теплоемкости эфира и рассола при их средних температурах \(t_1 = +2,5 \text{ °С} \) и \(t_2 = -13,5 \text{ °С} \) (рис. XI и табл. LII) *.

Объемные расходы эфира и рассола:

\[V_1 = G_1/\rho_1 = 1,1/733 = 0,0015 \text{ м}^3/\text{с}; \]
\[V_2 = G_2/\rho_2 = 9,9/1220 = 0,0081 \text{ м}^3/\text{с}, \]

где \(\rho_1 = 733 \text{ кг/м}^3 \) и \(\rho_2 = 1220 \text{ кг/м}^3 \) — плотность эфира (рис. XI) и рассола (табл. LII).

2. Наметим варианты теплообменных аппаратов.

Для этого определим ориентировочно значение площади поверхности теплообмена, полагая \(K_{op} = 250 \text{ Вт/(м}^2 \cdot \text{К}) \) по табл. 4.8, т. е. приняв его таким же, как и при теплообмене от жидкости к жидкости для углеводородов и масел:

\[F_{op} = \frac{Q}{K_{op} \Delta t_{op}} = \frac{86500}{250 \cdot 16} \approx 22 \text{ м}^2. \]

Из величины \(F_{op} = 22 \text{ м}^2 \) следует, что проектируемый холодильник может быть: а) теплообменником типа «труба в трубе»; б) элементным, т. е. составленным из нескольких кожухотрубчатых аппаратов меньшей площади, соединенных последовательно; в) одноячееным кожухотрубчатым аппаратом. Как следует из табл. 4.13, можем использовать как аппараты типа XH, так и типа TH.

Для обеспечения интенсивного теплообмена попробуем подобрать аппарат с турбулентным режимом течения теплоносителей. Рассол направим в трубное пространство, так как он дает загрязнения, эфир — в межтрубное пространство.

В теплообменных трубах \(\varnothing 25 \times 2 \text{ мм} \) холодильников по ГОСТ 15120—79 скорость течения рассола при \(Re_{2} > 10000 \) должна быть более

\[w_2 = \frac{Re_{2} \mu_2}{d_2 \rho_2} = \frac{10000 \cdot 7,165 \cdot 10^{-3}}{0,021 \cdot 1220} = 2,8 \text{ м/с}, \]

где \(\mu_2 = 7,165 \cdot 10^{-3} \text{ Па} \cdot \text{с} \) — вязкость рассола при \(t_2 = -13,5 \text{ °С} \) (табл. LI).

Проходное сечение трубного пространства при этом должно быть меньше

\[S_2 = V_2/w_2 = 0,0081/2,8 = 0,289 \cdot 10^{-2} \text{ м}^2. \]

Кожухотрубчатый холодильник наименьшего диаметра 159 мм с числом труб 13 имеет \(S_T = 0,5 \cdot 10^{-2} \text{ м}^2 \) (табл. 4.12). Следовательно, турбулентное течение рассола можно обеспечить только в аппарате с меньшим сечением трубного пространства, т. е. в теплообменнике «труба в трубе».

Вариант 1. Теплообменник «труба в трубе» (ГОСТ 9930—78).

1.1. Рассмотрим аппарат, изготовленный из труб 89×4 мм (наружная труба) и 57×3,5 мм (внутренняя труба). Скорость рассола в трубах для обеспечения турбулентного течения должна быть более \(w_2^* \):

\[w_2^* = \frac{10000 \mu_2}{d_2 \rho_2} = \frac{10000 \cdot 7,165 \cdot 10^{-3}}{0,05 \cdot 1220} = 1,17 \text{ м/с}. \]

* Теплофизические свойства эфира приведены в табл. IV, IX, X, XXXIII и на рис. XI и XIII, свойства рассола — в табл. XXXIII, LI, LII.
Число параллельно работающих труб 57×3.5 мм, при этом

$$n' = \frac{V_2}{0.785d_2^2w_2} = \frac{0.0081}{0.785 \cdot 0.05^2 \cdot 1.17} = 3.53.$$

Примем $n = 2$. Определим скорость и критерий Рейнольдса для рассола:

$$w_2 = \frac{V_2}{0.785d_2^2n} = \frac{0.0081}{0.785 \cdot 0.05^2 \cdot 2} = 2.07 \text{ м/с};$$

$$\text{Re}_2 = \frac{w_2d_2\rho_2}{\mu_2} = \frac{2.07 \cdot 0.05 \cdot 1220}{7.165 \cdot 10^{-3}} = 17650.$$

Для эфира:

$$w_1 = \frac{V_1}{S_1} = \frac{0.0015}{0.785(D^2 - d^2)} = \frac{0.0015}{0.785(0.081^2 - 0.057^2) \cdot 2} = 0.27 \text{ м/с};$$

$$\text{Re}_1 = \frac{w_1d_1\rho_1}{\mu_1} = \frac{0.27 \cdot 0.024 \cdot 733}{0.28 \cdot 10^{-3}} = 16960,$$

где эквивалентный диаметр $d_3 = D - d = 0.081 - 0.057 = 0.024$ м.

1.2. Составим схему процесса теплопередачи (рис. 4.23). По табл. 4.1 находим, что теплоотдача для обоих потоков описывается уравнением (4.17):

$$\text{Nu} = 0.021e_1 \text{Re}^{0.8} \text{Pr}^{0.43} (\text{Pr}/\text{Pr}_{ct})^{0.25}.$$

Коэффициент e_1 примем равным 1, полагая, что $L/d_3 > 50$ (табл. 4.3). Ввиду того, что температуры стенок со стороны эфира $t_{ct.1}$ и рассола $t_{ct.2}$ пока неизвестны, примем сомножитель $(\text{Pr}/\text{Pr}_{ct})^{0.25}$ равным единице для обоих потоков [это позволяет сделать сама форма уравнения (4.17)].

a) Коэффициент теплоотдачи для эфира.

Критерий Прандтля для эфира при $+25^\circ$C:

$$\text{Pr}_1 = c_1 \mu_1/\lambda_1 = 2140 \cdot 0.28 \cdot 10^{-3} / 0.136 = 4.4,$$

где $\lambda_1 = 0.136$ Вт/(м$ \cdot $К) — коэффициент теплопроводности эфира (рис. X).

Критерий Нуссельта для эфира:

$$\text{Nu}_1 = 0.021 \cdot 1.16 \cdot 960^{0.8} \cdot 4^{0.43} \cdot 1 = 94.8.$$

Коэффициент теплоотдачи от эфира к стенке:

$$\alpha_1 = \text{Nu} \lambda_1/d_1 = 94.8 \cdot 0.136 / 0.024 = 537$ Вт/(м$^2 \cdot $К).

b) Коэффициент теплоотдачи для рассола.

Критерий Прандтля для рассола при -13.5°C:

$$\text{Pr}_2 = c_2 \mu_2/\lambda_2 = 2900 \cdot 7.165 \times 10^{-2} / 0.473 = 44,$$

где $\lambda_2 = 0.473$ Вт/(м$ \cdot $К) — коэффициент теплопроводности рассола (табл. L1).

Рис. 4.28 (к первому варианту расчета примера 4.1).
Критерий Нуссельта:

\[\text{Nu'}_2 = 0.021 \cdot 1.17 \cdot 650^{0.8} \cdot 44^{0.43} \cdot 1 = 262. \]

Коэффициент теплоотдачи от стенки к рассолу:

\[\alpha' = \frac{\text{Nu'}_2 \lambda}{d_2} = 262 \cdot 0.473/0.050 = 2480 \text{ Вт/(м²·К)}. \]

Термическое сопротивление стенки и загрязнений (табл. XXXI):

\[\sum r'_{\text{ст}} = \frac{1}{5800} + \frac{0.0035}{46.5} + \frac{1}{5800} = 4.2 \cdot 10^{-4} \text{ м²·К/Вт.} \]

Коэффициент теплопередачи:

\[K' = \frac{1}{\frac{1}{\alpha_1} + \sum \frac{r'_{\text{ст}}}{\alpha_2} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{537} + 4.2 \cdot 10^{-4} + \frac{1}{2480}} = 373 \text{ Вт/(м²·К).} \]

Поверхностная плотность теплового потока:

\[q' = K' \Delta t_{\text{ср}} = 373 \cdot 16 = 5970 \text{ Вт/м².} \]

1.3. Определим ориентировочно значения \(t'_{\text{ст.1}} \) и \(t'_{\text{ст.2}} \), исходя из того, что

\[q' = K' \Delta t_{\text{ср}} = \alpha' \Delta t'_{\text{ср}} = \frac{1}{\sum r'_{\text{ст}}} \Delta t'_1 = \alpha' \Delta t'_2, \]

где сумма

\[\Delta t'_1 + \Delta t'_{\text{ст}} + \Delta t'_2 = \Delta t_{\text{ср}}. \]

Найдем:

\[\Delta t_1 = \frac{q'}{\alpha'_1} = \frac{5970}{537} = 11.1 \text{ К;} \]

\[\Delta t'_{\text{ст}} = q' \sum r'_{\text{ст}} = 5970 \cdot 4.2 \cdot 10^{-4} = 2.5 \text{ К;} \]

\[\Delta t'_2 = \frac{q'}{\alpha'_2} = \frac{5970}{2480} = 2.4 \text{ К.} \]

Проверка: сумма \(\Delta t'_1 \), \(\Delta t'_2 \) и \(\Delta t'_{\text{ст}} \) равна \(\Delta t_{\text{ср}} \):

\[11.1 + 2.5 + 2.4 = 16 \text{ К = 16 °C.} \]

Отсюда

\[t'_{\text{ст.1}} = t_1 - \Delta t'_1 = 2.5 - 11.1 = -8.6 °C; \]

\[t'_{\text{ст.2}} = t_2 + \Delta t'_2 = -13.5 + 2.4 = -11.1 °C. \]

Введем поправку в коэффициенты теплоотдачи, определив \((\Pr/\Pr_{\text{от}})^{0.25}\).

Критерий Прандтля для эфира при \(t_{\text{от.1}} = -8.6 °C: \)

\[\Pr_{\text{от.1}} = c_{\text{ст.1}} \cdot \mu_{\text{ст.1}} / \lambda_{\text{ст.1}} = 2050 \cdot 0.322 \cdot 10^{-3} / 0.137 = 4.85. \]

Критерий Прандтля для рассола при \(t_{\text{от.2}} = -11.1 °C: \)

\[\Pr_{\text{от.2}} = c_{\text{ст.2}} \cdot \mu_{\text{от.2}} / \lambda_{\text{от.2}} = 2900 \cdot 6.2 \cdot 10^{-3} / 0.475 = 38. \]

Коэффициенты теплоотдачи:

для эфира

\[\alpha_1 = \alpha_1 (\Pr_1 / \Pr_{\text{от.1}})^{0.25} = 537 (4.4 / 4.85)^{0.25} = 537 \cdot 0.908^{0.25} = 537 \cdot 0.98 = 526 \text{ Вт/(м²·К);} \]
для рассола

\[\alpha_2 = \alpha_2' \left(\frac{P_{2t}}{P_{ct,2}} \right)^{0.25} = 2480 \left(\frac{44}{38} \right)^{0.25} = 2480 \cdot 1.16^{0.25} = 2480 \cdot 1.03 = 2550 \text{ Вт/(м²·К).} \]

Исправленные значения \(K, q, t_{ct.1}, t_{ct.2} \):

\[K = \frac{1}{\frac{526}{526} + 4.2 \cdot 10^{-4} + \frac{1}{2550}} = 370 \text{ Вт/(м²·К);} \]

\[q = K \Delta t_{cp} = 370 \cdot 16 = 5920 \text{ Вт/м²;} \]

\[t_{ct,1} = t_1 - \frac{q}{\alpha_1} = 2.5 - \frac{5920}{526} = 2.5 - 11.2 = -8.7 \text{ °C;} \]

\[t_{ct,2} = t_2 + \frac{q}{\alpha_2} = -13.5 + \frac{5920}{2550} = -13.5 + 2.3 = -11.2 \text{ °C.} \]

Дальнейшее уточнение \(\alpha_1, \alpha_2 \) и других величин не требуется, так как расхождение между \(\alpha_1', \alpha_1 \) и \(\alpha_2, \alpha_2' \) и др. не превышает 5%.

1.4. Расчетная площадь поверхности теплопередачи:

\[F_p = Q/q = 86500/5920 = 14.6 \text{ м².} \]

С запасом 10%: \(F_p = 16.1 \text{ м².} \)

Площадь поверхности теплообмена одного элемента длиной 6 м:

\[F_1 = \pi d_{cp} L = 3.14 \cdot 0.0535 \cdot 6 = 1.01 \text{ м².} \]

Число элементов в каждой из двух секций (ветвей):

\[N = \frac{F_p}{n F_1} = \frac{16.1}{2.1} = 8 \text{ шт.} \]

Общее число элементов \(n N = 2 \cdot 8 = 16 \text{ шт.} \) Масса аппарата «труба в трубе» — 1600 кг — см. каталог «Теплообменники ТТ. Емкостная сварная аппаратура». М., ЦНИТИХИМНЕФТЕМАШ, 1968.

Вариант 2. Кожухотрубчатый холодильник диаметром 159 мм с трубами 25×2 мм (ГОСТ 15120—79).

2.1. Скорость и критерий Рейнольдса для рассола:

\[w_2 = \frac{V_2}{S_2} = \frac{V_2}{0.785 \pi d_2^2} = \frac{0.0051}{0.785 \cdot 0.021^2 \cdot 13} = 1.81 \text{ м/с;} \]

\[Re_2 = \frac{w_2 d_2 \rho_2}{\mu_2} = \frac{1.81 \cdot 0.021 \cdot 1220}{7 \cdot 165 \cdot 10^{-3}} = 6500; \]

скорость и критерий Рейнольдса для эфира:

\[w_1 = \frac{V_1}{S_1} = \frac{0.0015}{0.8 \cdot 10^{-2}} = 0.187 \text{ м/с;} \]

\[Re_1 = \frac{w_1 d_1 \rho_1}{\mu_1} = \frac{0.187 \cdot 0.025 \cdot 733}{0.28 \cdot 10^{-3}} = 12 300, \]

где \(S_1 = 0.8 \cdot 10^{-2} \text{ м²} \) — проходное сечение межтрубного пространства между перегородками по ГОСТ 15120—79; \(\mu_1 = 0.28 \cdot 10^{-3} \text{ Па·с} \) — вязкость эфира при +2.5 °C (табл. IX); \(d_1 = 0.025 \text{ м} \) — наружный диаметр труб, определяющий линейный размер по поперечному обтеканию.

2.2. Для расчета процесса теплопередачи в этом случае (как и в предыдущих) необходимо знать температуры \(t_{ct.1} \) и \(t_{ct.2} \). Для потока в трубах при \(Re_2 < 219
< 10 000 значение \(t_{\text{ст.2}} \) влияет на выбор вида расчетной формулы через посредство произведения GrPr. Зададимся значениями \(t_{\text{ст.1}} \) и \(t_{\text{ст.2}} \), исходя из того, что \(t_1 > t_{\text{ст.1}} > t_{\text{ст.2}} > t_2 \), например, примем \(t_{\text{ст.1}} = -10 ^\circ \text{C} \); \(t_{\text{ст.2}} = -11 ^\circ \text{C} \) (с последующей проверкой).

а) Коэффициент теплоотдачи для эфира (Re = 12300).

При поперецном омывании потоком трубного пучка при Re \(\geq 1000 \) рекомендуется соотношение (4.31):

\[
\text{Nu} = 0,4 \varepsilon \varphi \text{Re}^{0,6} \text{Pr}^{0,36} (\text{Pr} / \text{Pr}_{\text{ст}})^{0,25}
\]

Приятем \(\varepsilon = 0,6 \) (см. с. 157). Критерий Прандтля для эфира при \(t_{\text{ст.1}} = -10 ^\circ \text{C} \):

\[
\text{Pr}^{\prime}_{\text{ст.1}} = (\text{c} \mu / \lambda)_{\text{ст.1}} = 2070 \cdot 0,328 \cdot 10^{-3} / 0,136 = 50,0
\]

Тогда

\[
\text{Nu}^{\prime} = 0,4 \cdot 0,6 \cdot 12 300^{0,6} \cdot 4,4^{0,36} (4,4 / 5,0)^{0,25} = 105
\]

\[
\alpha_1 = \text{Nu}^{\prime} \lambda / d_1 = 105 \cdot 0,136 / 0,025 = 570 \text{ Bt} / (\text{м}^2 \cdot \text{K})
\]

б) Коэффициент теплоотдачи для рассола (Re = 6500).

Для выбора расчетной формулы определим произведение (GrPr) при определяющей температуре — средней температуре пограничного слоя (см. с. 154):

\[
t_2 = 0,5 (t_{\text{ст.1}} + t_2) = 0,5 (-11 + (-13,5)) = -12,25 ^\circ \text{C}
\]

Физические свойства рассола при \(t_2 = -12,25 ^\circ \text{C} \): \(\rho_2 = 1220 \text{ кг/м}^3 \); \(\mu_2 = 6,7 \cdot 10^{-3} \text{ Па} \cdot \text{с} \); \(\lambda_2 = 0,475 \text{ Bт}/(\text{м} \cdot \text{K}) \) — табл. L1; \(c_2 = 2902 \text{ Дж}/(\text{кг} \cdot \text{K}) \) — табл. XXXIII;

\[
\text{Pr'} = c_2 \mu_2 / \lambda_2 = 2902 \cdot 6,7 \cdot 10^{-3} / 0,475 = 40,9
\]

\[
\text{Gr'} = \frac{gd_2^2 \lambda_2^3}{\mu_2^2} \beta \Delta t_2 = \frac{9,81 \cdot 0,021^3 \cdot 1220^2}{(6,7 \cdot 10^{-3})^2} \cdot 35 \cdot 10^{-3} \cdot [-11 + (-13,5)] = 2,4 \cdot 10^8
\]

\[
(\text{Gr'} \cdot \text{Pr'}) = 2,4 \cdot 10^8 \cdot 40,9 = 9,8 \cdot 10^9
\]

Для определения N\text{u}_2 при (Gr'Pr') \(\leq 8 \cdot 10^8 \) воспользуемся рис. 4.1. При

\[
\text{Re}_2 = 6500 : \frac{\text{Nu}}{\text{Pr}^{0,43} (\text{Pr} / \text{Pr}_{\text{ст}})^{0,25}} = 22, \text{ откуда}
\]

\[
\text{Nu}' = 22 \text{Pr}^{0,43} (\text{Pr} / \text{Pr}_{\text{ст.2}})^{0,25} = 22 \cdot 44^{0,43} (44 / 38)^{0,25} = 115
\]

(где Pr_{ст.2} = 38 при \(t_{\text{ст.2}} = -11 ^\circ \text{C} \);

\[
\alpha_2 = \text{Nu}_2 \lambda_2 / d_2 = 115 \cdot 0,473 / 0,021 = 2590 \text{ Bт}/(\text{м}^2 \cdot \text{K})
\]

Коэффициент теплопередачи:

\[
K = \frac{1}{\frac{1}{570} + 4,2 \cdot 10^{-4} + \frac{1}{2590}} = 390 \text{ Bт}/(\text{м}^2 \cdot \text{K})
\]

Поверхностная плотность теплового потока:

\[
q' = K \Delta t_{\text{ст}} = 390 \cdot 16 = 6240 \text{ Bт}/\text{м}^2
\]

2.3. Уточним значения \(t_{\text{ст.1}} \) и \(t_{\text{ст.2}} \):

\[
t_{\text{ст.1}} = t_1 - \Delta t_1 = t_1 - \frac{q}{\alpha_1} = +2,5 - \frac{6240}{570} = -8,5 ^\circ \text{C}
\]

\[
t_{\text{ст.2}} = t_2 + \Delta t_2 = t_2 + \frac{q}{\alpha_2} = -13,5 + \frac{6240}{2590} = -11,1 ^\circ \text{C}
\]

220
Имеем существенное расхождение между $t_{	ext{ст.1}}$ и $t_{	ext{ст.1}}$ (−10 °C и −8,5 °C), однако это не влияет на коэффициент теплопередачи α_1, так как критерий Прандтля эфира при $−8,5$ °C равен 4,9, что близко к $Pr_{\text{ст.1}} = 5,0$ при $−10$ °C.

Итак, окончательно $t_{\text{ст.1}} = −8,5$ °C, $t_{\text{ст.2}} = −11,1$ °C.

2.4. Расчетная площадь поверхности теплопередачи:

$$F'_{P} = Q/q = 86500/6240 = 13,85 \text{ m}^2.$$

С запасом 10%: $F_{P} = 15,2 \text{ m}^2$.

Принимаем к установке аппараты длиной 3 м (ГОСТ 15120—79). Площадь поверхности теплообмена одного аппарата по среднему диаметру труб:

$$F = \pi d_{\text{ср}} n L = 3,14 \cdot 0,023 \cdot 13 \cdot 3 = 2,81 \text{ m}^2.$$

Необходимое число аппаратов:

$$N = \frac{F'_{P}}{F} = 15,2/2,81 = 5,4.$$

Примем $N = 6$. Запас поверхности составляет при этом

$$\frac{FN - F'_{P}}{F'_{P}} = \frac{2,81 \cdot 6 - 13,85}{13,85} = 100 = 21,3\%.$$

Масса одного аппарата диаметром 159 мм с трубами длиной 3 м равна $M_1 = 255$ кг (ГОСТ 15120—79), масса элементарного теплообменника, состоящего из N аппаратов:

$$M = M_1 N = 255 \cdot 6 = 1530 \text{ кг.}$$

Аппараты по вариантам 1 и 2 имеют высокую металлоемкость (~100 кг/м² поверхности теплообмена) — в этом их общий недостаток. Кроме того, оба варианта отличаются большим числом элементов и сложными соединениями, что неудобно для обслуживания (замена прокладок, проверка герметичности и т. п.). Поэтому целесообразно в качестве варианта рассмотреть кожухотрубчатый теплообменник большего диаметра, например аппарат $D = 273$ мм или 326 мм.

Вариант 3. Кожухотрубчатый холодильник диаметром $D = 273$ мм с трубами 25×2 мм (ГОСТ 15120—79).

3.1. Скорость в критерий Рейнольдса для рассола:

$$w'_{1} = \frac{V_1}{S_3} = \frac{V_2}{0,785 d_3^2 n} = \frac{0,0081}{0,785 \cdot 0,021^2 \cdot 37} = 0,635 \text{ м/с; }$$

где $n = 37$ — число труб (ГОСТ 15118—79);

$$Re_2 = \frac{w_2 d_3 \rho_2}{\mu_2} = \frac{0,635 \cdot 0,021 \cdot 1220}{7,165 \cdot 10^{-3}} = 2280.$$

Скорость в критерий Рейнольдса для эфира:

$$w_{1} = \frac{V_1}{S_1} = \frac{0,0015}{1,1 \cdot 10^{-2}} = 0,136 \text{ м/с; }$$

$$Re_1 = \frac{w_1 d_1 \rho_1}{\mu_1} = \frac{0,136 \cdot 0,025 \cdot 733}{0,28 \cdot 10^{-3}} = 10000,$$

где $S_1 = 1,1 \cdot 10^{-2}$ м² — проходное сечение межтрубного пространства (ГОСТ 15120—79).

3.2. Для теплового расчета ориентировочно примем $t_{\text{ст.1}} = −10$ °C, $t_{\text{ст.2}} = −11$ °C.

а) Коэффициент теплоотдачи для эфира.

При $Re_1 = 10000$ применим соотношение (4.31):

$$Nu'_{1} = 0,4 \cdot 0,6 \cdot 10 \cdot 0000,6 \cdot 4,4^{0,36} (4,4/5,0)^{0,25} = 97,5;$$

$$\alpha'_1 = Nu_1' \cdot d_1 = 97,5 \cdot 0,136/0,025 = 530 \text{ Вт/(м}^2 \cdot \text{К).}$$

б) Коэффициент теплоотдачи для рассола.
Для выбора расчетного соотношения при \(\text{Re}_2 = 2280 \) определим произведение \(\text{Pe} \frac{d}{L} \) (табл. 4.4) при средней температуре пограничного слоя \(t_2 \):

\[
t_2 = 0,5 \left(t_2 + t_{\text{ст.в}} \right) = 0,5 \left[-13,5 + (-11) \right] = -12,25 \, ^{o}C
\]

и максимальной длине труб \(L = 3 \, м \):

\[
\frac{d}{L} = \frac{\omega dcp}{\lambda} = \frac{0,635 \cdot 2900 \cdot 1220 \cdot 0,021}{0,47} = 700.
\]

При \(\frac{d}{L} > 20 \) применима формула (4.23):

\[
\text{Nu}_2 = 1,55 \varepsilon_t \left(\frac{\text{Pe} \frac{d}{L}}{3} \right)^{1/3} \left(\frac{\mu}{\mu_{c_1}} \right)^{0,14}.
\]

Примем \(\varepsilon_t = 1 \); вязкость рассола: \(\mu_{c_1} = 6,35 \cdot 10^{-3} \) при \(t_{\text{ст.в}} = -11 \, ^{o}C \):

\[
\text{Nu}_2 = 1,55 \cdot 1 \cdot 700^{1/3} \left(\frac{7,165 \cdot 10^{-3}}{6,35 \cdot 10^{-3}} \right)^{0,14} = 14,0;
\]

\[
\alpha_2 = \text{Nu}_2 \lambda_{c_1}/d_2 = 14,0 \cdot 0,470/0,021 = 313 \, \text{Вт/(м}^2 \cdot \text{К).}
\]

Коэффициент теплопередачи:

\[
K' = \frac{1}{\alpha_1} + \frac{1}{\sum_{t_{\text{ст.в}}} \alpha_2} = \frac{1}{530} + \frac{1}{4,2 \cdot 10^{-3} + \frac{1}{313}} = 181 \, \text{Вт/(м}^2 \cdot \text{К).}
\]

Поверхностная плотность теплового потока:

\[
q' = K' \Delta t_{\text{ср}} = 181 \cdot 16 = 2900 \, \text{Вт/м}^2.
\]

Проверка значений \(t_{\text{ст.1}} \) и \(t_{\text{ст.2}} \):

\[
t_{\text{ст.1}} = t_1 - \frac{q}{\alpha_1} = +2,5 - \frac{2900}{530} = 2,5 - 5,5 = -3 \, ^{o}C;
\]

\[
t_{\text{ст.2}} = t_2 + \frac{q}{\alpha_2} = -13,5 + \frac{2900}{313} = -4,2 \, ^{o}C.
\]

При этих значениях \(t_{\text{ст.1}} \) и \(t_{\text{ст.2}} \) сделаем новый расчет. Введение поправки в коэффициент теплоотдачи для эфира не требуется, так как сомножитель \(\Pr/Pr_{c_1}^{0,25} \) в новых условиях близок к таковому в предыдущем расчете.

Для рассола определяя температура

\[
t_2 = 0,5 \left(t_2 + t_{\text{ст.в}} \right) = 0,5 \left[-13,5 + (-4,2) \right] = -8,85 \, ^{o}C.
\]

Физические свойства рассола при \(t_2 = -8,85 \, ^{o}C \): \(\rho = 1220 \, \text{кг/м}^3; \ c_2 = 2910 \, \text{Дж/(кг} \cdot \text{К); \ \mu_2 = 5,7 \cdot 10^{-3} \, \text{Па} \cdot \text{с; \ \lambda = 0,48 \, \text{Вт/(м} \cdot \text{К). \ Тогда}}}

\[
\text{Pe} = \omega dcp/\lambda = 0,635 \cdot 0,021 \cdot 2910 \cdot 1220/0,48 = 99000;
\]

\[
\frac{d}{L} = \frac{99000}{0,021} = 690.
\]

Как следует из сравнения произведений \(\text{Pe} \frac{d}{L} \) для рассматриваемых значений \(t_{\text{ст.2}} \) также близки и поэтому введение поправки в \(\alpha_2 \) не требуется.

Расчет теплопередачи окончен.

3.4. Расчетная площадь поверхности теплопередачи:

\[
F' = Q/q = 86500/2900 = 29,8 \, \text{м}^2.
\]
С запасом 10 %: \(F_0 = 32,7 \text{ м}^2 \).
Площадь поверхности теплообмена одного аппарата с трубами \(L = 3 \text{ м} \):
\[
F_1 = \pi d_{cp} n L = 3,14 \cdot 0,023 \cdot 37,3 = 8 \text{ м}^2.
\]
Необходимое число аппаратов:
\[
N' = F_0/F_1 = 32,7/8 = 4,1.
\]
Принимаем \(N = 4 \). Запас:
\[
\frac{NF - F_0'}{F_0'} = \frac{4,8 - 29,8}{29,8} = 7,4\%.
\]
Масса одного аппарата \(D = 273 \text{ мм с трубами } L = 3 \text{ м равна } M_1 = 553 \text{ кг} \).
Масса всех аппаратов:
\[
M = M_1 N = 553 \cdot 4 = 2212 \text{ кг}.
\]
Из расчета следует, что дальнейшее уменьшение скорости рассола приведет к еще большему снижению коэффициента \(K \) и росту поверхности теплообмена. Однако, учитывая то обстоятельство, что в более крупных аппаратах расход металла на единицу площади теплообмена меньше, чем в мелких аппаратах, выполням расчет одноходового аппарата \(D = 400 \text{ мм с трубами } 25 \times 4 \text{ мм} \).
Другим направлением может быть применение многоходовых аппаратов (см. вариант 6).

Вариант 4. Кожухотрубчатый аппарат \(D = 400 \text{ мм одноходовый} \) (ГОСТ 15122—79).

Расчет аналогичен предыдущему. Приведем здесь лишь окончательные результаты. В аппарате с трубами длиной \(L = 6 \text{ м для эфира: } w_1 = 0,0425 \text{ м/с; } Re_1 = 2790; \quad \alpha_1 = 292 \text{ Вт/(м}^2\cdot \text{К); для рассола: } w_2 = 0,261 \text{ м/с; } Re_2 = 930; \quad \alpha_2 = = 197 \text{ Вт/(м}^2\cdot \text{К).}
Коэффициент теплообмена: \(K = 112 \text{ Вт/(м}^2\cdot \text{К).}
Поверхностная плотность теплового потока: \(q = 1790 \text{ Вт/м}^2 \).
Расчетная площадь поверхности теплообмена:
\[
F_0' = 86500/1790 = 48,4 \text{ м}^2.
\]
С запасом 10 %: \(F_0 = 53 \text{ м}^2 \).
Площадь поверхности теплообмена одного аппарата:
\[
F_1 = \pi d_{cp} n L = 3,14 \cdot 0,023 \cdot 111,6 = 48,2 \text{ м}^2.
\]
Из сравнения \(F_1 \) и \(F_0' \) следует, что от аппарата с трубами \(L = 6 \text{ м} \) придется отказываться, так как при его применении нет запаса поверхности теплообмена (при использовании аппарата с \(D = 400 \text{ мм, } L = 6 \text{ м} \) придется прибегнуть к более холодному рассолу, чтобы повысить \(q \) за счет \(\Delta T_{cp} \).

Вариант 5. В аппаратах с трубами \(L = 4 \text{ м: } \alpha_1 = 292 \text{ Вт/(м}^2\cdot \text{К); } \alpha_2 = = 242 \text{ Вт/(м}^2\cdot \text{К); } K = 125 \text{ Вт/(м}^2\cdot \text{К). Площадь поверхности теплообмена: } F_0' = 43,4 \text{ м}^2; \) с запасом 10 %: \(F_0 = 47,7 \text{ м}^2 \). Для одного аппарата \(F_1 = 32,2 \text{ м}^2 \). Число аппаратов: \(N' = 47,7/32,2 = 1,48 \). Принимаем \(N = 2 \). Запас поверхности составляет \(\frac{64,4 - 4,34}{43,4} = 100 = 48,5 \% \). Как видим, запас поверхности в этом случае неоправданно велик.

Вариант 6. Кожухотрубчатый холодильник диаметр 325 мм с трубами 25х2 мм двухходовый (ГОСТ 15120—79).

6.1. Проверим возможность и целесообразность применения многоходового аппарата, вычислив среднюю разность температур смешанного тока, воспользовавшись соотношениями (4.80) и (4.81).
а) По формуле (4.80) \(\Delta t_{cp} = \varepsilon_{\Delta t} \Delta t_{cp, пр} \), где \(\varepsilon = f(P, R) \):

\[
P = \frac{t_2 - t_1}{T_1 - t_1} = \frac{(-12) - (-15)}{25 - (-15)} = \frac{3}{40} = 0,08;
\]

\[
R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{25 - (-10)}{(-12) - (-15)} = \frac{35}{3} \approx 12.
\]

На рис. VIII зависимость для \(R = 12 \) отсутствует, что делает невозможным определение \(\varepsilon_{\Delta t} \) по формуле (4.80).

б) По (4.81):

\[
\Delta t_{cp} = \frac{A}{2,3 \lg \frac{\Delta t_0 + \Delta t_M + A}{\Delta t_0 + \Delta t_M - A}} = \frac{35,2}{2,3 \lg \frac{37 + 5 + 35,2}{37 + 5 - 35,2}} = 14.5 \text{ K},
\]

где \(\Delta t_0 = 37; \Delta t_M = 5 \) (см. расчет \(\Delta t_{cp} \) при противотоке);

\[
A = \sqrt{\Delta t^2 + 6^2} = \sqrt{(25 - (-10))^2 + [(-12) - (-15)]^2} = \sqrt{35^2 + 3^2} = 35,2.
\]

Применение многоходового аппарата в нашем случае будет сопровождаться небольшим снижением \(\Delta t_{cp} \) (с 16 K до 14.5 K, т. е. в 1,1 раза). Следовательно, многоходовой аппарат применим.

6.2. По ГОСТ 15118—79 число труб одного хода \(n_1 = 26 \) шт., общее — \(n = 52 \) шт. Сечение одного хода трубного пространства \(S_T = 0,785d^2n_1 = 1,1 \cdot 10^{-2} \text{ m}^2 \), проходное сечение межтрубного пространства (между перегородками) \(S_{MT} = 1,5 \cdot 10^{-2} \text{ m}^2 \) (ГОСТ 15120—79).

Скорость и критерий Рейнольдса для эфира:

\[
\omega_1 = \frac{V_1}{S_1} = \frac{0,0014}{1,5 \cdot 10^{-2}} = 0,0935 \text{ м/c};
\]

\[
Re_1 = \frac{\omega_1d_1\rho_1}{\mu_1} = \frac{0,0935 \cdot 0,025 \cdot 733,6}{0,29 \cdot 10^{-3}} = 5920,
\]

где \(\mu_1 \) и \(\rho_1 \) взяты при средней температуре \(t_1 = t_2 + \Delta t_{cp} = -13,5 + 14,5 = 1 \text{ C} \).

Скорость и критерий Рейнольдса для рассола:

\[
\omega_2 = \frac{V_2}{S_2} = \frac{0,0081}{1,0 \cdot 10^{-2}} = 0,81 \text{ м/c};
\]

\[
Re_2 = \frac{\omega_2d_2\rho_2}{\mu_2} = \frac{0,81 \cdot 0,021 \cdot 1220}{7,165 \cdot 10^{-1}} = 2900.
\]

6.3. Для теплового расчета примен \(t_{ct, 1} = -6 ^\circ C, t_{ct, 2} = -8 ^\circ C \).

а) Коэффициент теплоотдачи для эфира. По формуле (4.31):

\[
Nu_1 = 0.4 \cdot 0.6 \cdot 5920^{0.6} \cdot 4,5^{0.36} (4,5/4,8)^{0.25} = 74,5;
\]

\[
\alpha_1 = Nu_1 \lambda_1/d_1 = 74,5 \cdot 0,136/0,025 = 405 \text{ Bt/} (\text{m}^2 \cdot \text{K});
\]

б) Коэффициент теплоотдачи для рассола. По рис. 4.1:

\[
Nu_2 = 6Pr_2^{0.43} (Pr_2/Pr_{ct, 2})^{0.25} = 6 \cdot 44^{0.43} (44/33)^{0.25} = 32,7;
\]

\[
\alpha_2 = Nu_2 \lambda_2/d_2 = 32,7 \cdot 0,473/0,021 = 736 \text{ Bt/} (\text{m}^2 \cdot \text{K}).
\]

Коэффициент теплопередачи:

\[
K = \frac{1}{\frac{1}{405} + 4,2 \cdot 10^{-3} + \frac{1}{736}} = 235 \text{ Bt/} (\text{m}^2 \cdot \text{K}).
\]

224
Поверхностная плотность теплового потока:

\[q = K \Delta t_{ср} = 235 \cdot 14,5 = 3400 \text{ Вт/м}^2. \]

Проверка значений \(t_{ст.1} \) и \(t_{ст.2} \):

\[\Delta t_1 = q / \alpha_1 = 3400 / 405 = 8,4 \quad \text{K} = 8,4 \text{°C}; \]
\[t_{ст.1} = t_1 - 8,4 = 1 - 8,4 = -7,4 \text{°C}; \]
\[\Delta t_2 = q / \alpha_2 = 3400 / 736 = 4,6 \quad \text{K} = 4,6 \text{°C}; \]
\[t_{ст.2} = -13,5 + 4,6 = -8,9 \text{ K}. \]

Введение поправки в расчет \(\alpha_1, \alpha_2, K \) и \(q \) не требуется.

Площадь поверхности теплопередачи:

\[F_p^' = 86500 / 3400 = 25,4 \text{ м}^2. \]

С запасом 10 %: \(F_p = 27,9 \text{ м}^2. \)

Площадь поверхности теплопередачи одного аппарата по среднему диаметру труб при \(L = 4 \text{ м} \):

\[F_1 = 3,14 \cdot 0,023 \cdot 52,4 = 15 \text{ м}^2. \]

Число аппаратов:

\[N' = F_p^' / F_1 = 27,9 / 15 = 1,86. \]

Принимаем \(N = 2 \text{ шт.} \) Запас:

\[\frac{2 \cdot 15 - 25,4}{25,4} \cdot 100 = 18\%. \]

Масса двух аппаратов: \(M = 2 \cdot 820 = 1640 \text{ кг.} \)

Вариант 7. Кожухотрубчатый аппарат диаметром 400 мм с трубами 20х2 мм двухходовый.

7.1. Аппараты с трубами 20х2 мм обладают большей площадью поверхности теплообмена при тех же габаритных размерах, что, вероятно, позволит нам обойтись одним аппаратом. В аппарате \(D = 400 \text{ мм} \), \(S_t = 1,7 \cdot 10^{-2} \text{ м} \), \(S_{MT} = 3,0 \times 10^{-2} \text{ м}^2 \) (ГОСТ 15120—79). Число труб одного хода 83, общее 166 (ГОСТ 15118—79).

Для эфира:

\[\omega_1 = \frac{V_1}{S_1} = \frac{0,0014}{3 \cdot 10^{-3}} = 0,0467 \text{ м/с}; \]
\[\text{Re}_1 = \frac{\omega_1 d_1 \rho_1}{\mu_1} = \frac{0,0467 \cdot 0,020 \cdot 733,6}{0,29 \cdot 10^{-3}} = 2370. \]

Для рассола:

\[\omega_2 = \frac{V_2}{S_2} = \frac{0,0081}{1,7 \cdot 10^{-3}} = 0,477 \text{ м/с}; \]
\[\text{Re}_2 = \frac{\omega_2 d_2 \rho_2}{\mu_2} = \frac{0,477 \cdot 0,016 \cdot 1220}{7,165 \cdot 10^{-3}} = 1300. \]

7.2. Для теплового расчета примем \(t_{ст.1} = -6 \text{°C} \), \(t_{ст.2} = -8 \text{°C}. \)

а) Коеффициент теплоотдачи для эфира:

\[\alpha_1 = \frac{\lambda_1}{d_1} \text{Nu}_1 = \frac{0,136}{0,020} \cdot 0,4 \cdot 0,6 \cdot 2370^{0,6} \cdot 4,5^{0,36} \left(\frac{4,5}{4,8}\right)^{0,25} = 286 \text{ Вт/(м}^2 \cdot \text{К).} \]
б) Коэффициент теплоотдачи для рассола.
Определим $Re = \frac{d \frac{d_2}{L}}{\lambda_2}$ при $t_2 = 0.5 \left(t_2 + t_{ст.2} \right) = 0.5 \left[-13.5 + \left(-6 \right) \right] = -10^\circ C$ и длине труб $L = 6 m$:

$$Re = \frac{d_2}{L} = \frac{\frac{w_2d_2c_2\rho_2}{\lambda_2}}{L} = \frac{0.477 \cdot 0.016 - 2910 \cdot 1220}{0.48} \cdot \frac{0.016}{6} = 56 \cdot 500 \cdot 0.0025 = 141;$$

$$\alpha_2 = \frac{\lambda_2Nu_2}{d_2} = \frac{0.48}{0.016} \cdot 1,55 \cdot 1.141^{1/3} \left(\frac{5.925 \cdot 10^{-3}}{5.0 \cdot 10^{-3}} \right)^{0,14} = 242 \text{ Вт/(м}^2\cdot\text{К).}$$

Коэффициент теплопередачи:

$$K = \frac{1}{\frac{1}{286} + 4.2 \cdot 10^{-3} + \frac{1}{242}} = 125 \text{ Вт/(м}^2\cdot\text{К).}$$

7.3. Площадь поверхности теплопередачи:

$$F_p = \frac{Q}{K \Delta t_{ср}} = \frac{86 \cdot 500}{125 \cdot 14.5} = 47.8 \text{ м}^2.$$

С запасом 10%: $F_p = 52.5 \text{ м}^2$.

Площадь поверхности теплообмена одного аппарата ($D = 325 \text{ мм, } L = 6000 \text{ мм}$):

$$F_1 = \pi d_0 \rho dL = 3.14 \cdot 0.018 \cdot 166 \cdot 6 = 56.5 \text{ м}^2.$$

Запас:

$$\frac{F_1 - F_p}{F_p} = \frac{56.5 - 47.8}{47.8} \cdot 100 = 17.8\%.$$

Масса аппарата: $M_1 = 1890 \text{ кг.}$

Сопоставление вариантов аппарата для охлаждения диэтилового эфира рассолом выполнено по показателям, приведенным в табл. 4.13*.

Наименьшую стоимость имеет аппарат типа "труба в трубе," однако он обладает существенным гидравлическим сопротивлением (пос рассолу 10 Па), громоздок. Поэтому предпочтение следует отдать кожухотрубчатым аппаратам: элементному, состоящему из двух аппаратов $D = 325 \text{ мм и } L = 4 \text{ м или однокамерному аппарату } D = 400 \text{ мм, } L = 6 \text{ м с трубулами } 20 \times 2 \text{ мм.}$

Пример 4.11. Рассчитать два варианта горизонтального кожухотрубчатого теплообменного аппарата для нагрева 20 т/ч толуола от 21 до 98°С. Греющий водяной насыщенный пар имеет абсолютное давление $p = 1.6 \text{ кгс/см}^2$. В водяном паре содержится 0.5% воздуха.

1-й вариант: турбулентное течение толуола в трубном пространстве.

2-й вариант: ламинарное течение толуола в трубном пространстве.

Ввиду того, что в трубах нагревается толуол, а не вода и температура в трубах выше 60°С, используем аппараты типа ТН или ТК. Принимаем для межтрубного пространства индекс "1," для трубного — "2."

Температура конденсации водяного пара $t_{конд} = 112.7$°С (табл. LVII).

Температурная схема:

112.7 — 112.7
21 — 98

$\Delta t_0 = 91.7 \quad \Delta t_M = 14.7.$

Холодильники для охлаждения эфира рассолом

<table>
<thead>
<tr>
<th>Аппарат</th>
<th>Количество N, шт.</th>
<th>Масса 1 шт., кг</th>
<th>Цена 1 шт., руб.</th>
<th>Цена N шт., руб.</th>
<th>Металлоемкость, кг/м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Теплообменник «труба в трубе» (ГОСТ 9930—78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трубы 89×4 мм</td>
<td>16</td>
<td>100</td>
<td>~100</td>
<td>1600—1700</td>
<td>99,5</td>
</tr>
<tr>
<td>57×3,5 мм</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кожухотрубчатые холодильники одноходовые (ГОСТ 15120—79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D = 159$ мм, $L = 3$ м, $d = 25×2$ мм</td>
<td>6</td>
<td>255</td>
<td>345</td>
<td>2070</td>
<td>91,0</td>
</tr>
<tr>
<td>$D = 273$ мм, $L = 3$ м, $d = 25×2$ мм</td>
<td>4</td>
<td>553</td>
<td>600</td>
<td>2400</td>
<td>69,5</td>
</tr>
<tr>
<td>Кожухотрубчатые теплообменники (ГОСТ 15122—79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D = 400$ мм, $L = 6$ м, $d = 25×2$ мм</td>
<td>1 *</td>
<td>1750</td>
<td>1530</td>
<td>1530</td>
<td>36,5</td>
</tr>
<tr>
<td>$D = 400$ мм, $L = 4$ м, $d = 25×2$ мм</td>
<td>2 **</td>
<td>1290</td>
<td>1200</td>
<td>2400</td>
<td>40,3</td>
</tr>
<tr>
<td>Кожухотрубчатые холодильники двухходовые (ГОСТ 15120—79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D = 325$ мм, $L = 4$ м, $d = 25×2$ мм</td>
<td>2</td>
<td>820</td>
<td>900</td>
<td>1800</td>
<td>54,7</td>
</tr>
<tr>
<td>$D = 400$ мм, $L = 6$ м, $d = 20×2$ мм</td>
<td>1</td>
<td>1890</td>
<td>1800</td>
<td>1800</td>
<td>33,5</td>
</tr>
</tbody>
</table>

* Нет запаса поверхности теплообмена.
** Запас слишком велик (~48%).

Средняя разность температур:

$$
\Delta t_{cp} = \frac{\Delta t_{6} - \Delta t_{M}}{2,3 \log (\Delta t_{6}/\Delta t_{M})} = \frac{91,7 - 14,7}{2,3 \log (91,7/14,7)} = 42,1 ^{°}C = 42,1 ^{°}K.
$$

Средняя температура толуола:

$$
\Delta t_{2} = t_{1} - \Delta t_{cp} = 112,7 - 42,1 \approx 70 ^{°}C.
$$

Расход толуола:

$$
G_{2} = 20,000/3600 = 5,56 \text{ кг/с}; \quad V_{2} = G_{2}/\rho_{2} = 5,56/820 = 0,00678 \text{ м³/с}.
$$

Здесь $\rho_{2} = 820 \text{ кг/м³}$ — плотность толуола при $70 ^{°}C$ (табл. IV).
Расход теплоты на нагрев толуола:

\[Q = G_2 c_2 (t_2 - t_{нн}) = 5,56 \cdot 1800 (98 - 21) = 771000 \text{ Вт}, \]

где \(c_2 = 1800 \text{ Дж/(кг} \cdot \text{К}) \) — средняя удельная теплоемкость толуола (рис. XI).

Расход сухого греющего пара с учетом 7% потерь теплоты:

\[G_1 = \frac{1,07Q}{r} = \frac{1,07 \cdot 771000}{2227 \cdot 10^3} = 0,37 \text{ кг/с}, \]

где \(r = 2227 \cdot 10^3 \text{ Дж/кг} — \text{ удельная теплота конденсации водяного пара (табл. LVII).} \)

Ориентировочно определяем максимальную величину площади поверхности теплообмена. По табл. 4,8 минимальное значение коэффициента теплопередачи для случая теплообмена от конденсирующегося водяного пара к органическим жидкостям (подогреватели \(K_\text{мин} = 120 \text{ Вт/(м}^2 \cdot \text{К}) \)). При этом

\[F_\text{макс} = \frac{Q}{K_\text{мин} \Delta t_{ср}} = \frac{771000}{120 \cdot 42,1} \approx 150 \text{ м}^3. \]

Расчет первого варианта (\(Re_2 > 10000 \)).

Составляем схему процесса теплопередачи (по типу рис. 4,23).

Для обеспечения турбулентного течения толуола при \(Re_2 > 10000 \) скорость в трубах должна быть больше \(\omega_2 \):

\[\omega_2 = \frac{10000 \mu_2}{d_2 \rho_2} = \frac{10000 \cdot 0,36 \cdot 10^{-3}}{0,021 \cdot 820} = 0,209 \text{ м/с}, \]

где \(\mu_2 = 0,36 \cdot 10^{-3} \text{ Па} \cdot \text{с} — \text{ динамический коэффициент вязкости толуола при 70}^\circ\text{C (табл. IX).} \)

Число труб 25×2 мм, обеспечивающих объемный расход толуола при \(Re_2 = 10000: \)

\[n' = \frac{V_2}{0,785 d_2^2 \omega_2} = \frac{0,00676}{0,785 \cdot 0,021^2 \cdot 0,209} = 93,7. \]

Условию \(n < 93,7 \) и \(F < 150 \text{ м}^2 \) удовлетворяют (табл. 4,12) два теплообменника:

а) четырехходовой диаметром 600 мм с числом труб на один ход трубного пространства \(n = 52,5 \) (общее число труб 210);

б) шестигранной диаметром 600 мм с числом труб на один ход трубного пространства \(n = 33 \) (общее число труб 198).

Выбираем четырехходовой аппарат, как более простой.

I. Коэффициент теплоотдачи для толуола.

Уточняем значение критерия \(Re_2 \):

\[Re_2 = 10000 \left(n'/n \right) = 10000 \left(93,7/52,5 \right) = 17850. \]

Критерий Прандтля для толуола при 70\(^\circ\)C:

\[Pr_2 = \frac{c_2 \mu_2}{\lambda_2} = 1800 \cdot 0,36 \cdot 10^{-3}/0,1248 = 5,19. \]

Здесь \(\lambda_2 = 0,1248 \text{ Вт/(м} \cdot \text{К}) — \text{ коэффициент теплопроводности толуола при 70}^\circ\text{C (рис. X).} \)

Расчетная формула (4.17):

\[Nu_2 = 0,021 \cdot Re_2^{0,8} Pr_2^{0,43} \left(Pr_2/Pr_{ct. 2} \right)^{0,25} \cdot 0,021 \cdot 17 \cdot 850^{0,8} \cdot 0,5 \cdot 19^{0,43} \times \]

\[\times 1,05 \cdot 1 = 112,7. \]

228
Отношение \((\Pr_2/\Pr_{ct. 2})^{0.25}\) принято равным 1.05 (с последующей проверкой). Таким образом,

\[
\alpha_2 = \text{Nu}_{2} / d_2 = 112.7 \cdot 0.1248 / 0.021 = 669 \text{ Bt/(m}^2 \cdot \text{K}).
\]

II. Коэффициент теплоотдачи при конденсации водяного пара на пучке горизонтальных труб.

Расчет осуществляется приближенно (без учета влияния поперечных перегородок) по формуле (4.54):

\[
\alpha_1 = \alpha_{cr} = 1.26e \frac{A_i}{(d / \Delta t)^{0.25}} = 2.02eB_i 3 \sqrt{\frac{nL}{G_1}}.
\]

В нашем случае известно \(G_1 = 0.37 \text{ кг/с} \) и \(n = 210\). Поэтому используем зависимость \(\alpha_1 = f(n, L, G)\) с учетом влияния примеси воздуха (0.5%):

\[
\alpha_1 = 2.02e \frac{e_r}{(n / G_1)^{1/3}} L^{1/3} = 2.02 \cdot 0.62 \cdot 0.6 \cdot 1048 (210 / 0.37)^{1/3} L^{1/3} = 6520 L^{1/3},
\]

где \(e\) — коэффициент (см. формулу (4.53)), для шахматного расположения труб в пучке и при числе рядов труб по вертикали \(n_v = 14\) (табл. 4.12) \(e = 0.62\) (рис. 4.7); \(e_r\) — коэффициент, зависящий от содержания примеси в паре (рис. 4.9), \(e_r = 0.6\); \(B_i = 1048\) (табл. 4.6).

Надо задаться длиной труб (по табл. 4.12 длина труб 2; 3; 4 и 6 м). Задаемся \(L = 3\) м. Если по окончании расчета будет принята другая длина труб, то расчет необходимо скорректировать (с увеличением \(L\) при \(G_1 = \text{const}\) величина \(\alpha_{cr}\) возрастает). Имеем:

\[
\alpha_1 = 6520 \cdot 3^{1/3} = 9400 \text{ Bt/(m}^2 \cdot \text{K}).
\]

Принимаем тепловую проводимость загрязнений со стороны греющего пара \(1 / r_{agqr. 1} \approx 5800 \text{ Bt/(m}^2 \cdot \text{K})\), со стороны толуола \(1 / r_{agqr. 2} \approx 5800 \text{ Bt/(m}^2 \cdot \text{K})\) (табл. XXXI). Коэффициент теплопроводности стали \(\lambda_{ct} = 46.5 \text{ Bt/(m} \cdot \text{K})\) (табл. XXVIII). Тогда

\[
\sum r_{ct} = \frac{1}{5800} + \frac{0.002}{46.5} + \frac{1}{5800} = 2580 \text{ Bt/(m}^2 \cdot \text{K}).
\]

Коэффициент теплопередачи:

\[
K = \frac{1}{\alpha_1} + \sum r_{ct} + \frac{1}{\alpha_2} = \frac{1}{9400} + \frac{1}{2580} + \frac{1}{669} = 503 \text{ Bt/(m}^2 \cdot \text{K}).
\]

Поверхностная плотность теплового потока:

\[
q = K \Delta t_{cr} = 503 \cdot 42.1 = 21180 \text{ Bt/m}^2.
\]

Проверяем принятое значение \((\Pr_2/\Pr_{ct. 2})^{0.25}\). Определяем

\[
\Delta t_2 = q / \alpha_2 = 21180 / 669 \approx 32 \text{ K} \approx 32^\circ \text{C};
\]

\[
t_{ct. 2} = t_2 + \Delta t_2 = 70 + 32 = 102^\circ \text{C};
\]

\[
\Pr_{ct. 2} = \frac{c_{ct. 2} \mu_{ct. 2} / \lambda_{ct. 2}}{1885 \cdot 0.27 \cdot 10^{-3} / 0.1163} = 4.38.
\]

Здесь \(c_{ct. 1} = 1885 \text{ Дж/(кг} \cdot \text{K})\) (рис. X1); \(\mu_{ct. 2} = 0.27 \cdot 10^{-3} \text{ Па} \cdot \text{c}\) (табл. 1X); \(\lambda_{ct. 2} = 0.1163 \text{ Bt/(м} \cdot \text{K})\) (рис. X).
Следовательно,

\[(Pr_2/Pr_{ct. 2})^{0.25} = (5,19/4,38)^{0.25} = 1,043.\]

Было принято \((Pr_2/Pr_{ct. 2})^{0.25} = 1,05\). Разница \(~0,7\%\). Расчет \(K\) закончен.
Расчетная площадь поверхности теплообмена:

\[F_p = \frac{Q}{K \Delta t_{cp}} = \frac{771 000}{503,42,1} = 36,4 \text{ м}^2.\]

Коэффициент теплоотдачи \(\alpha_1 = 9440 \gg \alpha_2 = 664 \text{ Вт/(м}^2\cdot\text{К)}\), поэтому расчетным диаметром при определении поверхности труб следует принять \(d_2 = 0,021\) м.

Аппарат с \(L = 3\) м имеет площадь поверхности теплообмена:

\[F = \pi d_2 n L = 3,14 \cdot 0,021 \cdot 210 \cdot 3 = 41,56 \text{ м}^2.\]

Запас площади поверхности теплообмена:

\[
\frac{41,56 - 36,4}{36,4} = 0,14,2\%.
\]

Запас площади поверхности теплообмена достаточен.

Принимаем один четырехходовой кожухотрубчатый теплообменник с внутренним диаметром кожуха 600 мм, числом труб 52,5/210 и длиной труб \(L = 3\) м.
Ввиду того, что общая разность температур \(\Delta t_{cp} = 42,1\) К близка к допускаемой разности \((t_H - t_T)_{max} = 40\) К (табл. XXXV), принимаем аппарат типа ТН.

Определяем \(t_{ct. 2}^2\):

\[\Delta t_2 = \frac{q}{\alpha_2} = 21 180/669 = 31,659 \text{ К} = 31,659 \text{ °С};\]

\[t_{ct. 2} = 70,6 + 31,659 = 102,3 \text{ °С}.\]

На схему процесса теплообмена типа рис. 4.23 нужно нанести уточненные значения \(t_{ct. 1}, t_{ct. 2}, \alpha_1, \alpha_2, q,\).

Расчет второго варианта \((Re_2 < 2300)\).

Составляем схему процесса теплообмена по типу рис. 4.23.
Для течения толуола при \(Re_2 < 2300\) скорость в трубах должна быть меньше \(w_2\):

\[w_2 = \frac{2300 \mu_2}{d_2 y_2} = \frac{2300 \cdot 0,36 \cdot 10^{-3}}{0,021 \cdot 820} = 0,048 \text{ м/с},\]

а число труб на один ход трубного пространства должно быть больше \(n'\):

\[n' = \frac{V_2}{0,785 d_2^2 w_2} = \frac{0,00678}{0,785 \cdot 0,021^2 \cdot 0,048} = 408.\]

Условно \(n' > 408\) и \(F < 150 \text{ м}^2\) удовлетворяет одноходовой кожухотрубчатый аппарат с внутренним диаметром кожуха 800 мм, площадью поверхности теплообмена от 74 до 226 \(\text{м}^2\) и общим числом труб \(n = 473\) (табл. 4.12).

1 Коэффициент теплоотдачи для толуола.

Уточняем величину критерия Рейнольдса:

\[Re_2 = 2300 (n'/n) = 2300 (408/473) = 1984.\]

Находим ориентировочное значение произведения критериев \((Gr_2 Pr_2)\). В величину критерия \(Gr_2\), а также в выражение определяющей температуры входит величина \(\Delta t_2 = t_{ct. 2} - t_2\). Однако \(t_{ct. 2}\) определяется только в конце расчета, поэтому величиной \(\Delta t_2\) надо задаваться.

Коэффициент теплоотдачи при конденсации водяного пара значительно больше коэффициента теплоотдачи при нагреве толуола (табл. 4.7), поэтому принимаем ориентировочно (с последующим уточнением):

разность температур

\[\Delta t_2 = 0,75 \Delta t_{cp} = 0,75 \cdot 42,1 \approx 32 \text{ К} \approx 32 \text{ °С};\]
определяющую температуру

\[t = t_2 + \left(\Delta t_2 / 2 \right) = 70 + (32/2) \approx 90 ^\circ C; \]

температуру стенки

\[t_{ct.2} = t_2 + \Delta t_2 = 70 + 32 = 102 ^\circ C. \]

Ориентировочное значение \((Gr_2Pr_2)\) при 90 °C для толуола (физические величины по табл. IV, IX, XXXII):

\[
(Gr_2Pr_2) = \frac{d_2^3 \beta_2 \Delta t_2 \rho_2}{\mu_2^2} = \frac{0.021^3 \cdot 798^2 \cdot 1.28 \cdot 10^{-3} \cdot 32 \cdot 9.81}{0.295^3 \cdot 10^{-3}} = \frac{4.93 = 13.4 \cdot 10^3}{\}
\]

Здесь

\[Pr_2 = 2023 \cdot 0.295 \cdot 10^{-3}/0.121 = 4.93, \]

где \(c_2 = 2023\) Дж/(кг·К); \(\lambda_2 = 0.121\) Вт/(м·К).

При \((Gr_2Pr_2) > 8 \cdot 10^5\) и \(Re_2 < 3500\) применима формула (4.25). Принимаем длину трубы \(L = 3\) м. Тогда

\[
Nu_2 = 0.8 \left(Pe_2 \frac{d_2}{L} \right)^{0.14} \left(Gr_2 Pr_2 \mu_2 \right)^{0.14} = 0.8 \left(72 \right)^{0.14} \left(13.4 \cdot 10^3 \right)^{0.14} \times \frac{0.295}{0.266} = 0.8 \cdot 5.53 \cdot 6.5 \cdot 1.014 = 29.2,
\]

где \(Pe_2 \frac{d_2}{L} = Re_2 Pr_2 \frac{d_2}{L} = 1984 \cdot 5.19 \frac{0.021}{3} = 72; \mu_2 = 0.266 \cdot 10^{-3}\) Па·с.

При \(t_{ct.2} = 102 ^\circ C.\)

Таким образом,

\[\alpha_2 = Nu_2 \lambda_2 / d_2 = 29.2 \cdot 0.1248 / 0.021 = 173\text{ Вт/(м}^2 \cdot \text{К).} \]

II. Коэффициент теплоотдачи при конденсации водяного пара.

В первом варианте расчета аппарата при \(n = 210, \varepsilon = 0.62\) было определено \(\alpha_1 = 9400\) Вт/(м²·К). Во втором варианте \(n = 473\). Число рядов труб по вертикали \(n_3 = 32\) (табл. 4.14), чему соответствует \(\varepsilon \approx 0.57\) (рис. 4.7).

При той же длине труб \(L = 3\) для второго варианта:

\[\alpha_1 = 9400 \cdot 0.57 / 0.62 = 9400 \cdot 0.92 \cdot 1.31 = 11400\text{ Вт/(м}^2 \cdot \text{К).} \]

Коэффициент теплоотдачи при \(L = 3\) м (предварительный):

\[K \approx 3 = \frac{1}{\frac{1}{11400} + \frac{1}{2500} + \frac{1}{173}} = 160\text{ Вт/(м}^2 \cdot \text{К),} \]

где \(\delta_{ct}/\lambda_{ct} = 1/2500.\)

Уточнение принятых величин:

а) разность температур \(\Delta t_2\) по расчету

\[\Delta t_2 = K \Delta t_{cp} / \alpha_2 = 160 \cdot 42.1 / 173 = 39\text{ К} = 39 ^\circ C; \]

б) определяющая температура

\[t = 70 + (39/2) \approx 90 ^\circ C; \]

(расчетное значение определяющей температуры совпало с принятым 90 °C);

в) уточнение \(\alpha_2\) за счет того, что расчетное значение \(\Delta t_2\) оказалось больше принятого

\[\alpha_2 = 173 \cdot (39/32)^{0.1} = 173 \cdot 1.02 = 176\text{ Вт/(м}^2 \cdot \text{К);} \]
г) уточненное значение коэффициента теплопередачи при $L = 3 \text{ м}$

$$K_{L=3} = \frac{1}{\frac{1}{11400} + \frac{1}{2500} + \frac{1}{176}} = 162 \text{ Вт/(м}^2\cdot\text{К).}$$

Расчетная площадь поверхности теплообмена при $L = 3 \text{ м}$:

$$F_{L=3} = \frac{771000}{162.421} = 113 \text{ м}^2.$$

Коэффициент теплоотдачи $\alpha_1 \gg \alpha_2$, поэтому за поверхность теплообмена аппарата следует принять внутреннюю поверхность труб [формула (4.75)]. Так, одноходовый теплообменник с внутренним диаметром кожуха 800 мм при длине труб 3 м имеет площадь поверхности теплообмена $F = \pi \cdot 0.021 \times 473 \cdot 3 = 93 \text{ м}^2$, что недостаточно.

Рассмотрим два варианта: а) длина труб 4 м, $F = \pi \cdot 0.021 \cdot 473 \cdot 4 = 125 \text{ м}^2$; б) длина труб 2 м; два аппарата с общей площадью поверхности 125 м².

а) Теплообменник с трубами 4 м:

$$\alpha_1 = 11400 \cdot (3/4)^{1/4} = 11400 \cdot 1.1 = 12500 \text{ Вт/(м}^2\cdot\text{К);}$$

$$\alpha_2 = 176 \cdot (3/4)^{0.4} = 176 \cdot 0.89 = 157 \text{ Вт/(м}^2\cdot\text{К).}$$

$$K_{L=4} = \frac{1}{\frac{1}{12500} + \frac{1}{2500} + \frac{1}{157}} = 146 \text{ Вт/(м}^2\cdot\text{К).}$$

Расчетная площадь поверхности теплообмена при $L = 4 \text{ м}$:

$$F_{L=4} = \frac{771000}{146.421} = 125.4 \text{ м}^2.$$

Площадь поверхности теплообмена недостаточна, так как нет запаса.

б) Два теплообменника с трубами длиной по 2 м:

$$\alpha_2 = 176 \cdot (3/2)^{0.4} = 176 \cdot 1.176 = 207 \text{ Вт/(м}^2\cdot\text{К);}$$

$$K_{L=2} = \frac{1}{\frac{1}{12500} + \frac{1}{2500} + \frac{1}{207}} = 188 \text{ Вт/(м}^2\cdot\text{К).}$$

Поверхностная плотность теплового потока (удельная тепловая нагрузка) $q = K \Delta t_{cp} = 188.421 = 7915 \text{ Вт/м}^2$. Расчетная площадь поверхности теплообмена при $L = 2 \text{ м}$:

$$F_{L=2} = \frac{Q}{q} = \frac{771000}{7915} = 97.4 \text{ м}^2.$$

Принимаем два одноходовых теплообменника с внутренним диаметром кожуха 800 мм и длиной труб по 2 м.

Запас площади поверхности теплообмена: $\frac{125 - 97.4}{97.4} 100 = 28 \%$. Запас площади поверхности теплообмена достаточен.

Определение $t_{ot.1}$ и $t_{ot.2}$ для принятого варианта:

$$\Delta t_1 = q/\alpha_1 = 7915/12500 = 0,633 \text{ К} = 0,633 \text{ °С;}$$

$$t_{ot.1} = 112,7 - 0,633 = 112,067 \text{ °С;}$$

$$\Delta t_2 = q/\alpha_2 = 7915/207 = 38,237 \text{ К} = 38,237 \text{ °С;}$$

$$t_{ot.2} = 70,6 + 38,237 = 108,837 \text{ °С.}$$
На схему процесса теплообмена нужно нанести уточенные значения $t_{\text{от. 1}}$, $t_{\text{от. 2}}$, α_1, α_2, q.

Пример 4.111. Рассчитать кожухотрубчатый теплообменник для охлаждения в межтрубном пространстве 1240 м³/ч (считая при нормальных условиях) азота от 76 до 31 °C. Абсолютное давление азота 1,5 кгс/см² (≈ 0,15 МПа). Вода поступает в трубное пространство при 16 °C.

Решение. Для данного расчета можно использовать кожухотрубчатые аппараты типов ХН или ХК.

Составляем схему процесса теплообмена (рис. 4.24). Принимаем для азота индекс «1» для воды (в трубах) — индекс «2», конечную температуру воды 26 °C.

Температурная схема теплообмена при противотоке:

\[
\begin{align*}
76 & \rightarrow 31 \\
26 & \leftarrow 16 \\
\Delta t_6 &= 50 \\
\Delta t_m &= 15.
\end{align*}
\]

Средняя разность температур:

\[
\Delta t_{\text{оп}} = \frac{\Delta t_6 - \Delta t_m}{2,3 \lg \left(\frac{\Delta t_6}{\Delta t_m} \right)} = \frac{50 - 15}{2,3 \lg (50/15)} = 29 \degree C = 29 \text{ K}.
\]

Средняя температура воды:

\[
t_2 = \frac{(26 + 16)}{2} = 21 \degree C.
\]

Средняя температура азота:

\[
t_1 = t_2 + \Delta t_{\text{оп}} = 21 + 29 = 50 \degree C.
\]

Количество теплоты, передаваемое от азота к воде:

\[
Q = \frac{V_{\text{азот}}}{3600} \rho_0 c_1 (t_1 - t_1) = \frac{1240}{3600} \cdot 1,25 \cdot 1050 (76 - 31) = 20300 \text{ Вт},
\]

где $\rho_0 = 1,25$ кг/м³ — плотность азота при 0 °C и 760 мм рт. ст. (табл. V); $c_1 = 1050$ Дж/(кг·К) — средняя удельная теплоемкость азота (табл. XXVII).

Расход воды:

\[
G_2 = \frac{Q}{c_2 (t_{2h} - t_{2h})} = \frac{20300}{4190 (26 - 16)} = 0,485 \text{ кг/с}.
\]

Ориентировочно определяем максимальную величину площади поверхности теплообмена. По табл. 4.7 принимаем для случая поперечного обтекания воздушной луки труб, расположенных в шахматном порядке, $\alpha_{\text{возд}} = K = 70$ Вт/(м²·К). Тогда

\[
F_{\text{макс}} = \frac{Q}{K_{\text{макс}} \Delta t_{\text{ср}}} = \frac{20300}{70 \cdot 29} = 10 \text{ м²}.
\]

Условию $F < 10$ м² удовлетворяет (табл. 4.12) одноходовский кожухотрубчатый аппарат с числом труб 37.
Основные данные: 1) площадь проходного сечения по трубам
\[S_T = 37 \cdot 0,785 \cdot 0,021^2 = 0,0128 \text{ м}^2; \]
2) площадь проходного сечения в вырезе перегородки \(S_c, \text{ж} = 0,013 \text{ м}^2; \)
3) расстояние от диагонали до хорды сегмента \(h_1 = 40 \text{ мм} \) (табл. XXXV).
Рассчитываем площадь поверхности теплообмена.

1) Межтрубное пространство.

Размер стрелки сегмента:
\[b = \frac{D_2}{2} - h_1 = \frac{259}{2} - 40 = 90 \text{ мм.} \]

Расстояние между перегородками [формула (4.33)]:
\[l = \frac{b}{1,415\psi} = \frac{90}{1,415 \cdot 0,483} = 132 \text{ мм.} \]
где \(\psi \) [формула (4.34)]
\[\psi = \frac{1 - (d_l/d)}{1 - 0,9(d_l/d)^2} = \frac{1 - (25/32)}{1 - 0,9(25/32)^2} = 0,485. \]

Расчетная скорость азота в межтрубном пространстве [формула (4.35)]:
\[w_1 = V_1/S_c, \text{ж} = 0,28/0,013 = 21,5 \text{ м/с,} \]
где \(V_1 = \frac{1240 \cdot 323 \cdot 1,033}{3600 \cdot 273 \cdot 1,5} = 0,28 \text{ м}^3/\text{с} — \text{ объемный расход азота при рабочих условиях.} \)

Критерий Рейнольдса для азота:
\[\text{Re}_1 = \frac{w_1 d_1 \rho_1}{\mu_1} = \frac{21,5 \cdot 0,025 \cdot 1,53}{0,019 \cdot 10^{-3}} = 43300, \]
где \(\rho_1 = 1,25 \frac{273 \cdot 1,5}{323 \cdot 1,033} = 1,53 \text{ кг/м}^3 — \text{ плотность азота при рабочих условиях;} \)
\(\mu_1 = 0,019 \cdot 10^{-3} \text{ Па} \cdot \text{с} — \text{ динамический коэффициент вязкости азота при } 50 \text{°C (рис. VI).} \)

Расчетная формула (4.32):
\[Nu_1 = 0,356 \text{Re}_1^{1/2} \phi = 0,356 \cdot 43300^{0,6} \cdot 0,6 = 130, \]
где \(\phi = 0,6 — \text{ коэффициент (см. стр. 157).} \)

Тогда
\[\alpha_1 = \frac{Nu_1 \lambda_1}{d_1} = \frac{130 \cdot 0,0267}{0,025} = 139 \text{ Вт/(м}^2 \cdot \text{К),} \]
где \(\lambda_1 = 0,0267 \text{ Вт/(м} \cdot \text{К) — коэффициент теплопроводности азота при } 50 \text{°C (табл. XXX).} \)

2) Трубное пространство.

Скорость воды:
\[w_2 = \frac{G_2}{\rho_2 S_T} = \frac{0,485}{998 \cdot 0,0128} = 0,038 \text{ м/с.} \]

Критерий Рейнольдса:
\[\text{Re}_2 = \frac{w_2 d_2}{v_2} = \frac{0,038 \cdot 0,021}{0,986 \cdot 10^{-6}} = 809 < 10000, \]
где \(v_2 = 0,986 \cdot 10^{-6} \text{ м}^3/\text{с} — \text{ кинематический коэффициент вязкости воды при } 21 \text{°C (табл. XXXIX).} \)

Находим ориентировочное значение произведения \((Gr_2Pr_2)\).
При расчете теплоотдачи в случае Re < 10000 определяющая температура т = 0,5 (т_{ст.2} + т₂). Ввиду того, что температура т_{ст.2} будет определена только в конце расчета, необходимо задать величину Δt₂.

В данном примере теплопередачи от газа к жидкости следует учесть, что коэффициент теплоотдачи от газа к стенке обычно значительно меньше коэффициента теплоотдачи от стенки к жидкости, поэтому пример Δt₂ = 0,25 Δt_{ср} = 0,25·29,5 ≈ 8 °C.

При этом т_{ст.2} = т₂ + Δt₂ = 21 + 8 = 29 °C, и за определяющую температуру примем т = 0,5 (т_{ст.2} + т₂) = 0,5 (29 + 21) = 25 °C.

При этих допущениях:

(Gr₂Pr₂) = \frac{d₂ \rho₂ \beta₂ \Delta t₂ g}{\mu₂^2} Pr₂ = \frac{0,021^3 \cdot 997^2 \cdot 2,52 \cdot 10^{-4} \cdot 8 \cdot 9,81}{0,902^2 \cdot 10^{-8}} = 6,22 = 14 \cdot 10^5.

Значения β₂, ρ₂, μ₂ и Pr₂ для воды взяты по табл. XXXIX.

Проницание (Gr₂Pr₂) = 14 \cdot 10^5 > 8 \cdot 10^8; следовательно, для горизонтального аппарата расчетная формула (4.25):

Nu₂ = 0,8 \left(Pe_2 \frac{d_2}{L} \right)^{0,4} (Gr₂Pr₂)^{0,1} \left(\frac{\mu_2}{\mu_{ст.2}} \right)^{0,14}.

Принимаем по табл. 4.12 теплообменник с максимальной длиной труб L = 3 м. Тогда

\left(Pe_2 \frac{d_2}{L} \right) = Re_2 Pr_2 \frac{d_2}{L} = 809 \cdot 6,22 \frac{0,021}{3} = 35,2;

Nu₂ = 0,8 \left(35,2 \right)^{0,4} \left(0,14 \cdot 10^7 \right)^{0,1} \left(\frac{0,902}{0,825} \right)^{0,14} = 0,8 \cdot 4,16 \cdot 4,12 \cdot 1,01 = 13,85,

где μ_{ст.2} = 0,825 \cdot 10^{-3} Па·с — динамический коэффициент вязкости воды при t_{ст.2} = 29 °C (табл. XXXIX).

Следовательно,

α₂ = Nu₂λ₂/d₂ = 13,85 \cdot 0,608/0,021 = 401 Вт/(м²·К),

где λ₂ = 0,608 Вт/(м·К) — коэффициент теплопроводности воды при 25 °C (табл. XXXIX).

Примем тепловую проводимость загрязнений стенки со стороны азота равной 2800 Вт/(м²·К) (табл. XXXI), коэффициент теплопроводности стали 46,5 Вт/(м·К) (табл. XXVIII), тепловую проводимость загрязнений стенки со стороны воды среднего качества 2400 Вт/(м²·К) (табл. XXXI). Тогда

\frac{1}{\Sigma r_{ст}} = \frac{1}{2800} + \frac{1}{46,5} + \frac{1}{2400} = 1220 \text{ Вт/(м}^2\text{·К).}

Коэффициент теплопередачи:

K = \frac{1}{139 + \frac{1}{1220} + \frac{1}{401}} = 95,2 \text{ Вт/(м}^2\text{·К).}

Поверхностная плотность теплового потока:

q = K Δt_{ср} = 95,2 · 29 = 2760 Вт/м².

Проверим применимость формулы (4.25) и уточним расчет. Расчетное значение Δt₂.

Δt₂ = q/α₂ = 2760/401 = 6,88 K = 6,88 °C.
Уточненное значение \((Gr_2 Pr_2)\):

\[
(Gr_2 Pr_2) = 0,14 \cdot 10^7 \cdot (6,88/8)^{0,1} = 0,14 \cdot 10^7 \cdot 0,988 = 1,38 \cdot 10^6.
\]

Формула (4,25) применена верно, так как \((Gr_2 Pr_2) > 10^6\) и \(\left(Pe_2 \frac{d_2}{L} \right) > 20\).

Расчетное значение определяющей температуры \(t = t_2 + \frac{\Delta t_2}{2} = 21 + \frac{6,88}{2} = 24,44\), а было принято \(t = 25^\circ C\).

Рацет \(q\) произведен правильно.

Расчетная площадь поверхности теплообмена:

\[
F = \frac{Q}{q} = \frac{20 \cdot 300}{2760} = 7,35 \text{ м}^2.
\]

Принимаем один одноходовый кожухотрубчатый теплообменник с внутренним диаметром кожуха 273/259 мм и длиной труб 3 м.

Площадь поверхности теплообмена по среднему диаметру труб:

\[
F = \pi d_{cp} n L = 3,14 \cdot 0,023 \cdot 37 \cdot 3 = 8,02 \text{ м}^2.
\]

Запас площади поверхности теплообмена: \(\frac{8,02 - 7,35}{7,35} \cdot 100 = 9,1\%\). Запас площади поверхности теплообмена недостаточен.

Теплообменник с тем же числом труб, но с большей длиной труб по ГОСТу нет.

Для увеличения запаса площади поверхности теплообмена, учитывая, что с уменьшением длины трубчатки возрастает величина \(\alpha\), вместо одного теплообменника с \(L = 3\) м принимаем два теплообменника с \(L = 1.5\) м, соединяемых последовательно.

Коэффициент \(\alpha_1\) не изменяется, а величина \(\alpha_2\) возрастает:

\[
\alpha_2 = 401 (3/1,5)^{0,4} = 529 \text{ Вт/(м}^2\cdot\text{К)}.
\]

Коэффициент теплопередачи увеличивается:

\[
K = \frac{1}{\frac{1}{139} + \frac{1}{1220} + \frac{1}{529}} = 101 \text{ Вт/(м}^2\cdot\text{К)}.
\]

Поверхностная плотность теплового потока:

\[
q = K \Delta t_{cp} = 101 \cdot 29 = 2930 \text{ Вт/м}^2;
\]

\[
t_{ct.1} = t_1 - \frac{q}{\alpha_1} = 50 - \frac{2930}{139} = 28,9^\circ C.
\]

Уточнение значения \(t_{ct.2}\):

\[
\Delta t_2 = q/\alpha_2 = 2930/529 = 5,54 \text{ К, } 5,54^\circ C;
\]

\[
t_{ct.2} = t_2 + \Delta t_2 = 21 + 5,54 = 26,54^\circ C.
\]

Было принято \(t_{ct.2} = 29^\circ C\). Разница незначительная.

Расчетная площадь поверхности теплообмена:

\[
F = \frac{20 \cdot 300}{2930} = 6,93 \text{ м}^2.
\]

Запас площади поверхности теплообмена: \(\frac{8,02 - 6,93}{6,93} \cdot 100 = 15,73\%\). Запас площади поверхности теплообмена достаточен.

Проверка допустимости применения аппарата типа ХН.
Определение температуры наружной поверхности труб $t_{т.в.}$:

\[q = \frac{t_{т.в} - t_{т.н.}}{r_{загр.1}}; \quad 2930 = \frac{28,9 - t_{т.н.}}{1/2800}; \]

$\quad t_{т.н.} = 27,85 \text{ К} = 27,85 ^\circ \text{C}.$

Определение температуры внутренней поверхности труб $t_{т.в.}$:

\[q = \frac{t_{т.в} - t_{т.в.}}{r_{загр.2}}; \quad 2930 = \frac{t_{т.в} - 26,54}{1/2400}; \]

$\quad t_{т.в.} = 27,77 \text{ К} = 27,77 ^\circ \text{C}.$

Средняя температура стенок труб:

$\quad t_{т} = 0,5 (27,85 + 27,77) = 27,81 ^\circ \text{C}.$

Средняя разность ($t_{т.н} - t_{т}$) больше 20 К (табл. XXXV), поэтому принимаем аппарат типа ХК.

Пример 4.1. Рассчитать вынесенную грееющую камеру выпарного аппарата. Выпарная установка работает при кипении раствора в трубах при оптимальном уровне. При расчете выпарного аппарата принята высота труб $H = 5 \text{ м}$. При расчете установки определены: тепловая нагрузка $Q = 1 100 000 \text{ Вт}$; средняя температура кипения раствора хлористого натрия (20%) $t_{хип} = 90 ^\circ \text{C}$; температура конденсации сухого насыщенного водяного пара $t_{кодд} = 116,3 ^\circ \text{C}$. Для кипящего раствора $\lambda = 0,65 \text{ Вт/(м2 К)}$.

Решение. Составляем схему процесса теплопередачи (рис. 4.25).

Средняя разность температур:

$\Delta t_{op} = t_{кодд} - t_{хип} = 116,3 - 90 = 26,3 ^\circ \text{C} = 26,3 \text{ К}.$

Находим коэффициент теплоотдачи от конденсирующегося водяного пара к поверхности вертикальных труб по формуле (4.52а):

$\alpha_{кодд} = 2,04 \frac{A_t}{(H \Delta t_{кодд})^{0,26}} = 2,04 \frac{7188}{50,26} (\Delta t_{кодд})^{-0,26} = 9800 (\Delta t_{кодд})^{-0,26}.$

Следовательно,

\[
q_{кодд} = \alpha_{кодд} \Delta t_{кодд} = 9800 \Delta t_{кодд}^{0,75}
\]

Рис. 4.25. Схема процесса теплопередачи (к примеру 4.1IV).
Коэффициент теплоотдачи от стенки труб к кипящему раствору [формула (4.62)]:

\[
\alpha_{\text{kпп}} = b \left(\frac{\lambda^2\rho}{\mu\alpha T_{\text{kпп}}} \right)^{1/5} q^{2/5} = 0,078 \left(\frac{0,65^2 \cdot 1115}{0,51 \cdot 10^{-1} \cdot 67,7 \cdot 10^{-3} \cdot 3,83} \right)^{1/5} q^{2/5} = 2,61 q^{2/5},
\]

где \(h = 0,075 \left[1 + 10 \left(\rho T_{\text{ст}} \right)^{3/5} \right] = 0,075 \left[1 + 10 \left(0,424/1115 \right)^{3/5} \right] = 0,079.

Физические величины для 20 % раствора хлористого натрия определены по табл. IV, IX, XXIV.

Принимаем тепловую проводимость загрязнений стенки со стороны греющего пара \(\sim 5800 \text{ Вт/(м}^2\cdot\text{К}) \) и со стороны кипящего раствора \(\sim 2900 \text{ Вт/(м}^2\cdot\text{К}) \) (табл. XXXI). Тогда

\[
\frac{1}{\sum r_{\text{ст}}} = \frac{1}{5800} + \frac{1}{0,002} + \frac{1}{2900} \approx 1785 \text{ Вт/(м}^2\cdot\text{К}),
\]

где \(\lambda_{\text{ст}} = 46,5 \text{ Вт/(м} \cdot \text{К}) \) — коэффициент теплопроводности стали (табл. XXVIII).

Ввиду того, что \(\alpha_{\text{kпп}} = f_1 (\Delta t_{\text{kпп}}) \) и \(\alpha_{\text{kпп}} = f_2 (q_{\text{kпп}}) = f_3 (\Delta t_{\text{нипп}}) \), для расчета коэффициента теплопередачи принимаем метод последовательных приближений.

Для определения исходного значения \(K_{\text{исх}} \) учитывая, что при установившемся режиме теплопередачи \(q_{\text{kпп}} = q_{\text{kолн}} \), выражаем \(\alpha_{\text{kпп}} \) через \(q_{\text{kолн}} \):

\[
\alpha_{\text{kпп}} = 2,61 q_{\text{kпп}}^{2/5} = 2,61 q_{\text{kолн}}^{2/5} = 2,61 \left(9800 \Delta t_{\text{колн}}^{0,75} \right)^{2/5} = 1195 \Delta t_{\text{колн}}^{0,5}.
\]

Затем рассчитываем исходные значения \(K_{\text{исх}} \) и \(q_{\text{исх}} \), принимая \(\Delta t_{\text{колн}} = 1 \text{ K} \):

\[
K_{\text{исх}} = \frac{1}{9800} + \frac{1}{1785} + \frac{1}{1195} = 667 \text{ Вт/(м}^2\cdot\text{К});
\]

\[
q_{\text{исх}} = K_{\text{исх}} \Delta t_{\text{вар}} = 667 \cdot 26,3 = 17540 \text{ Вт/м}^2.
\]

Находим значение \((\Delta t_{\text{колн}})_{\text{изм}} = q_{\text{исх}}/9800 = 17540/9800 = 1,79 \text{ К} = 1,79 \text{ °С} \). Составляем расчетную таблицу 4.14, в которую записываем исходные данные \(t_{\text{колн}} \), \(t_{\text{кпп}} \), \((\Delta t_{\text{колн}})_{\text{изм}} \), \(1/\sum r_{\text{ст}} \) и результаты последующих расчетов.

<table>
<thead>
<tr>
<th>Приближенный и поверхностный расчет</th>
<th>Конденсация греющего пара</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{колн}}) °C</td>
<td>(t_{\text{ст}}) °C</td>
</tr>
<tr>
<td>I</td>
<td>116,3</td>
</tr>
<tr>
<td>II</td>
<td>116,3</td>
</tr>
<tr>
<td>III</td>
<td>116,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Приближенный и поверхностный расчет</th>
<th>Стена и ее загрязнения</th>
<th>Кипение раствора</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/\sum r_{\text{ст}}) Вт/(м}^2\cdot\text{К})</td>
<td>(\Delta t_{\text{ст}}) К</td>
<td>(t_{\text{ст}}) °C</td>
</tr>
<tr>
<td>I</td>
<td>1785</td>
<td>8,5</td>
</tr>
<tr>
<td>II</td>
<td>1785</td>
<td>10,53</td>
</tr>
<tr>
<td>III</td>
<td>1785</td>
<td>12,52</td>
</tr>
</tbody>
</table>
I. Первое приближение:

\[
(t^*_{ct,1})_I = t^*_{kon} - (\Delta t^*_{kon})_I = 116,3 - 1,79 = 114,51 \, ^{\circ}C;
\]

\[
(\alpha^*_{kon})_I = 9800 \left((\Delta t^*_{kon})_I \right)^{-0,25} = \frac{9800}{1,790,25} = \frac{9800}{1,156} = 8472 \, \text{Вт/(м}^2\cdot\text{К)};
\]

\[
(q^*_{kon})_I = (\alpha^*_{kon})_I (\Delta t^*_{kon})_I = 8472 \cdot 1,79 = 15 160 \, \text{Вт/м}^2;\]

\[
(\Delta t^*_{ct})_I = \sum r^*_{ct} (q^*_{kon})_I = 15 160/1785 = 8,5 \, ^{\circ}C = 8,5 \, ^{\circ}C;\]

\[
(t^*_{ct,2})_I = (t^*_{ct,1})_I - (\Delta t^*_{ct})_I = 114,51 - 8,5 = 106,01 \, ^{\circ}C;
\]

\[
(\Delta t^*_{kin})_I = (t^*_{ct,2})_I - t^*_{kin} = 106,01 - 90 = 16,01 \, ^{\circ}C = 16,01 \, ^{\circ}C;\]

\[
(\alpha^*_{kin})_I = 2,61 (q^*_{kon})_I^{1/2} = 2,61 \cdot 15,160^{1/2} = 2,61 \cdot 122,5 = 1600 \, \text{Вт/(м}^2\cdot\text{К)};
\]

\[
(q^*_{kin})_I = (\alpha^*_{kin})_I (\Delta t^*_{kin})_I = 1600 \cdot 16,01 = 25 600 \, \text{Вт/м}^2.
\]

В первом приближении \((q^*_{kon})_I \ll (q^*_{kin})_I\).

II. Второе приближение.

Рассчитываем по первому приближению \(K_I\):

\[
K_I = \frac{1}{8472} + \frac{1}{1785} + \frac{1}{1600} = 767 \, \text{Вт/(м}^2\cdot\text{К)};
\]

тогда

\[
q_I = K_I \Delta t^*_{ct} = 767 \cdot 26,3 = 20 180 \, \text{Вт/м}^2.
\]

Величину \((\Delta t^*_{kon})_II\) определяем, принимая \((q^*_{kon})_I = q_I\) при \((\alpha^*_{kon})_I = 8472 \, \text{Вт/(м}^2\cdot\text{К)}):

\[
(\Delta t^*_{kon})_II = q_I / (\alpha^*_{kon})_I = 20 180 / 8472 = 2,38 \, ^{\circ}C = 2,38 \, ^{\circ}C.
\]

Затем выполняем аналогичный расчет (см. строку II в табл. 4.14).

Расхождение \(q^*_{kon}\) и \(q^*_{kin}\) по второму расчету:

\[
\frac{24 870 - 18 800}{18 800} 100 = 32 \% > 5 \%.
\]

По результатам расчетов первого и второго приближения строим график \(q = f (t^*_{ct,1})\). Полагаем, что при малых изменениях температуры поверхностные плотности \(q^*_{kon}\) и \(q^*_{kin}\) линейно зависят от \(t^*_{ct,1}\) (или от \(\Delta t^*_{kon}\)), графически определяем \((t^*_{ct,1})_{II} = 113,29 \, ^{\circ}C\) (рис. 4.26, точка A).

III. Поверочный (третий) расчет (см. табл. 4.14).

Расхождение \(q^*_{kon}\) и \(q^*_{kin}:

\[
\frac{22 350 - 22 300}{22 300} 100 = 0,22 \% < 5 \%.
\]

На рис. 4.26 наносим значения \((q^*_{kon})_{III}\) и \((q^*_{kin})_{III}\) и проводим через точки I, II, III-го расчетов линию зависимости \(q^*_{kon} = f_1 (t^*_{ct,1})\) и \(q^*_{kin} = f_2 (t^*_{ct,1})\).

Как видим, они линейны.

Расчет \(q\) закончен.
На схему процесса теплообмена (рис. 4.25) наносим из таблицы значения $t_{от}, t_{ст.2}, \alpha_{конд}, \alpha_{кип}, q$. По данным последнего приближения определяем коэффициент теплообмена:

$$
K = \frac{1}{\sum r_{ст}} + \frac{1}{\alpha_{кип}} = \frac{1}{7424 + 1785 + 2071} = 848 \text{ Вт/(м}^2\text{.К)}.
$$

Площадь поверхности теплообмена:

$$
F = \frac{Q}{K \Delta t_{ср}} = \frac{1,1 \cdot 10^6}{848 (116,3 - 90)} = 50 \text{ м}^2.
$$

Принимаем аппарат с площадью поверхности теплообмена 65 м2 [5.4], т. е. с запасом $\frac{65 - 50}{50} \cdot 100 = 30\%$.

В связи с необходимостью применения метода последовательных приближений расчет процесса теплообмена в греющей камере испарного аппарата рекомендуется выполнять с помощью ЭВМ. Ниже представлен алгоритм такого расчета в виде блок-схемы и программы, записанная на языке ФОРТРАН-IV применительно к ЭВМ «Искра-1256». В расчете коэффициентов теплообмена использованы соотношения (4.52) при $e_t = 1$ и (4.62). Критическая плотность теплового потока определена по уравнению (4.64). Значение $\Delta t_{конд}$ для последующего приближения определяется по данным предыдущего приближения на основе того, что средняя разность температур потоков ($\Delta t_{ср} = t_{конд} - t_{кип}$) распределяется по участкам: конденсация пара – стенка – кипение жидкости пропорционально их термическим сопротивлениям.
Ввод \(t_{\text{конд}}, r, \lambda, \rho, \mu, \Delta t_{\text{конд}}, t_{\text{кип}}, \Delta t_{\text{кип}} \), \(\rho_{\text{ж}}, \rho_{\text{н}} \), \(\mu_{\text{ж}}, \sigma_{\text{ж}}, \sigma_{\text{н}}, \sigma_{\text{оп}}, \sigma_{\text{ж}0} \), \(\Delta t_{\text{кип}}, \Delta t_{\text{ст}}, \Delta t_{\text{ст}1}, Q, \beta, \ldots \)

\[
A = 2.04 \left(\frac{\lambda^2 \rho^2 r}{\mu H} \right)^{0.25}
\]

\[
b = 0.75 \left[1 + 10 \left(\frac{\rho_{\text{ж}}}{\rho_{\text{н}}} - 1 \right)^{-2/5} \right]
\]

\[
C = b^3 \left[\frac{\lambda^2 \rho_{\text{ж}}}{\mu_{\text{ж}} \sigma_{\text{ж}} (t_{\text{кип}} + 273)} \right]
\]

\[
\Sigma r_{\text{ст}} = r_{\text{загр}1} + r_{\text{загр}2} + \left(\frac{\theta_{\text{ст}}}{\Delta \theta} \right)
\]

\[
\alpha_{\text{конд}} = A (\Delta t_{\text{конд}})^{0.25}
\]

\[
q_{\text{конд}} = \alpha_{\text{конд}} \Delta t_{\text{конд}}
\]

\[
t_{\text{ст}1} = t_{\text{конд}} - \Delta t_{\text{конд}}
\]

\[
t_{\text{ст}2} = t_{\text{ст}1} - q_{\text{конд}} \Sigma r_{\text{ст}}
\]

\[
\Delta t_{\text{кип}} = t_{\text{ст}2} - t_{\text{кип}}
\]

\[
R = \frac{1}{\alpha_{\text{конд}}} + \frac{1}{\alpha_{\text{кип}}} + \Sigma r_{\text{ст}}
\]

\[
\Delta t_{\text{конд}} = \frac{1}{R \Delta t_{\text{конд}}}
\]

\[
q_{\text{кр}} = 0.14 \sqrt{\frac{q_{\text{конд}}}{(0.81 \sigma_{\text{ж}})}}
\]

\[
q_{\text{ср}} = 0.5 (q_{\text{конд}} + q_{\text{кип}})
\]

\[
q_{\text{ср}} > q_{\text{кр}}
\]

\[
\alpha_{\text{конд}}, \alpha_{\text{кип}}, q_{\text{конд}}, q_{\text{кип}}, t_{\text{ст}1}, t_{\text{ст}2}, r_{\text{ст}}
\]

\[
K = \frac{1}{(1/\alpha_{\text{конд}}) + (1/\alpha_{\text{кип}}) + \Sigma r_{\text{ст}}}
\]

\[
F = Q / \left[K (t_{\text{конд}} - t_{\text{кип}}) \right]
\]

\[
K, F, q_{\text{кр}}
\]

Конец
Идентификаторы к расчету кипятильника с обогревом паром:

Исходные данные

а) Конденсация пара.

<table>
<thead>
<tr>
<th>Величина</th>
<th>(t_{конд})</th>
<th>(t)</th>
<th>(\lambda)</th>
<th>(\rho)</th>
<th>(\mu)</th>
<th>(\Delta t_{конд})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>T1</td>
<td>R1</td>
<td>L1</td>
<td>RO1</td>
<td>MU1</td>
<td>DT1</td>
</tr>
</tbody>
</table>

б) Кипение жидкости.

<table>
<thead>
<tr>
<th>Величина</th>
<th>(t_{кип})</th>
<th>(\rho_ж)</th>
<th>(\rho_\text{н})</th>
<th>(\lambda_ж)</th>
<th>(\mu_ж)</th>
<th>(\sigma)</th>
<th>(r_{кип})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>T2</td>
<td>RO2</td>
<td>ROP2</td>
<td>L2</td>
<td>MU2</td>
<td>SIGMA</td>
<td>R2</td>
</tr>
</tbody>
</table>

в) Аппарат.

<table>
<thead>
<tr>
<th>Величина</th>
<th>(Q)</th>
<th>(H)</th>
<th>(\delta_{ст})</th>
<th>(\lambda_{ст})</th>
<th>(r_{загр.1})</th>
<th>(r_{загр.2})</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>Q</td>
<td>H</td>
<td>DST</td>
<td>LST</td>
<td>RZ1</td>
<td>RZ2</td>
<td>EPS</td>
</tr>
</tbody>
</table>

Рассчитываемые величины

<table>
<thead>
<tr>
<th>Величина</th>
<th>(\Lambda)</th>
<th>(b)</th>
<th>(C)</th>
<th>(\alpha_{конд})</th>
<th>(\alpha_{кип})</th>
<th>(t_{ст.1})</th>
<th>(t_{ст.2})</th>
<th>(q_{конд})</th>
<th>(q_{кип})</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>AL1</td>
<td>AL2</td>
<td>TS1</td>
<td>TS2</td>
<td>Q1</td>
<td>Q2</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Величина</th>
<th>(q_ср)</th>
<th>(q_кр)</th>
<th>(\sum t_{ст})</th>
<th>(\Delta t_{кип})</th>
<th>(\delta)</th>
<th>(K)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>QSR</td>
<td>QKR</td>
<td>RST</td>
<td>DT2</td>
<td>DELTA</td>
<td>K</td>
<td>F</td>
</tr>
</tbody>
</table>
Программа расчета:

```fortran
PROGRAM
COMMENT РАСЧЕТ КИПЯТИЛЬНИКА С ОБОГРЕВОМ
COMMENT ПАРОМ
REAL L1, MU1, L2, MU2, LST, K
READ (5) T1, R1, L1, RO1, MU1, DT1
READ (5) T2, RO2, ROP2, L2, MU2, SIGMA, R2
READ (5) Q, H, DST, LST, RZ1, RZ2, EPS
COMMENT РАСЧЕТ КОЭФФИЦИЕНТОВ ТЕПЛООТДАЧИ
A=2.0*4*(SQRT(SQRT(((L1**3)*(RO1**2)*R1/(MU1**2))))
B=Q * 0.75 * (1+10./(RO2/ROP2-1) * 0.667)
C=(B**3) * ((L2**2) * RO2/(MU2 * SIGMA * (T2 + 273)))
RST=RZ1+RZ2+DST/LST
1 AL1=A/SQRT(SQRT(DT1))
Q1=AL1 * DT1
TS1=T1-DT1
TS2=TS1-Q1 * RST
DT2=TS2-T2
IF (DT2<=Q) GO TO 2
AL2=C*(DT2**2)
Q2=AL2 * DT2
DELTA=ABS((Q1-Q2)/Q1)
IF (DELTA<=EPS) GO TO 4
COMMENT ЗНАЧЕНИЕ DT1 ДЛЯ СЛЕДУЮЩЕГО
COMMENT ПРИБЛИЖЕНИЯ
R=1./AL1+1./AL2+RST
DT1=(T1-T2/R)/AL1
GO TO 3
2 DT1=DT1 * 0.5
3 GO TO 1
COMMENT ПРОВЕРКА РЕЖИМА КИПЕНИЯ
4 QKR=Q * R2 * SQRT(ROP2) * SQRT(SQRT(SIGMA**9.81 * RO2))
QSR=(Q1+Q2)/2.
IF (QSR>QKR) GO TO 7
WRITE (6,5) AL1, AL2, Q1, Q2, TS1, TS2, DELTA
5 FORMAT (1 X, 'AL1=', 'AL2=', 'F7.1', 2X, 'Q=', 'F7.1',
/1 X, 'Q1=', 'F7.1', 2X, 'Q2=', 'F7.1', 1 X, 'TS1=', 'F7.2', 2X, 'TS2=', 'F7.2/15X', 'DELTA =', 'F8.4')
COMMENT КОЭФФИЦИЕНТ ТЕПЛОПЕРЕДАЧИ И
COMMENT ПЛОЩАДЬ ПОВЕРХНОСТИ ТЕПЛОПЕРЕДАЧИ
K=1./(AL1+1./AL2+RST)
F=Q/(K*(T1-T2))
WRITE (6,6) K, F, QKR
6 FORMAT (1 X, 'K=', 'F7.1/1X', 'F=', 'F8.1/1 X', 'QKR=', 'F15.0')
GO TO 9
7 WRITE (6,8) QSR, QKR
8 FORMAT (2X, 'QSR=', 'F15.0', 'QKR=', 'F15.0',
'ПЛЕНОЧНОЕ КИПЕНИЕ СЛЕДУЕТ ИЗМЕНЕНИТЬ РЕЖИМ РАБОТЫ АППАРАТА')
9 STOP
END
```

Пример 4.6. Рассчитать змеевик для периодического нагрева м-кислода в баке (в условиях свободной конвекции). Кислод в количестве 1600 кг должен
быть нагре́т от 16 до 80 °C в течение 1 ч. Нагрев производится паром, имеющим давление $p_{або} = 2$ кгс/см² (0,2 МПа). Стальной змеевик выполнен из трубы диаметром 53 × 2 мм.

Ре́шение. Температура конденсации гре́ющего пара 119,6 °C (табл. LVII). Так как она постоянна, то среднюю разность температур за время нагрева можно рассчитать по формуле:

$$\Delta t_{ср} = \frac{\Delta t_{нач} - \Delta t_{кон}}{2} = \frac{103,6 - 39,6}{2,3} \lg \left(\frac{\Delta t_{нач}}{\Delta t_{кон}} \right) = 66,6 \text{ °C} = 66,6 \text{ K},$$

где

$$\Delta t_{нач} = 119,6 - 16 = 103,6 \text{ °C} = 103,6 \text{ K};$$

$$\Delta t_{кон} = 119,6 - 80 = 39,6 \text{ °C} = 39,6 \text{ K}.$$ Средняя температура ксило́ла:

$$t_k = t_{конд} - \Delta t_{ср} = 119,6 - 66,6 = 53 \text{ °C}.$$ Средний расход передаваемой теплоты:

$$Q = G c_k (t_{конд} - t_{нач}) = \frac{1600}{3600} \cdot 1840 (80 - 16) = 52300 \text{ Вт},$$
где $c_k = 1840 \text{ Дж/(кг·K)}$ — средняя удельная теплоемкость ксило́ла (рис. XI). Термическое сопротивление стальной стенки и загрязнений (табл. XXVIII и XXXI):

$$\sum r_{ст} = r_{загр. 1} + \frac{\delta}{\lambda_{ст}} + r_{загр. 2} = \frac{1}{5800} + \frac{0,002}{46,5} + \frac{1}{5800} = 0,0004 \text{ (м²·K)/Вт}.$$ Коэффициент теплоотдачи для ксило́ла рассчитыва́ем по уравнению (4.46), прини́мая с запасом $(Pr/Pr_{ст})^{0,25} = 1$ для нагревающаяся жидкости:

$$Nu = 0,5 (Gr Pr)^{0,25} = 0,5 \left(\frac{Gr^2 \rho_2 \beta}{\mu^2} Pr \right)^{0,25} \Delta t_k^{0,25} =$$

$$= 0,5 \left(\frac{0,8 \cdot 0,053 \cdot 837^2 \cdot 1,15 \cdot 10^{-3} \cdot 4,5}{0,43^2 \cdot 10^{-6}} \right)^{0,25} \Delta t_k^{0,25} = 36,6 \Delta t_k^{0,25},$$
где $\rho = 837 \text{ кг/м}^3$ — плотность ксило́ла при 53 °C (табл. I V); $\mu = 0,43 \cdot 10^{-8} \text{ Па·с}$ — дина́мический коэффициент вязкости ксило́ла [4.15]; $Pr = 4,5$ — критери́й Прандтля для ксило́ла при 53 °C (рис. XIII);

$$\beta = \frac{v_2 - v_1}{v_1 \Delta t} = \frac{\rho_2 \mu_1}{\rho_1 \Delta t} = \frac{837 - 778}{778 (119,6 - 53)} = 1,15 \cdot 10^{-3} \text{ К}^{-1},$$

β — средний коэффициент объемного расширения ксило́ла в интервале температур 53—119,6 °C; $\Delta t_k = t_{ст.2} - t_k$ (рис. 4.27). Коэффициент теплоотдачи для ксило́ла:

$$\alpha_k = \frac{Nu \lambda}{d} = \frac{36,6 \cdot 0,128}{0,053} \Delta t_k^{0,25} = = 88,4 \Delta t_k^{0,25},$$
где $\lambda = 0,128 \text{ Вт/(м·K)}$ — коэффициент теплопроводности ксило́ла при 53 °C (рис. X).

Так как коэффициент теплоотдачи для ксило́ла много меньше, чем для конденсирующегося водяного пара, последний без расчета можно принять равным

Рис. 4.27. Схема процесса теплоотдачи (к примеру 4.7).

244
\[q = \alpha_n \Delta t_n = \frac{\Delta t_{ct}}{\sum r_{ct}} = \alpha_k \Delta t_k; \quad \Delta t_{cr} = \Delta t_n + \Delta t_{ct} + \Delta t_k, \]

где \(\Delta t_n = t_{конт} - t_{ст.1}; \quad \Delta t_{ct} = t_{ст.1} - t_{ст.2}. \)

Подставляя численные значения, будем иметь:

\[10000 \Delta t_n = \Delta t_{ct}/0,0004 = 88,4 \Delta t_k^{1,25}; \quad 66,6 = \Delta t_n + \Delta t_{ct} + \Delta t_k. \]

Из этой системы уравнений получаем:

\[0,0442 \Delta t_k^{1,25} + \Delta t_k - 66,6 = 0. \]

Решая последнее уравнение (графически), находим:

\[\Delta t_k = 59,3^\circ C = 59,3 \text{ К.} \]

Тогда

\[q = \alpha_k \Delta t_k = 88,4 \cdot 59,3^{1,25} = 14550 \text{ Вт/м}^3. \]

Требуемая площадь поверхности теплообмена:

\[F = Q/q = 52300/14550 = 3,62 \text{ м}^2. \]

Длина змеевика:

\[L = \frac{F}{\pi d_{ср}} = \frac{3,62}{3,14 \cdot 0,051} = 22,6 \text{ м.} \]

С запасом:

\[L = 22,6 \cdot 1,15 = 26 \text{ м.} \]

Расход греющего пара с учетом 5% потерь теплоты:

\[G_n = \frac{1,05Q}{r x} = \frac{1,05 \cdot 52300}{2208 \cdot 10^3 \cdot 0,95} = 0,0262 \text{ кг/с}, \]

где \(r = 2208 \cdot 10^3 \text{ Дж/кг} \) (табл. LV11); \(x = 0,95 \) — принятая степень сухости греющего пара.

По практическим данным для нормальной работы парового змеевика начальная скорость пара должна быть не более 30 м/с, а отношение \(L/d \) должно быть не более

\[\frac{L}{d} = C \frac{6}{\sqrt[]{\Delta t_{ср}}}, \]

где \(C \) зависит от давления конденсирующегося пара и для \(\rho_{абс} = 2 \text{ кгс/см}^2 \) равняется \(\sim 190 \) — см. «Теплоотдача при конденсации насыщенного пара» (стр. 163).

Проверим начальную скорость пара:

\[\omega_{нач} = \frac{G_n}{\rho_n \cdot 0,785d^2} = \frac{0,0262}{1,107 \cdot 0,785 \cdot 0,049^2} = 12,6 \text{ м/с}, \]

где \(\rho_n = 1,107 \text{ кг/м}^3 \) — плотность пара (табл. LVII).

Наибольшее допустимое отношение \(L/d \):

\[\left(\frac{L}{d} \right)_{\text{макс}} = 190 \frac{6}{\sqrt[]{66,6}} = 140. \]

Следовательно, длина змеевика должна быть не более

\[L = 140d = 140 \cdot 0,049 = 6,9 \text{ м.} \]

Принимаем число параллельно работающих змеевиков \(n = 4 \). Длина каждого змеевика 26/4 = 6,5 м.
Блок-схема алгоритма решения примера 4.5:

Начало

\[\Delta t_{нач} = \Delta t_{конд} - \Delta t_{нач} \]
\[\Delta t_{конд} = t_{конд} - t_{кон} \]

\[\Delta t_{ср} = \frac{\Delta t_{нач} - \Delta t_{конд}}{2,31 g} \]

\[t_{К} = t_{конд} - \Delta t_{ср} \]

\[Q = G_{K}c_{K} (t_{конд} - t_{нач}) \]

\[\Sigma C_{т} = \frac{1}{1 + \delta_{А} + \frac{1}{1 + \frac{1}{1 + \frac{1}{r_{загр.1}}} + \frac{1}{r_{загр.2}}} \right) \]

\[\beta = \frac{p_{1} - p_{2}}{p_{2} \Delta t_{ср}} \]

\[A_{Nu} = 0,5 \left(\frac{g d^{3} p^{2} p_{0}}{2 \mu^{2} Pr} \right)^{0,25} \]

\[A_{\alpha_{K}} = \frac{A_{Nu} \lambda}{\alpha} \]

Решение уравнения

\[\alpha \Delta t^{25}_{K} + b \Delta t_{K} + c = 0 \]

методом пропорциональных частей, где

\[\alpha = 5 - \alpha_{K}, b = 1, c = -\Delta t_{ср} \]

\[\Delta t_{K} = \Delta t_{K}^{(3)} \]

\[q = \alpha_{К} \Delta t_{К} = A_{\alpha_{К}} \Delta t_{К}^{3/25} \]

\[F = \frac{Q}{q} \]

\[L = \frac{F}{\pi \alpha_{ср}} \]

\[G_{n} = \frac{\psi_{нот} Q}{g_{с}} \]

\[\omega_{нач} = \frac{G_{n}}{p_{n} \cdot 0,785 d_{в}^{2}} \]

\[A_{max} = \left(\frac{L}{d_{в}} \right)_{max} = C \frac{6}{\sqrt{\Delta t_{ср}}} \]

\[L_{max} = A_{max} d_{v} \]

Определение

\[n = \left(\frac{L}{L_{max} + 1} \right) \]

\[L_{r} = \frac{L}{n} \]

Конец

Да

\[F \leq \varepsilon \]
Глава 5

ВЫПАРИВАНИЕ. КРИСТАЛЛИЗАЦИЯ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Уравнения материального баланса процесса выпаривания:

$$G_{нач} = G_{кон} + W;$$ \hspace{1cm} (5.1)

$$G_{нач}x_{нач} = G_{кон}x_{кон}. \hspace{1cm} (5.2)$$

Здесь $G_{нач}, G_{кон}$ — массовые расходы начального (исходного) раствора и конечного (упаренного) раствора, $кг/с$; $x_{нач}, x_{кон}$ — массовые доли растворенного вещества в начальном и конечном растворе; W — массовый расход выпариваемой воды, $кг/с$.

$$W = G_{нач} \left(1 - \frac{x_{нач}}{x_{кон}}\right). \hspace{1cm} (5.3)$$

2. Уравнение теплового баланса выпарного аппарата:

$$Q + G_{нач}c_{нач}(t_{кон} - t_{нач}) = G_{кон}c_{кон}(t_{кон} - W t_{BN} + Q_{неп} \pm Q_{д}. \hspace{1cm} (5.4)$$

где Q — расход теплоты на выпаривание, $Вт$; $c_{нач}, c_{кон}$ — удельная теплоемкость начального (исходного) и конечного (упаренного) растворов, $Дж/(кг·К)$; $t_{нач}, t_{кон}$ — температура начального раствора на входе в аппарат и конечного на выходе из аппарата при верхней разгрузке, $^°С$; t_{BN} — удельная энталпия вторичного пара на выходе его из аппарата, $Дж/кг$; $Q_{неп}$ — расход теплоты на компенсацию потерь в окружающую среду, $Вт$; $Q_{д}$ — теплота дегидратации, $Вт$.

3. Расход теплоты на выпаривание.

Из уравнения (5.4) получаем:

$$Q = G_{нач}c_{нач}(t_{кон} - t_{нач}) + W (t_{BN} - c_{кон}(t_{кон} + Q_{неп}), \hspace{1cm} (5.5)$$

где $c_{кон}$ — удельная теплоемкость воды при $t_{кон}$, $Дж/(кг·К)$.

Если раствор поступает в выпарной аппарат в перегретом состоянии ($t_{нач} > t_{кон}$), то $Q_{нагр} = G_{нач}c_{нач}(t_{кон} - t_{нач})$ имеет отрицательный знак, и расход теплоты в выпарном аппарате скращается, так как часть воды испаряется за счет теплоты, выделяющейся при охлаждении поступающего раствора от $t_{нач}$ до $t_{кон}$. Величина $G_{нач}c_{нач}(t_{нач} - t_{кон})$ носит название теплоты самонапарения.

Расход теплоты на компенсацию потерь в окружающую среду $Q_{неп}$ при расчете выпарных аппаратов принимают в размере 3—5% от суммы ($Q_{нагр} + Q_{неп}$). Величину $Q_{неп}$ можно подсчитать по уравнению:

$$Q_{неп} = \alpha F_{нагр} (t_{ст} - t_{возд}). \hspace{1cm} (5.6)$$

Здесь $\alpha = \alpha_{д} + \alpha_{н}$ — суммарный коэффициент теплоотдачи лучеиспусканием и конвекцией, $Вт/(м^2·К)$; $F_{нагр}$ — площадь наружной поверхности теплоизолированного аппарата, $м^2$; $t_{ст}$ — температура наружной поверхности изоляции, $^°С$ или $К$; $t_{возд}$ — температура окружающего воздуха, $^°С$ или $К$.

В общем случае в тепловом балансе выпарного аппарата должна учитываться еще потеря теплоты на дегидратацию растворенного вещества, но обычно эта величина по сравнению с друг-
гими статьями теплового баланса мала и ею можно пренебречь (см. пример 5.5). Расход греющего пара \(G_{т.н} \) (в кг/с) в выпарном аппарате определяют по уравнению:

\[
G_{т.н} = \frac{Q}{(i'' - i')} x = \frac{Q}{r_{т.н} x}, \tag{5.7}
\]

где \(i'' \) — удельная энтальпия сухого насыщенного пара, Дж/кг; \(i' \) — удельная энтальпия конденсата при температуре конденсации, Дж/кг; \(x \) — паросодержание (степень сухости) греющего пара; \(r_{т.н} \) — удельная теплота конденсации греющего пара, Дж/кг.

Удельный расход пара на выпаривание \(d \) представляет собой отношение расхода греющего пара \(G_{т.н} \) к расходу испаряемой воды \(W \):

\[
d = \frac{G_{т.н}}{W}. \tag{5.8}
\]

4. Теплоемкость раствора.
Удельная теплоемкость раствора может быть вычислена по общей формуле:

\[
c = c_1 x_1 + c_2 x_2 + c_3 x_3 + \ldots, \tag{5.9}
\]

где \(c_1, c_2, c_3, \ldots \) — удельные теплоемкости компонентов; \(x_1, x_2, x_3, \ldots \) — массовые доли компонентов.

Для расчета удельной теплоемкости двухкомпонентных (вода + растворенное вещество) разбавленных водных растворов \(x \ll 0.2 \) используются приближенной формулой:

\[
c = 4190 (1 - x). \tag{5.10}
\]

Здесь 4190 Дж/(кг·К) — удельная теплоемкость воды; \(x \) — концентрация растворенного вещества, масс. доли.

Для концентрированных двухкомпонентных водных растворов \(x > 0.2 \) расчет ведут по формуле:

\[
c = 4190 (1 - x) + c_1 x, \tag{5.11}
\]

где \(c_1 \) — удельная теплоемкость безводного растворенного вещества, Дж/(кг·К).

Удельную теплоемкость химического соединения при отсутствии экспериментальных данных можно ориентировочно рассчитать по уравнению:

\[
M c = c_1 C_1 + n_2 C_2 + n_3 C_3 + \ldots, \tag{5.12}
\]

где \(M \) — молекулярная масса химического соединения; \(c \) — его массовая удельная теплоемкость, Дж/(кг·К); \(n_1, n_2, n_3, \ldots \) — число атомов элементов, входящих в соединение; \(C_1, C_2, C_3, \ldots \) — атомные теплоемкости, Дж/(кг-атом·К).

При расчетах по формуле (5.12) применяются значения атомных теплоемкостей, приведенные в табл. 5.1.

5. Температурный режим однокорпусной вакуум-выпарной установки (рис. 5.1).
<table>
<thead>
<tr>
<th>Элемент</th>
<th>Атомная теплоемкость элементов для химических соединений, кДж/(кг-атом-К)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>в твердом состоянии</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7,5</td>
</tr>
<tr>
<td>H</td>
<td>9,6</td>
</tr>
<tr>
<td>B</td>
<td>11,3</td>
</tr>
<tr>
<td>Si</td>
<td>15,9</td>
</tr>
<tr>
<td>O</td>
<td>16,8</td>
</tr>
</tbody>
</table>

Обозначения температур и давлений:

Барометрический конденсатор p_0, t_0
Паровое пространство сепаратора p_1, t_1
Кипение раствора в сепараторе p_1, $t_{кон}$
Кипение в трубках (среднее значение) $p_{ср}$, $t_{кип}$
Греющий пар $p_{гр. п.} = p_1$
Разбавленный раствор, поступающий в выпарную аппаратура $t_{нач}$

Соотношение температуры: $t_{гр. п.} > t_{кип} > t_{кон} > t_1 > t_0$. Определение и расчет t и p.

t_0 — температура вторичного пара в барометрическом конденсаторе. Определяется как температура насыщения при давлении p_0.

t_1 — температура вторичного пара в сепараторе выпарного аппарата. Определяется как температура насыщения при давлении p_1.

$$t_1 = t_0 + \Delta t_{гр. п.},$$

где $\Delta t_{гр. п.}$ — гидравлическая депрессия, или изменение температуры вторичного пара на участке сепаратор — барометрический конденсатор, вызванное падением давления пара из-за гидравлического сопротивления паропровода вторичного пара $\Delta p_{гр. п.}$. Это сопротивление может быть подсчитано по уравнению [см. формулу (1.49)].

Рис. 5.1. К определению $p_{ср}$:
1 — греющая камера; 2 — сепаратор; 3 — циркуляционная труба; 4 — водомерное стекло; 5 — барометрический конденсатор.
Давление p_1 определяется как

$$p_1 = p_0 + \Delta p_{r.c.}$$ \hspace{1cm} (5.14)

и величина гидравлической депрессии

$$\Delta t_{r.c.} = t_1 - t_0.$$ \hspace{1cm} (5.15)

Величину $\Delta t_{r.c.}$ принимают по практическим данным равной 0,5—1,5 К.

Температура $t_{кон}$ — это температура кипения раствора в циркуляторе выпарного аппарата, при которой упаренный (конечный) раствор выводится из аппарата:

$$t_{кон} = t_1 + \Delta t_{депр.}.$$ \hspace{1cm} (5.16)

Здесь $\Delta t_{депр.}$ — температурная депрессия, выражающая повышение температуры кипения раствора по сравнению с температурой кипения чистого растворителя (воды) при том же давлении, К:

$$\Delta t_{депр} = (t_{раст} - t_{вод})_{p}.$$ \hspace{1cm} (5.17)

В выпарных аппаратах непрерывного действия с естественной или принудительной циркуляцией концентрация кипящего раствора близка к конечной, поэтому $\Delta t_{депр}$ в этих аппаратах берут для раствора конечной концентрации $x_{кон}$.

При периодическом процессе выпаривания, когда исходный раствор полностью заливается в аппарат до начала выпаривания, $\Delta t_{депр}$ определяют при средней концентрации раствора.

В табл. XXXVI приведена температура кипения водных растворов некоторых солей при атмосферном давлении, а на рис. XIX — значения $\Delta t_{депр}$.

6. Расчет температуры кипения растворов и других жидкостей при давлениях, отличных от атмосферного.

Первый способ. Если известны две температуры кипения данного раствора или органической жидкости при соответствующих давлениях, можно воспользоваться уравнением

$$\frac{\lg p_{A_1} - \lg p_{A_2}}{\lg p_{B_1} - \lg p_{B_2}} = C$$ \hspace{1cm} (5.18)

и номограммой (рис. XIV).

Здесь p_{A_1} и p_{B_1} — давление насыщенного пара двух жидкостей при одной и той же температуре t_1; p_{A_2} и p_{B_2} — давление насыщенного пара этих жидкостей при температуре t_2; C — постоянная.

Температура кипения жидкости может быть также найдена по правилу линейности химико-технических функций \ast

$$\frac{t_{p_1} - t_{p_2}}{\Theta_{p_1} - \Theta_{p_2}} = K.$$ \hspace{1cm} (5.19)

* Это соотношение экспериментально было найдено Дюрингом.
<table>
<thead>
<tr>
<th>ρ/ρ_0</th>
<th>0,9</th>
<th>0,8</th>
<th>0,7</th>
<th>0,6</th>
<th>0,5</th>
<th>0,4</th>
<th>0,3</th>
<th>Поправка, $\pm \Delta t$, К</th>
</tr>
</thead>
<tbody>
<tr>
<td>Давление ρ, мм рт. ст.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>650</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>350</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>400</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>275</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td></td>
<td></td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>3,6</td>
<td></td>
</tr>
</tbody>
</table>

где t_{p_1} и t_{p_2} — температуры кипения жидкости (раствора или индивидуального вещества) при двух давлениях p_1 и p_2; Θ_{p_1} и Θ_{p_2} — температуры кипения воды или другой эталонной жидкости* при тех же давлениях (рис. XV и XVI).

Второй способ. Если для какого-либо раствора известна только одна температура кипения при одном давлении, то можно определить температуру кипения этого раствора при другом давлении, воспользовавшись правилом Бабо

$$\frac{p}{p_0} = \text{const}$$

(5.20)

с поправкой В. Н. Стабникова для концентрированных водных растворов, кипящих под вакуумом (табл. 5.2).

Здесь p — давление пара раствора; p_0 — давление насыщенного пара чистого растворителя при той же температуре.

Если теплота растворения положительна (теплота выделяется при растворении), то поправка берется со знаком плюс, если отрицательна, то со знаком минус**.

Если давление в аппарате $p \neq 1$ кгс/см², то значения $\Delta t_{\text{депр.}}$, найденные по табл. XXXVI, пересчитывают на соответствующее давление (см. пример 5.8).

7. Температура $t_{\text{кип}}$ — это средняя температура кипения раствора в трубах:

$$t_{\text{кип}} = t_{\text{кон}} + \Delta t_{\text{г. аф.}},$$

(5.21)

где $\Delta t_{\text{г. аф.}}$ — гидростатическая депрессия, или повышение температуры кипения раствора вследствие гидростатического давления столба жидкости в аппарате (гидростатический эффект).

Температура кипения раствора в выпарном аппарате переменна по высоте труб. Обычно среднюю температуру кипения определяют

* При определении по правилу линейности температур кипения органических соединений, нерастворимых в воде, в качестве эталонной жидкости обычно берут гексан. Зависимость давления его насыщенного пара от температуры дана на рис. XVII.

на середине высоты греющих труб с учетом гидростатического давления.

Давление в среднем слое выпариваемого раствора (см. рис. 5.1)

\[\rho_{op} = \rho_1 + 0.5 \rho_g H_{yp} = \rho_1 + \Delta \rho_{г, \text{аф}}, \] \hspace{1cm} (5.22)

где \(\Delta \rho_{г, \text{аф}} \) — повышение давления в жидкости на глубине \(H_{yp}/2 \) от поверхности (так называемый гидростатический эффект); \(\rho_p \) — плотность раствора.

Гидростатическая депрессия \(\Delta t_{г, \text{аф}} \), связанная с величиной \(\Delta \rho_{г, \text{аф}} \), зависит от высоты уровня раствора \(H_{yp} \), определяемой по водомерному стеклу, и от плотности раствора. Оптимальная высота уровня при выпаривании водных растворов в выпарных аппаратах с естественной циркуляцией раствора может быть рассчитана по формуле [5.1]:

\[H_{опт} = [0.26 + 0.0014 (\rho_p - \rho_в)] H_{тр}. \] \hspace{1cm} (5.23)

Здесь \(H_{опт} (H_{тр}) \) — оптимальная высота уровня по водомерному стеклу, м; \(H_{тр} \) — рабочая высота труб, м; \(\rho_p \) и \(\rho_в \) — плотности раствора конечной концентрации (табл. IV) и воды (табл. XXXIX) при температуре кипения, кг/м³.

При отсутствии данных для \(t_{кип} \) можно принять, что

\[(\rho_p - \rho_в) t_{кип} \approx (\rho_p - \rho_в) t = 20 \, ^{0}C. \] \hspace{1cm} (5.24)

Величина \(\Delta t_{г, \text{аф}} \) определяется по уравнению:

\[\Delta t_{г, \text{аф}} = t_{тр} - t, \] \hspace{1cm} (5.25)

где \(t_{тр} \) — температура кипения воды при давлении \(\rho_{op} \).

Средняя температура кипения раствора:

\[t_{кип} = t_{кон} + \Delta t_{г, \text{аф}} = t_0 + \Delta t_{депр} + \Delta t_{депр \, \text{ин}} = t_0 + \Sigma \Delta t_{пот}, \] \hspace{1cm} (5.26)

где сумма температурных потерь \(\Sigma \Delta t_{пот} \)

\[\Sigma \Delta t_{пот} = \Delta t_{депр} + \Delta t_{депр \, \text{ин}}. \] \hspace{1cm} (5.27)

Порядок расчета \(t_{кип} \) — см. пример 5.11.

8. Общая и полезная разность температур. Площадь поверхности теплопередачи.

Разность между температурой конденсации греющего пара \(t_г, в \) и температурой конденсации вторичного пара в барометрическом конденсаторе \(t_0 \) называют общей разностью температур

\[\Delta t_{общ} = t_г, в - t_0, \] \hspace{1cm} (5.28)

а разность между температурой конденсации греющего пара \(t_г, в \) и температурой кипения раствора \(t_{кип} \) — полезной разностью температур:

\[\Delta t_{дон} = t_г, в - t_{кип} = \Delta t_{общ} - \Sigma \Delta t_{пот}. \] \hspace{1cm} (5.29)
Площадь поверхности теплопередачи выпарного аппарата — см. формулу (4.72):

\[F = \frac{Q}{K \Delta t_{cp}} = \frac{Q}{K \Delta t_{npol}}, \]

(5.30)

где \(\Delta t_{npol} \) — средняя движущая сила \(\Delta t_{cp} \).

9. В многокорпусных выпарных установках \(\Delta t_{общ} \) — разность между температурой конденсации греющего пара первого корпуса и температурой конденсации вторичного пара последнего корпуса; \(\sum \Delta t_{пот} = \Delta t_{депр} + \Delta t_{и.вф} + \Delta t_{г.о} \) — сумма температурных потерь во всех корпусах.

Распределение полезной разности температур между отдельными корпусами производится:

а) в случае расчета на минимальную общую площадь поверхности всех корпусов — пропорционально \(\sqrt{Q/K} \)

\[\Delta t_i = \Delta t_{npol} \sqrt{\frac{Q_i}{K_i}} \left/ \sum_{i=1}^{n} \sqrt{\frac{Q_i}{K_i}} \right; \]

(5.31)

б) в случае расчета на равную площадь поверхности корпусов — пропорционально отношению \(Q/K \)

\[\Delta t_i = \Delta t_{npol} \frac{Q_i}{K_i} \left/ \sum_{i=1}^{n} \frac{Q_i}{K_i} \right; \]

(5.32)

где \(Q_i \) — тепловая нагрузка корпуса; \(K_i \) — коэффициент теплопередачи в корпусе.

10. Масса образовавшихся кристаллов \(G_{kr} \) (в кг) определяется из уравнения материального баланса кристаллизатора:

\[G_{kr} = \frac{G_1 (x_2 - x_1)}{x_2 - x_{kr}}, \]

(5.33)

где \(G_1 \) — количество исходного раствора, кг; \(x_1 \) — концентрация исходного раствора по безводной соли, массовые доли или %; \(x_2 \) — концентрация по безводной соли маточного раствора после кристаллизации, массовые доли или %; \(W \) — количество испарившегося растворителя, кг; \(x_{kr} = M/M_{kr} \) — отношение мольных масс безводного растворенного вещества в кристаллогидрате.

Если вещество кристаллизуется в безводной форме, то \(x_{kr} = 1 \).

При изогидрочной кристаллизации (без удаления части растворителя при \(W = 0 \)):

\[G_{kr} = \frac{G_1 (x_1 - x_2)}{x_{kr} - x_2}. \]

(5.34)

11. Удельную теплоту растворения \(q_p \) (в Дж/кг) твердых веществ, обладающих небольшой растворимостью, можно определить по формуле:

\[q_p = \frac{19.2 \times 10^3 \lg \frac{c_1}{c_2}}{M \left(\frac{1}{T_1} - \frac{1}{T_2} \right)}. \]

(5.35)

Здесь \(c_1 \) и \(c_2 \) — растворимость вещества при температурах \(T_1 \) и \(T_2 \) (в К); \(M \) — мольная масса растворенного вещества, кг/моль.
Удельную теплоту плавления \(q_\text{пл} \) (в Дж/кг) при отсутствии экспериментальных данных можно вычислять по следующим приближенным зависимостям:

а) для неорганических соединений

\[
q_\text{пл} = 25,1 \cdot 10^3 \frac{T_\text{пл}}{M} ;
\]
(5.36)

б) для органических соединений

\[
q_\text{пл} = 41,9 \cdot 10^3 \frac{T_\text{пл}}{M} ,
\]
(5.37)

где \(T_\text{пл} \) — температура плавления, К; \(M \) — мольная масса соединения, кг/моль.

Количество теплоты \(Q \) (в Дж), выделяющееся при кристаллизации без испарения части растворителя, определяется из уравнения теплового баланса кристаллизатора:

\[
Q = G_1 c (t_1 - t_2) + G_\text{крф},
\]
(5.38)

где \(G_1 \) — количество исходного раствора, кг; \(c \) — удельная теплоемкость исходного раствора, Дж/(кг \cdot К); \(t_1 \) и \(t_2 \) — начальная и конечная температуры раствора, °С или К; \(G_\text{крф} \) — количество образовавшихся кристаллов, кг; \(q \) — удельная теплота кристаллизации, Дж/кг.

12. Удельную теплоту парообразования жидкости \(r \) (в Дж/кг) при давлении \(p \) можно определить по уравнению:

\[
r = r_{\text{эт}} \frac{M_{\text{эт}}}{M} \left(\frac{T}{\Theta} \right)^2 \frac{d\Theta}{dT} .
\]
(5.39)

В формуле (5.39) \(r \) и \(r_{\text{эт}} \) — удельная теплота парообразования исходной и эталонной* жидкостей при одном и том же давлении \(p \), Дж/кг; \(M \) и \(M_{\text{эт}} \) — мольные массы этих жидкостей, кг/моль; \(T \) и \(\Theta \) — их температуры кипения при давлении \(p \), К; \(d\Theta, dT \) — дифференциалы температур кипения эталонной жидкости и жидкости, для которой определяется теплота парообразования (на основании правила линейности отношение дифференциалов заменяют отношением разностей температур кипения при двух давлениях).

Удельная теплота парообразования неполярных жидкостей \(r \) (в Дж/кг) при атмосферном давлении может быть вычислена по формуле Кистяковского:

\[
r = 19,2 \cdot 10^3 \frac{T}{M} (1,91 + 1g T),
\]
(5.40)

где \(T \) — температура кипения, К; \(M \) — мольная масса жидкости, кг/моль.

13. Расход воды на конденсатор \(G_\text{в} \) (в кг/с) определяется из уравнения теплового баланса конденсатора:

\[
G_\text{в} = \frac{W (i'' - i')}{{c (i'\text{в. конв} - i'\text{в. нач})}} = \frac{W r + c \text{ж} (t_0 - t_{\text{в. нач}})}{c (i'\text{в. конв} - i'\text{в. нач})} ,
\]
(5.41)

где \(W \) — расход вторичного пара, поступающего в конденсатор, кг/с; \(i'' \) — удельная энталпия этого пара, Дж/кг; \(i' \) — удельная энталпия конденсата при вы-

* См. сноску к формуле (5.20). Зависимость удельной теплоты парообразования гексана от температуры приведена на рис. XVIII.
ходе из конденсатора, Дж/кг; \(t_{\text{в. нач.}} \), \(t_{\text{в. кон.}} \) — начальная и конечная температуры охлаждающей воды, °C или K; \(c_1, c_m \) — средние удельные теплоемкости воды и конденсата, Дж/(кг·K); \(r \) — теплота конденсации, Дж/кг; \(t_0, t_w \) — температура конденсации и конечная температура конденсата, °C или K.

В конденсаторах смешения температура конденсата равна конечной температуре охлаждающей воды. Поэтому в конденсаторах смешения:

\[
G_в = \frac{W}{c} \frac{t'' - t_{\text{в. кон.}}}{t_{\text{в. нач.}} - t_{\text{в. кон.}}}.
\]

(5.42)

Количество воздуха, откачиваемого вакуум-насосом из барометрического конденсатора, \(G_\text{возд} \) (в кг/с) определяют по эмпирической формуле:

\[
G_\text{возд} = 0,000025 (W + G_в) + 0,01W.
\]

(5.43)

Объем насыщенного водяным паром воздуха \(V \) (в м\(^3\)/с), откачиваемого из противоточного барометрического конденсатора:

\[
V = \frac{R G_\text{возд} T_\text{возд}}{M_\text{возд} (\Pi - p_\Pi)} = \frac{278 T_\text{возд} G_\text{возд}}{\Pi - p_\Pi}.
\]

(5.44)

Здесь \(T_\text{возд} \) — температура воздуха (в K), откачиваемого из барометрического конденсатора; определяется по приближенной эмпирической формуле

\[
T_\text{возд} = 273 + [t_{\text{в. нач.}} + 0,1 (t_{\text{в. кон.}} - t_{\text{в. нач.}}) + 4];
\]

(5.45)

\(t_{\text{в. нач.}} \) и \(t_{\text{в. кон.}} \) — начальная и конечная температуры воды, °C (конечную температуру воды \(t_{\text{в. кон.}} \) принимают не менее чем на 3 °C ниже температуры конденсации вторичного пара); \(\Pi \) — давление (абс.) в барометрическом конденсаторе, Па; \(p_\Pi \) — давление насыщенного водяного пара при температуре \(T_\text{возд} \), Па.

Высота барометрической трубы \(H \) (в м) зависит от величины вакуума (разрежения) в конденсаторе и равняется:

\[
H = H_0 + H_г. с + 0,5,
\]

(5.46)

где \(H_0 = 10,33 \frac{b}{760} \); \(b \) — вакуум в конденсаторе, мм рт. ст.; \(H_г. с = \frac{\omega^2}{2g} \times \)

\[\times \left(1 + \lambda \frac{H}{d} + 1,5 \right); \] \(\omega \) — скорость воды в трубе, м/с; \(\lambda \) — коэффициент трения; \(d \) — диаметр трубы, м.

ПРИМЕРЫ

Пример 5.1. Исходный (начальный) раствор гидроксида натрия содержит 79 г/л воды. Плотность упаренного раствора при 30 °C равна 1,555 г/см\(^3\). Это соответствует концентрации 840 г/л раствора. Определить количество выпаренной воды на 1 т исходного раствора.

Решение. Массовая доля растворенного вещества в начальном растворе:

\[
x_{\text{нач}} = \frac{79}{1000 + 79} = 0,0733.
\]
В конечном растворе:
\[x_{кон} = \frac{840}{1555} = 0,54. \]

Количество выпаренной воды на 1 т исходного раствора:
\[W = G_{нач} \left(1 - \frac{x_{нач}}{x_{кон}} \right) = 1000 \left(1 - \frac{0.0733}{0.54} \right) = 865 \text{ кг}. \]

Пример 5.2. Найти удельную теплоемкость 25 % водного раствора натриевой соли салициловой кислоты.

Решение. Так как концентрация раствора больше 20%, то удельную теплоемкость раствора рассчитаем по формуле (5.11).

Предварительно определяем удельную теплоемкость \(c_1 \) сухой натриевой соли салициловой кислоты по формуле (5.12), воспользовавшись данными табл. 5.1. Химическая формула соли \(\text{C}_6\text{H}_4(\text{OH})\text{COONa} \); \(M = 160 \). Имеем:
\[c_1 = \frac{(7,5 \cdot 7 + 9,6 \cdot 5 + 16,8 \cdot 3 + 26,0)}{160} = 1,11 \text{ кДж/(кг·К)}. \]

Удельная теплоемкость 25% раствора:
\[c = 4190 (1 - x) + c_1x = 4190 \cdot 0,75 + 1110 \cdot 0,25 = 3420 \text{ Дж/(кг·К)}. \]

Пример 5.3. Определить, пользуясь правилом линейности, температуру кипения анилина под вакуумом 0,08 МПа, т.е. при остаточном абсолютном давлении 0,02 МПа. Известно, что при температуре 160 °С давление насыщенного пара анилина равно 390 мм рт. ст., а при атмосферном давлении температура кипения анилина 184 °С.

Решение. Возьмем в качестве эталонной жидкости гексаан. По диаграмме (рис. XVII) находим для гексана:

При \(p_1 = 390 \text{ мм рт. ст.} \)
\[\Theta_1 = 49,2 ^\circ C \]
\[p_2 = 760 \text{ мм рт. ст.} \]
\[\Theta_2 = 69 ^\circ C \]

Тогда
\[K = \frac{t_{p_1} - t_{p_2}}{\Theta_{p_1} - \Theta_{p_2}} = \frac{160 - 184}{49,2 - 69} = 1,21. \]

При абсолютном давлении \(p = 0,02 \text{ МПа}, \) т.е. \(0,2 \cdot 735 = 147 \text{ мм рт. ст.}, \) температура кипения гексана 24,5 °C (рис. XVII). Следовательно,
\[\frac{160 - t}{49,2 - 24,5} = 1,21, \]
откуда \(t = 130,1 ^\circ C. \)

Если решать эту задачу с помощью диаграммы линейности, составленной с применением воды в качестве эталонной жидкости (рис. XV), то получим: температура кипения воды при абсолютном давлении \(p = 0,2 \text{ кгс/см}^2 \) равна ~60 °C (табл. LVII). По диаграмме линейности находим точку пересечения ординаты 60 °C (для воды) с линией 12 (для анилина). Этой точке пересечения
соответствует на шкале абсцисс температура кипения анилина, равная 130 °C.

Пример 5.4. Вычислить с помощью правила линейности темп-лоту парообразования анилина при абсолютном давлении 0,2 кгс/см².

Решение. Воспользуемся уравнением (5.39), взяв в качестве эталонной жидкости гексан. Температура кипения анилина при $p = 0,2$ кгс/см² равна 130 °C (см. предыдущий пример). Температура кипения гексана при $p = 0,2$ кгс/см² равна 24,5 °C. Удельную темлоту парообразования гексана при 24,5 °C находим по графику (рис. XVIII): $r = 366 \cdot 10^3$ Дж/кг.

Отношение $d\Theta/dT$ находим по данным предыдущего примера. Так как зависимость между T и Θ при одинаковом давлении прямолинейна, то $d\Theta/dT$ — величина постоянная. Следовательно,

$$
\frac{d\Theta}{dT} = \frac{1}{K} = \frac{1}{121} = 0,826.
$$

Подставляя все эти значения в формулу (5.39), получаем:

$$
r = r_{vt} \frac{M_{vt}}{M} \left(\frac{T}{\Theta} \right)^{12} \frac{d\Theta}{dT} = 366 \cdot 10^3 \frac{86}{93} \left(\frac{273 + 130}{273 + 24,5} \right)^{0,826} =
$$

$$
= 515 000 \text{ Дж/кг}.
$$

Если в качестве эталонной жидкости взять не гексан, а воду, то получим следующие данные.

Для воды при абсолютном давлении $p = 0,2$ кгс/см² темпера-туратура кипения равна 59,7 °C, а удельная теплота парообразования (по табл. LVII) $r = 2358 \cdot 10^3$ Дж/кг.

Отношение $d\Theta/dT$ находим по рис. XV как тангенс угла на-клонной линии $12:

$$
\frac{d\Theta}{dT} = \frac{110 - 20}{200 - 80} = 0,75.
$$

Подставляя в формулу (5.39), получаем:

$$
r = 2358 \cdot 10^3 \frac{18}{93} \left(\frac{403}{333} \right)^{0,75} = 503 000 \text{ Дж/кг}.
$$

Пример 5.5. Определить расход греющего насыщенного водя-ного пара в одиночном выпарном аппарате при непрерывном кон-центрировании раствора NaOH. Расход начального раствора 2 т/ч, его концентрация 14,1% (масс.), конечная концентрация 24,1% (масс.). Температура греющего пара 150 °C. Давление вторичного пара в аппарате атмосферное. Тепловые потери выпарного аппара-рата составляют 58 000 Вт.

Расчет произвести для трех вариантов: а) раствор поступает на выпаривание с начальной температурой 20 °C; б) раствор по-ступает на выпаривание при температуре кипения в аппарате; в) раствор поступает в выпарной аппарат перегретым до 130 °C.

Решение. Если давление вторичного пара в аппарате атмосферное, то конечная температура раствора, выводимого из аппарата, должна равняться ~ 111 °C (табл. XXXVI).
а) Количество теплоты, передаваемое от греющего пара к кипящему раствору [формула (5.5)]:

\[Q_{тн} = G_{нач}c_{нач} (t_{кон} - t_{нач}) + W (t_{в}, n - c_{в}t_{кон}) + Q_{пот}, \]

Для всех вариантов расчета вторые и третьи слагаемые одинаковы. Определяем второе слагаемое:

\[W (t_{в}, n - c_{в}t_{кон}) = \frac{829}{3600} (2677 - 4,23 \cdot 111) \cdot 10^3 = 508 \text{ кВт}, \]

где \(W = \frac{6}{3600} \cdot \frac{1 - \frac{x_{нач}}{x_{кон}}}{1 - \frac{14,1}{24,1}} = 829 \text{ кг/ч}; \ c_{в} = 4,23 \text{ кДж/(кг} \cdot \text{К}) — теплоемкость воды при 111 °C (табл. XXXIX); \ i_{в}, n = 2677 \text{ кДж/кг} — удельная энталпия водяного пара при абсолютном давлении 1 кгс/см}^2.

Определяем расход теплоты на нагревание раствора. Подсчитываем удельную теплоемкость начального раствора.

Удельная теплоемкость твердого NaOH по формуле (5.12):

\[c_{1} = \frac{(16,8 + 9,6 + 26,0)/40} = 1,31 \text{ кДж/(кг} \cdot \text{К}). \]

Удельная теплоемкость 14,1% водного раствора NaOH:

\[c = 1,31 \cdot 10^{3} \cdot 0,141 + 4,19 \cdot 10^{3} \cdot 0,859 = 3780 \text{ Дж/(кг} \cdot \text{К}). \]

Подсчитываем расход теплоты на нагревание раствора для каждого варианта:

а) начальная температура раствора 20 °C

\[Q_{нагр} = \frac{2000 \cdot 3,78 \cdot 10^{3}}{360} (111 - 20) = 195 000 \text{ Вт}; \]

б) начальная температура равна температуре кипения

\[Q_{нагр} = 0; \]

в) раствор поступает в выпарной аппарат перегретым до 130 °C

\[Q_{нагр} = \frac{2000 \cdot 3,78 \cdot 10^{3}}{3600} (111 - 130) = - 35 700 \text{ Вт}. \]

Подсчитываем расход теплоты на дегидратацию NaOH, чтобы получить представление о величине этой статьи расхода в тепло-вом балансе выпарного аппарата.

По Справочнику физико-химических величин Технической энциклопедии (т. VII) находим, что теплота образования NaOH в растворе с \(n \) молями воды составляет:

<table>
<thead>
<tr>
<th>(n)</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>13,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Теплота образования</td>
<td>456,6</td>
<td>465,5</td>
<td>469,1</td>
<td>469,5</td>
<td>470,23</td>
</tr>
<tr>
<td>NaOH, кДж/моль</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Подсчитываем количество молей воды, приходящихся на 1 моль NaOH.

Начальный раствор:
количество молей NaOH в 1 кг раствора
\[
\frac{141}{40} = 3.52;
\]
количество молей воды в 1 кг раствора
\[
(1000 - 141)/18 = 47.7;
\]
количество молей воды на 1 моль NaOH
\[
\frac{47.7}{3.52} = 13.5.
\]

Конечный раствор:
количество молей NaOH в 1 кг раствора
\[
\frac{241}{40} = 6.02;
\]
количество молей воды в 1 кг раствора
\[
(1000 - 241)/18 = 42.1;
\]
количество молей воды на 1 моль NaOH
\[
\frac{42.1}{6.02} = 7.0.
\]

Следовательно, теплота дегидратации:
\[
470.23 - 469.1 = 1.13 \text{ кДж/моль NaOH}.
\]

Общая теплота дегидратации:
\[
Q_д = 3.52 \cdot 2000 \cdot 1130/3600 = 2220 \text{ Вт}.
\]

Составим сводную таблицу расхода теплоты (в Вт) в выпарном аппарате для всех трех вариантов (табл. 5.3).
Из табл 5.3 следует, что расход теплоты на дегидратацию составляет малую величину, которой можно пренебречь.
Определяем расход греющего пара. По табл. LVI:
\[
i'' = 2753 \cdot 10^3 \text{ Дж/кг};
\]
\[
i' = 633 \cdot 10^3 \text{ Дж/кг};
\]
\[
i'' - i' = 2753 - 633 = 2120 \text{ кДж/кг}.
\]

Таблица 5.3

<table>
<thead>
<tr>
<th>Статьи расхода</th>
<th>Варианты</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>а</td>
<td>б</td>
<td>в</td>
</tr>
<tr>
<td>На испарение воды</td>
<td>508 000</td>
<td>508 000</td>
<td>508 000</td>
</tr>
<tr>
<td>На дегидратацию</td>
<td>2 220</td>
<td>2 220</td>
<td>2 220</td>
</tr>
<tr>
<td>Теплотерпери</td>
<td>58 000</td>
<td>58 000</td>
<td>58 000</td>
</tr>
<tr>
<td>На нагревание раствора</td>
<td>195 000</td>
<td>0</td>
<td>-35 700</td>
</tr>
<tr>
<td>Итого</td>
<td>763 220</td>
<td>568 220</td>
<td>532 520</td>
</tr>
</tbody>
</table>
Таблица 5.4

<table>
<thead>
<tr>
<th>Концентрация x, % (масс.)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура кипения, °C (t_{кип} = t_{нас} + \Delta t_{депр})</td>
<td>55</td>
<td>56</td>
<td>60</td>
<td>67</td>
<td>76</td>
<td>95</td>
</tr>
<tr>
<td>Коэффициент теплопередачи при кипении K; Вт/(м²·К)</td>
<td>2150</td>
<td>1740</td>
<td>1130</td>
<td>740</td>
<td>490</td>
<td>280</td>
</tr>
</tbody>
</table>

Следовательно, по формуле (5.7):

а) \(G_{\text{гр.} n} = \frac{Q}{i'' - i'} = \frac{763220}{2120 \cdot 1000} = 0,36 \text{ кг/с} = 1296 \text{ кг/ч}; \)

б) \(G_{\text{гр.} n} = \frac{568220}{2120 \cdot 1000} = 0,268 \text{ кг/с} = 965 \text{ кг/ч}; \)

в) \(G_{\text{гр.} n} = \frac{532250}{2120 \cdot 1000} = 0,251 \text{ кг/с} = 904 \text{ кг/ч}. \)

Пример 5.6. В вакуум-выпарной аппарат периодического действия, имеющий площадь поверхности нагрева 40 м², заливается 20 т слабого раствора с концентрацией \(x_{нас} = 5 \% \) (масс.). Начальная температура слабого раствора 20 °C. Раствор выпаривается до концентрации \(x_{кон} = 50 \% \) (масс.). Зависимость температуры кипения раствора и коэффициента теплопередачи в аппарате от концентрации раствора дана в табл. 5.4. Абсолютное давление пара в аппарате 0,15 кгс/см², чему соответствует температура насыщения \(t_{нас} = 53,6 \text{ °C}. \)

Коэффициент теплопередачи для периода нагрева слабого раствора до начала кипения \(K_1 = 350 \text{ Вт/(м²·К)}. \) Температура греющего насыщенного водяного пара 120 °C.

Определить расход греющего пара, принявая влажность его 5%, и продолжительность процесса выпаривания.

Решение. Количество выпариваемой воды:

\[W = G_{\text{нач}} \left(1 - \frac{x_{\text{нач}}}{x_{\text{кон}}} \right) = 20000 \left(1 - \frac{5}{50} \right) = 18000 \text{ кг.} \]

Первый период. Нагрев раствора от 20 °C до температуры кипения 55 °C (без учета потерь теплоты в окружающую среду):

\[Q_{\text{гр.} n} = G_{\text{нач}}c_{\text{нач}}(t_{\text{кип}} - t_{\text{нач}}) = 20000 \cdot 4,19 \cdot 0,95 (55 - 20) = 2790000 \text{ кДж}, \]

где 0,95·4,19 — теплоемкость начального (5%) раствора, кДж/(кг·К).

Расход греющего пара за I период с учетом потери теплоты в окружающую среду в 3%:

\[G_{\text{гр.} n} = \frac{Q_{\text{гр.} n} \cdot 1,03}{r_{\text{гр.} n} \cdot 0,95} = \frac{2790000 \cdot 1,03}{2207 \cdot 0,95} = 1370 \text{ кг.} \]

Здесь \(r_{\text{гр.} n} = 2207 \text{ кДж/кг} — удельная теплота парообразования насыщенного водяного пара при 120 °C (табл. LVI); 0,95 — сухость греющего пара.
Продолжительность I периода (нагрев до 55 °С)

\[t_1 = \frac{Q_{т, п}}{K_{т} (\Delta t_{ср})_1 F} = \frac{2790 \times 10^3}{350 \times 82,5 \times 40} = 2415 \text{ с} = 0,67 \text{ ч}, \]

где \((\Delta t_{ср})_1\) — средняя (по времени) разность температур в I периоде

120 —— 120
20 —— 55

\[\Delta t_0 = 100 \quad \Delta t_m = 65 \]

Так как \((\Delta t_0/\Delta t_m) < 2, \text{ то} \]

\((\Delta t_{ср})_1 = (100 + 65)/2 = 82,5 \text{ К} \]

Второй период (выпаривание).

1. Тепловой баланс за весь цикл.

Подводимая теплота: \(Q_{т, п} — \text{ теплота конденсации греющего пара; } G_{нач}c_{нач}t_{нач} — \text{ теплота, вносимая начальным раствором при } 55 \text{ °С.} \)

Отводимая теплота: \(G_{кон}c_{кон}t_{кон} — \text{ теплота, отводимая с упавкенным раствором при } t_{кон} = 95 \text{ °С; } W_{вт. п} — \text{ теплота, вносимая вторичным паром при температуре насыщения } t_{вт. п} = 53,6 \text{ °С.} \)

Тепловой баланс:

\[Q_{т, п} + G_{нач}c_{нач}t_{нач} = G_{кон}c_{кон}t_{кон} + Wt_{0, 15}. \]

Заменяя \(G_{кон}c_{кон}t_{кон} = G_{нач}c_{нач}t_{кон} — Wc_{в}t_{кон}, \) получаем:

\[Q_{т, п} = G_{нач}c_{нач} (t_{кон} - t_{нач}) + W (t_{0, 15} - c_{в}t_{кон}) = \]

\[= 20000 \times 4,19 \times 0,95 (95 - 55) + 18000 (2596 - 4,19 \times 95) = \]

\[= 3184400 + 39563000 = 427 \times 10^6 \text{ кДж,} \]

где \(c_{в, 15} = 2596 \text{ кДж/кг — удельная энталпия вторичного пара при } \rho = \]

\[= 0,13 \text{ кгс/см}^2 \text{ (табл. LVII).} \]

Расход греющего пара за II период с учетом потери теплоты в окружающую среду в 3%:

\[G_{т, п} = \frac{427 \times 10^6 \times 1,03}{2207 \times 0,95} = 21000 \text{ кг.} \]

2. Продолжительность II периода (выпаривания).

В этом периоде концентрация кипящего раствора \(x, \) его температура кипения \(t\) и величина коэффициента теплоотдачи \(K\) непрерывно изменяются — см. табл. 5.4.

Уравнение теплоотдачи для бесконечно малого отрезка времени \(dt\)

\[dQ = KF (T - t) dt \]

содержит только две постоянные величины: температуру конденсации греющего пара \(T = 120 \text{ °С и площадь поверхности теплообмена } F = 40 \text{ м}^2. \]
Из последнего уравнения получаем:

$$F \frac{dt}{dQ} = \frac{dQ}{K (T - t)}.$$

Интегрирование правой части уравнения

$$F \tau_2 = \int_0^{Q_x} \frac{dQ}{K (T - t)}$$

может быть выполнено графически.

Необходимые для графического интегрирования величины получают расчетным путем:

а) $\frac{1}{K (T - t)}$ определяют, используя данные табл. 5.4; например, для $x = 20\%$

$$\frac{1}{K (T - t)} = \frac{1}{1130 \cdot 60} = 14,7 \cdot 10^{-6} \text{ и т. д.}$$

б) ΣQ; например, для $x = 20\%$

$$\Sigma Q = Q_{\text{раб}} + Q_{\text{нач}} = 20000 \cdot 4190 \cdot 0,95 (60 - 55) +$$

$+ 15000 (2596 - 4190 \cdot 60) \cdot 10^3 = 398 \cdot 10^6 + 35175 \cdot 10^3 = 3,56 \cdot 10^{10}$ и т. д.

Полученные расчетным путем данные сведены в табл. 5.5.

Принимаем масштаб для оси абсцисс: 1 мм $= 2 \cdot 10^8$ Дж.

» » » » » » ординат: 1 мм $= 1 \cdot 10^{-6}$ м2/Вт.

Единица подынтегральной величины:

$$1 \text{ мм}^2 = 2 \cdot 10^8 \text{ Дж} \cdot 1 \cdot 10^{-6} \text{ м}^2/\text{Вт} = 200 \text{ м}^2 \cdot \text{с}.$$

Если по данным расчетов, приведенных в табл. 5.5, построить график (рис. 5.2), то, определяя на нем величину заштрихованной площади (например, по правилу трапеций), найдем:

$$\int_{Q=0}^{Q=4,27 \cdot 10^{10}} \frac{dQ}{K (T - t)} = F \tau_2 = \frac{2751}{1} 200 = 550000 \text{ м}^2 \cdot \text{с},$$

откуда

$$\tau_2 = 550000/40 = 13755 \text{ с} = 3,82 \text{ ч.}$$
3. Общая продолжительность процесса

\[\tau = \tau_1 + \tau_{II} = 0,67 + 3,82 \approx 4,5 \text{ ч.} \]

Пример 5.7. Сравнить теоретический расход энергии для двух случаев: а) при откачке вторичного пара вакуум-насосом из выпарного аппарата, работающего под вакуумом 0,7 кгс/см²; при конденсации вторичного пара в конденсаторе и откачке насосом конденсата. Производительность выпарного аппарата 1000 кг/ч испаренной воды.

Решение. а) Примем, что сжатие вторичного пара в вакуум-насосе адиабатическое. В этом случае расходуемая работа определяется по уравнению (2.13). Энтальпии находим по диаграмме I—S для водяного пара (рис. 5.3 и XXV):

\[L = i_2 - i_1 = 2840 \cdot 10^3 - 2620 \cdot 10^3 = 220 \cdot 10^3 \text{ Дж/кг.} \]

Требуемая теоретическая мощность (без учета к. п. д. вакуум-насоса):

\[N_T = 220 \cdot 10^3 \cdot 1000/3600 = 62,7 \cdot 10^3 \text{ Вт } = 62,7 \text{ кВт.} \]

б) При откачке насосом жидкости (конденсата) необхо-
димую теоретическую мощность насоса (без учета его к. п. д.) определим по уравнению:

$$N_T = \frac{V \Delta p}{1000} = \frac{1000 \cdot 68.7 \cdot 10^3}{3600 \cdot 1000 \cdot 10^3} = 0,019 \text{ кВт},$$

где \(V = \frac{1000}{3600 \cdot 1000} = \frac{1}{3600} \) м³/с; \(\Delta p = 0,7 \) кгс/см² = 68,7·10³ Па.

Из данного примера видно, что откачивать вакуум-насосом нецелесообразно, так как это требует большого расхода энергии (в 62,7/0,019 = 3300 раз больше, чем при откачке конденсатора). Поэтому вакуумный пар никогда не откачивают, а всегда конденсируют.

Пример 5.8. Определить, пользуясь правилом Бабо, температурную депрессию \(\Delta t_{\text{депр}} \) для 25% водного раствора хлористого кальция при абсолютном давлении над раствором \(p_1 = 0,36 \) кгс/см².

Решение. 1. Определение температуры кипения раствора при наличии абсолютного давления над раствором \(p_1 = 0,36 \) кгс/см².

По табл. XXXVI находим, что 25% водный раствор хлористого кальция под атмосферным давлением (1,033 кгс/см²) кипит при температуре 107,5 °C. При этой температуре давление насыщенного пара воды (табл. ЛVI) \(p'_w = 1,345 \) кгс/см².

Отношение давлений пара над раствором \(p' \) и воды \(p_w \) при одной и той же температуре 107,5 °C:

\[\frac{(p'_1/p'_w)_{107,5}}{1,033/1,345} = 0,77. \]

Согласно правилу Бабо [уравнение (5.20)], это отношение сохраняет постоянное значение при всех температурах кипения раствора.

Для исходной температуры кипения раствора при \(p_1 = 0,36 \) кгс/см²:

\[\frac{(p_1/p_w)_{107,5}}{0,36/0,77} = 0,77, \]

откуда

\[p_w = 0,36/0,77 = 0,467 \text{ кгс/см²} = 343 \text{ мм рт. ст.}, \]

чemu соответствует по табл. XXXVIII температура кипения воды 79,2 °C. Эту же температуру кипения будет иметь и раствор хлористого кальция (25%) при давлении над раствором 0,36 кгс/см².

2. Определение \(\Delta t_{\text{депр}} \).

Температура кипения воды при давлении 0,36 кгс/см² = 264,6 мм рт. ст. (табл. XXXVIII) равна 72,9 °C.

Температурная депрессия раствора [формула (5.17)]:

\[\Delta t_{\text{депр}} = t_p - t_w = 79,2 - 72,9 = 6,3 \text{ °C} = 6,3 \text{ K}. \]

Учитем поправку Стабникова. По табл. 5.1 при \((p_p/p_w) = 0,77 \) и \(p_p = 0,36 \) кгс/см² = 264,6 мм рт. ст. поправка \(\Delta t = -0,9 \) K. Поправка со знаком минус, потому что темпера раствора хлористого кальция отрицательная (Справочник химика. Т. III, 1965, с. 613). Таким образом,

\[\Delta t_{\text{депр}} = 6,3 - 0,9 = 5,4 \text{ K}. \]
Пример 5.9. Вычислить гидростатическую депрессию $\Delta t_{т, \, \alpha}$ при выпаривании 25% водного раствора хлористого кальция под вакуумом в выпарном аппарате с оптимальным уровнем раствора в трубах. Рабочая высота труб $H_{тр} = 4$ м, абсолютное давление над поверхностью раствора $p_1 = 0,36$ кгс/см2 (см. рис. 5.1).

Решение. При $p_1 = 0,36$ кгс/см2 температура воды $t_1 = 72,7$ °C (табл. LVII).

Оптимальная высота уровня по водомерному стеклу определяется по формуле (5.23):

$$H_{опт} = [0,26 + 0,0014 (\rho_р - \rho_в)] H_{тр}.$$

Так как плотности $\rho_р$ и $\rho_в$ надо брать при температуре кипения раствора, пока неизвестной, приходится ею задаваться. Примем $t_{нив} = 85$ °C. Тогда

$$H_{опт} = [0,26 + 0,0014 (1197 - 969)] \times 4 = 2,3$$ м.

Здесь $\rho_р = 1197$ кг/м3 — по табл. IV; $\rho_в = 969$ кг/м3 — по табл. XXXIX.

Гидростатическое давление $p_{ср}$ в середине высоты труб при $H_{опт}:

$$p_{ср} = p_1 + 0,5 \rho_р g H_{опт} = 0,36 + \frac{0,5 \times 1197 \times 9,81 \times 2,3}{9,81 \times 10^4} = 0,5\text{ кгс/см}^2.$$

Температура кипения воды при 0,5 кгс/см2 (табл. LVII) $t_{ср} = 80,9$ °C.

Гидростатическая депрессия [формула (5.25)]:

$$\Delta t_{т, \, \alpha} = t_{ср} - t_1 = 80,9 - 72,7 = 8,2\text{ °C} = 8,2\text{ К}.$$

Пример 5.10. Вторичный пар из выпарного аппарата поступает в барометрический конденсатор по паропроводу диаметром 150 мм. Скорость пара в паропроводе 50 м/с. Давление в конденсаторе (абс.) $p_0 = 0,3$ кгс/см2. Длина паропровода 14 м. Коэффициент трения $\lambda = 0,03$. На паропроводе имеется три поворота на 90 °C ($\zeta = 0,2$). Определить гидравлическую депрессию $\Delta t_{т, \, с}$.

Решение. По уравнению (5.15):

$$\Delta t_{т, \, с} = t_1 - t_0.$$

При $p_0 = 0,3$ кгс/см2 $t_0 = 68,7$ °C (табл. LVII). Для определения температуры t_1 необходимо найти давление на поверхности выпариваемого раствора p_1, равное $p_0 + \Delta p_{т, \, с}$ (см. рис. 5.1), где

$$\Delta p_{т, \, с} = \frac{\omega^2 \rho_п}{2} \left(1 + \frac{\lambda L}{d} + \Sigma \zeta \right).$$

Сумма коэффициентов местных сопротивлений:

Вход в трубу	. . .	0,5 (табл. XIII)
Выход из трубы	. . .	1,0
Повороты	. . .	$3 \cdot 0,2 = 0,6$
$\Sigma \zeta = 2,1$		
Дополнительное сопротивление сепаратора не учитываем. Следовательно,
\[\Delta \rho_{p.c} = \frac{50^2 \cdot 0.188}{2} \left(1 + \frac{0.03 \cdot 14}{0.15} + 2.1 \right) = 1390 \text{ Па}, \]
где \(\rho_p = 0.188 \text{ кг/м}^3 \) — плотность пара, считая его насыщенным (табл. LVII). Тогда
\[\rho_1 = \rho_p + \Delta \rho_{p.c} = 0.3 + \frac{1390}{9.81 \cdot 10^4} = 0.314 \text{ кгс/см}^2. \]
По табл. LVII при \(\rho_1 = 0.314 \text{ кгс/см}^2 \) \(t_1 = 69.6 \text{ °C} \).
Гидравлическая депрессия:
\[\Delta t_{p.c} = t_1 - t_0 = 69.6 - 68.7 = 0.9 \text{ °C} = 0.9 \text{ K}. \]

Пример 5.11. Определить необходимую поверхность нагрева вакуум-выпарного аппарата (рис. 5.1) и расход греющего насыщенного водяного пара для выпаривания раствора хлористого кальция от 15 до 25%. Производительность по исходному (разбавленному) раствору 20000 кг/ч. Абсолютное давление греющего пара 1,4 кгс/см\(^2\), влажность его 5%. Абсолютное давление в барометрическом конденсаторе \(p_0 = 0.345 \text{ кгс/см}^2 \). Слабый раствор поступает в аппарат при \(t_{нач} = 75 \text{ °C} \).
Коэффициент теплопередачи принять равным 1000 Вт/(м\(^2\)·К), а тепловые потери — в размере 5% от полезно затрачиваемой теплоты.

Решение. 1. Температурный режим.
Температура вторичного пара в сепараторе выпарного аппарата [формула (5.13)]:
\[t_1 = t_0 + \Delta t_{p.c} = 71.7 + 1 = 72.7 \text{ °C} \] (при \(p_1 = 0.36 \text{ кгс/см}^2 \)).
Здесь \(t_0 = 71.7 \text{ °C} \) — температура насыщенного водяного пара при \(p_0 = 0.345 \text{ кгс/см}^2 \) (табл. LVII); \(\Delta t_{p.c} \) — гидравлическая депрессия. Принимаем \(\Delta t_{p.c} = 1 \text{ °C} \).

Конечная температура раствора (температура кипения раствора в сепараторе) [формула (5.16)]:
\[t_{кон} = t_1 + \Delta t_{депр} = 72.7 + 5.4 = 78.1 \text{ °C}, \]
где \(\Delta t_{депр} \) — температурная депрессия. В примере 5.8 определено \(\Delta t_{депр} = 5.4 \text{ °C} \).

Средняя температура кипения раствора в трубах [формула (5.21)]:
\[t_{нмп} = t_{кон} + \Delta t_т.эф = 78.1 + 8.2 = 86.3 \text{ °C}, \]
где \(\Delta t_т.эф \) — гидростатическая депрессия (гидростатический эффект). В примере 5.9 определено \(\Delta t_т.эф = 8.2 \text{ °C} \).

2. Количество выпариваемой воды [формула (5.3)]:
\[W = Q_{нач} \left(1 - \frac{x_{нач}}{x_{кон}} \right) = \frac{20000}{3600} \left(1 - \frac{15}{25} \right) = 2.22 \text{ кг/с.} \]
3. Количество теплоты, передаваемой от греющего пара к кипящему раствору [формула (5.5)]:

\[Q_г, р = Q_наш, ч, ч (t_{кон} - t_{нач}) + W (t_{вт. п} - c_{в} t_{кон}) + Q_{пот} \]

Здесь \(c_{наш} \) — теплоемкость разбавленного раствора [формула (5.10)]:

\[c_{наш} = \frac{4190 (1 - x_{наш})}{4190 (1 - 0,15)} = 3560 \text{ Дж/(кг·К)}; \]

\(i_{вт. п} = 2496 \text{ кДж/кг} \) — удельная энталпия пара при температуре \(t_1 = 72,7 \degree С \).

Следовательно, с учетом тепловых потерь в 5%:

\[Q_г, р = 1,05 \left[\frac{20000}{3600} 3560 (78,1 - 75) + 2,22 (2496 \cdot 10^3 - 4190 \cdot 78,1) \right] = \]

\[= 5120 \cdot 10^3 \text{ Вт}. \]

4. Расход греющего пара [формула (5.7)]:

\[G_г, р = \frac{Q_г, р}{W} = \frac{5120 \cdot 10^3}{2237 \cdot 10^3 \cdot 0,95} = 2,4 \text{ кг/с}, \]

где \(r_г, р = 2237 \cdot 10^3 \text{ Дж/кг} \) — удельная темпопа парообразования греющего пара при \(\rho_{абс} = 1,4 \text{ кгс/см}^3 \) (табл. LVII).

Удельный расход греющего пара [формула (5.8)]:

\[d = \frac{G_г, р}{W} = \frac{2,4}{2,22} = 1,08 \text{ кг греющего пара на кг испаренной воды}. \]

5. Общая [формула (5.28)] и полезная [формула (5.29)] разность температур:

\[\Delta t_{общ} = t_г, р - t_0 = 108,7 - 71,7 = 37 \degree С = 37 \text{ К}; \]

\[\Delta t_{пол} = t_г, п - t_{кип} = 108,7 - 86,3 = 22,4 \degree С = 22,4 \text{ К}, \]

где \(t_г, п = 108,7 \degree С \) при давлении насыщения \(\rho_{абс} = 1,4 \text{ кгс/см}^3 \) (табл. LVII).

Проверка:

\[\sum \Delta t_{пот} = \Delta t_г, ч + \Delta t_{депр} + \Delta t_г, \и = 1 + 5,4 + 8,2 = 14,6 \degree С; \]

\[\Delta t_{пол} = \Delta t_{общ} - \sum \Delta t_{пот} = 37 - 14,6 = 22,4 \degree С = 22,4 \text{ К}. \]

6. Площадь поверхности нагрева выпарного аппарата [формула (5.30)]:

\[F = \frac{Q}{K \Delta t_{пол}} = \frac{5120 \cdot 10^3}{1000 \cdot 22,4} = 228,5 \text{ м}^2. \]

Пример 5.12. Сколько кристаллов выделятся в кристаллизаторе при охлаждении 10 т насыщенного водного раствора поташа от 80 до 35 \degree С без испарения воды? Поташ кристаллизуется с двумя молекулами воды.
Решение. Применим формулу (5.34). По кривой растворимости поташа (рис. XX) находим концентрацию его насыщенных водных растворов:

При 80 °C ... 10 \(\frac{\text{моль К}_2\text{CO}_3}{1000 \text{ г воды}} \)

> 35 °C ... 8,15

Мольная масса К₂СО₃ равняется 138 кг/кмоль. Следовательно,

\[x_{80} = \frac{10 \cdot 138}{1000 + 10 \cdot 138} = 0,58 \text{ кг/кг}; \quad x_{35} = \frac{8,15 \cdot 138}{1000 + 8,15 \cdot 138} = 0,53 \text{ кг/кг}; \]

\[M/M_{кр} = 138/174 = 0,793, \]

gде 174 — мольная масса К₂СО₃·2Н₂О, кг/моль.

Подставляя эти значения в формулу (5.34), находим:

\[G_{кр} = \frac{10000 (0,58 - 0,53)}{0,793 - 0,53} = 1900 \text{ кг.} \]

Пример 5.13. Определить количество теплоты, которое необходимо отводить в кристаллизаторе непрерывного действия для охлаждения от 90 до 40 °C 5000 кг/ч водного раствора NaNO₃, содержащего при 90 °C 16 моль NaNO₃ на 1000 г воды. Учесть, что в кристаллизаторе при охлаждении раствора одновременно испаряется вода в количестве 3% от исходного количества раствора.

Решение. По кривой растворимости NaNO₃ (рис. XX) находим, что концентрация насыщенного раствора NaNO₃ при 40 °C составляет 12,3 моль на 1000 г воды.

При охлаждении раствора до 40 °C будет выделяться \(G_{кр} \) (в кг/с) кристаллов (формула (5.33)):

\[G_{кр} = \frac{G_1 (x_2 - x_1) - W x_2}{x_2 - x_{кр}}. \]

Пересчитываем концентрации в массовые доли:

\[x_1 = \frac{16 \cdot 85}{1000 + 16 \cdot 85} = 0,576 \text{ кг/кг}; \quad x_2 = \frac{12,3 \cdot 85}{1000 + 12,3 \cdot 85} = 0,511 \text{ кг/кг}. \]

Здесь 85 — мольная масса NaNO₃, кг/кмоль.

Величина \(x_{кр} = 1 \), так как NaNO₃ кристаллизуется в безводной форме. Имеем:

\[G_{кр} = \frac{5000 (0,511 - 0,576) - 0,03 \cdot 5000 \cdot 0,511}{3600 (0,511 - 1)} = 0,229 \text{ кг/с.} \]

Количество теплоты, которое надо отводить, подсчитаем по формуле:

\[Q = G_1 c (t_1 - t_2) + G_{кр}q - Wr, \]

где \(W \) — расход испаряющейся воды, кг/с; \(r \) — удельная теплота парообразования воды, Дж/кг.

Удельную теплоту кристаллизации NaNO₃ \(q \) примем равной 21 000·10³ Дж/кмоль (табл. XXXVII).
Удельную теплоемкость раствора c определяем по уравнению (5.11), для чего предварительно находим удельную теплоемкость твердой соли c_1 по уравнению (5.12):

$$c_1 = (26,0 + 26,0 + 3\cdot16,8)/85 = 1,2 \text{ кДж/(кг\cdotК).}$$

Тогда при $x = 57,6\%$:

$$c = 4190\cdot0,424 + 1200\cdot0,576 = 2470 \text{ Дж/(кг\cdotК).}$$

Количество отводимой теплоты:

$$Q = \frac{5000}{3600} \cdot 2,47 \cdot 10^3 (90 - 40) + 0,229 \frac{21 000 \cdot 10^3}{85} - \frac{0,03 \cdot 5000 \cdot 2345 \cdot 10^3}{3600} =$$

$$= 130 000 \text{ Вт},$$

где $2345 \cdot 10^3 \text{ Дж/кг}$ — удельная теплота парообразования воды при средней температуре, равной $\frac{90 + 40}{2} = 65 \text{°C}$ (табл. LVI).

Пример 5.14. В условиях предыдущего примера определить требуемую площадь поверхности охлаждения и расход воды в кристаллизаторе. Коэффициент теплопередачи принять равным 100 Вт/(м²\cdotК). Вода поступает в охлаждающую рубашку при 15 °C и выходит при 20 °C. Охлаждение противоточное.

Реш ен и е. Площадь поверхности охлаждения определяем по формуле:

$$F = \frac{Q}{K \Delta t_{cp}}.$$

В условиях задачи температурная схема:

$$90 \rightarrow 40$$

$$20 \leftarrow 15,$$

откуда

$$\Delta t_{cp} = \frac{(90 - 20) - (40 - 15)}{2,3 \lg \frac{90 - 20}{40 - 15}} = 36,2 \text{ °C} = 36,2 \text{ К.}$$

Следовательно,

$$F = \frac{130 000}{100 \cdot 36,2} = 36 \text{ м².}$$

Расход воды:

$$G_v = \frac{130 000}{4,19 \cdot 10^3 (20 - 15)} = 6,33 \text{ кг/с} = 22 400 \text{ кг/ч.}$$

Контрольные задачи

5.1. Рассчитать удельный расход сухого насыщенного водяного пара при выпаривании воды под атмосферным давлением и под вакуумом (разрежением) 0,8 кгс/см². Аbsolutное давление
гревущего водяного пара в обоих случаях $p_{абс} = 2$ кгс/см2. Вода поступает на выпарку: а) при температуре 15°С; б) подогретой до температуры кипения.

5.2. Производительность выпарного аппарата по исходному раствору 2650 кг/ч. Концентрация исходного раствора 50 г/л воды. Концентрация выпаренного раствора 295 г на 1 л раствора. Плотность выпаренного раствора 1189 кг/м3. Найти производительность аппарата по выпаренному раствору.

5.3. Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплоотдачи K для чистых труб равен 1390 Вт/(м2·К). Коэффициент теплопроводности накипи $\lambda = 1,16$ Вт/(м·К).

5.4. Производительность выпарного аппарата, обогреваемого насыщенным водяным паром с избыточным давлением $p_{абс} = 1,5$ кгс/см2, необходимо повысить до 1500 кг/ч (по разбавленному раствору). Выпаривание производится под атмосферным давлением, температура кипения раствора в аппарате 105°С, раствор подается на выпарку подогретым до температуры кипения. Определить, какого давления греющий пар надо подавать в аппарат. Тепловые потери не учитывать, коэффициент теплоотдачи считать неизменным, так же как и конечную концентрацию раствора.

5.5. Сколько надо выпарить воды из 1500 кг раствора хлористого калия, чтобы изменить его концентрацию от 8 до 30% (масс.)?

5.6. Какое количество воды надо выпарить из 1 м3 серной кислоты с плотностью 1560 кг/м3 [65,2% (масс.)], чтобы получить кислоту с плотностью 1840 кг/м3 [98,7% (масс.)]. Какой объем займет полученная концентрированная кислота?

5.7. В выпарной аппарат поступает 1,4 т/ч 9% раствора, который упаривается под атмосферным давлением до конечной концентрации 32% (масс.). Разбавленный раствор поступает на выпарку с температурой 18°С. Упаратый раствор выводится из аппарата при 105°С. Удельная теплоемкость разбавленного раствора 3800 Дж/(кг·К). Расход греющего насыщенного водяного пара с избыточным давлением $p_{абс} = 2$ кгс/см2 составляет 1450 кг/ч. Влажность греющего пара 4,5%. Определить потерю теплоты в окружающую среду.

5.8. Определить удельную теплоемкость холодильной смеси, состоящей из 2 л воды, 8 кг льда и 5 кг поваренной соли.

5.9. Раствор состоит из 0,7 м3 серной кислоты (100%), 400 кг медного купороса (CuSO$_4$·5H$_2$O) и 1,4 м3 воды. Определить: а) удельную теплоемкость раствора; б) количество сухого насыщенного водяного пара с абсолютным давлением $p_{абс} = 2$ кгс/см2, необходимое для нагревания раствора от 12 до 58°С. Потери теплоты аппаратом за время нагревания раствора составляют 25 100 кДж. Удельную теплоемкость серной кислоты и медного купороса определить по формуле (5.12).
5.10. В выпарном аппарате подвергается упариванию под атмосферным давлением 2,69 т/ч, а 7% водного раствора. Начальная температура раствора 95 °C, конечная 103 °C. Средняя температура кипения в аппарате 105 °C. Избыточное давление греющего насыщенного водяного пара $\rho_{нас} = 2$ кгс/см². Площадь поверхности теплообмена в аппарате 52 м², коэффициент теплопередачи 1060 Вт/(м²·К). Тепловые потери аппарата в окружающую среду составляют 110 000 Вт.

Определить: а) конечную концентрацию раствора; б) расход греющего пара при влажности его 5%.

5.11. В выпарном аппарате с площадью поверхности теплообмена 30 м², работающем под атмосферным давлением, непрерывно концентрируется раствор хлористого калия от 9,5 до 26,6% (масс.). Начальная температура раствора 18 °C, избыточное давление греющего насыщенного водяного пара $\rho_{нас} = 2$ кгс/см². Производительность аппарата вначале была 900 кг/ч (разбавленного раствора), но через некоторое время снизилась до 500 кг/ч из-за образования накипи. Пренебрегая тепловыми потерями аппарата в окружающую среду, определить толщину образовавшегося слоя накипи, приняв для накипи $\lambda = 1,4$ Вт/(м·К). Гидростатическим эффектом пренебречь.

5.12. В условиях примера 5.7 определить расход энергии при откачке вторичного пара вакуум-насосом и при откачке конденсата насосом, если вакуум в аппарате равен 0,95 кгс/см².

5.13. В непрерывнодействующий однокорпусной выпарной аппарат подается 12,5% раствор сернокислого аммония, который упаривается под атмосферным давлением до 30,6% (масс.). Концентрированный раствор выходит из аппарата в количестве 800 кг/ч. Разбавленный раствор, поступающий на выпарку, подогревается в теплообменнике вторичным паром от 24 до 80 °C. Остальное количество вторичного пара идет на обогрев других производственных аппаратов (рис. 5.4). Тепловые потери выпарного аппарата составляют 6% от полезно используемого количества теплоты, т. е. от суммы $Q_{нагр} + Q_{исп}$. Принять $\Delta t_{в,с} = 1$ К.
Определить: а) расход греющего насыщенного водяного пара (с избыточным давлением \(p_{\text{изб}} = 2 \text{ кгс}/\text{см}^2 \)), принимая его влажность 5%; б) количество вторичного пара, отбираемого на обогрев производственных аппаратов; в) требуемую площадь поверхности теплообмена (подогревателя), принимая величину коэффициента теплопередачи в нем \(K = 700 \text{ Вт}/(\text{м}^2 \cdot \text{К}) \).

5.14. Дифенил \((C_9H_8)_2\) кипит под атмосферным давлением при 255 °С. Вычислить удельную теплоту испарения, а также удельную теплоемкость жидкого дифенила.

5.15. 48% водный раствор едкого натра кипит под давлением 760 мм рт. ст. при 140 °С, а под абсолютным давлением \(p_{\text{абс}} = 0,2 \text{ кгс}/\text{см}^2 \) — при 99 °С. Определить удельную теплоту испарения воды из этого раствора при давлении 0,8 кгс/см², а также удельную теплоемкость раствора.

5.16. Определить температуру кипения бромбензола под абсолютным давлением \(p_{\text{абс}} = 0,1 \text{ кгс}/\text{см}^2 \) по диаграмме линейности и по номограмме XIV. Определить также удельную теплоту испарения бромбензола при этом давлении.

5.17. Определить давление насыщенного пара бензальдегида при 120 °С, пользуясь диаграммой линейности.

5.18. Воспользовавшись правилом Бабо и табл XXXVI, определить температуру кипения 42,5% водного раствора азотнокислого аммония при абсолютном давлении \(p_{\text{абс}} = 0,4 \text{ кгс}/\text{см}^2 \).

5.19. В вакуум-выпарной аппарат (рис. 5.1) поступает 10 т/ч 8% водного раствора азотнокислого аммония при температуре 74 °С. Концентрация упаренного раствора 42,5%. Абсолютное давление в среднем слое кипящего раствора \(p_{\text{ср}} = 0,4 \text{ кгс}/\text{см}^2 \). Избыточное давление греющего насыщенного водяного пара \(p_{\text{изб}} = 1 \text{ кгс}/\text{см}^2 \). Принять \(\Delta t_{\text{кр. ф}} = 6,1 \text{ К} \). Коэффициент теплопередачи 950 Вт/(м²·К). Потери теплоты составляют 3% от суммы \(Q_{\text{нагр}} + Q_{\text{исп}} \). Определить площадь поверхности нагрева выпарного аппарата.

5.20. По данным предыдущей задачи определить абсолютное давление в барометрическом конденсаторе, если гидравлическая депрессия \(\Delta t_{\text{ср}} = 1 \text{ К} \), а гидростатическая депрессия \(\Delta t_{\text{кр. ф}} = 6,1 \text{ К} \).

5.21. 2200 кг/ч разбавленного водного раствора упариваются от 7 до 24% (масс.) под атмосферным давлением. Разбавленный раствор подается в выпарной аппарат при 19 °С. Температурная депрессия 3,5 К, гидростатическая 3,0 К, гидравлическая 1,0 К. Избыточное давление греющего насыщенного водяного пара \(p_{\text{изб}} = 2 \text{ кгс}/\text{см}^2 \). Коэффициент теплопередачи 1100 Вт/(м²·К). Определить требуемую поверхность теплообмена в аппарате и расход греющего пара, принимая потери теплоты в окружающую среду в размере 5% от суммы \(Q_{\text{нагр}} + Q_{\text{исп}} \) и влажность греющего пара 5%.

5.22. Как изменится производительность выпарного аппарата, работающего под атмосферным давлением, при обогреве насыщенно-
ным водяным паром с избыточным давлением $p_{нар} = 1,2$ кгс/см2, если в аппарате создать вакуум 0,7 кгс/см2, а обогрев перевести на пар с избыточным давлением 0,6 кгс/см2? Гидростатический эффект для среднего слоя $\Delta p_{г,эфф} = 9,81 \cdot 10^3$ Па; в обоих случаях считать температурную депрессию 4 К; раствор поступает на выпарку подогретым до температуры кипения в аппарате. Коэффициент теплопередачи считать неневым. Тепловыми потерями пренебречь.

5.23. В выпарном аппарате концентрируется водный раствор от 14 до 30% (масс.). Греющий насыщенный водяной пар имеет давление (абсолютное) 0,9 кгс/см2. Полезная разность температур 11,2 К. Гидростатическая депрессия $\Delta t_{г,эфф} = 3$ К. Определить часовой расход разбавленного раствора, поступающего в аппарат, если площадь поверхности теплообмена в нем 40 м2, а коэффициент теплоотдачи составляет 700 Вт/(м2.К). Разбавленный раствор поступает в аппарат подогретым до температуры кипения. Среднее давление в аппарате (абсолютное) 0,4 кгс/см2. Тепловыми потерями пренебречь.

5.24. Определить расход греющего насыщенного водяного пара (абсолютное давление 2 кгс/см2) и площадь поверхности нагрева выпарного аппарата, в котором производится упаривание 1,6 т/ч раствора от 10 до 40 % (масс.). Среднее давление в аппарате (абсолютное) 1 кгс/см2. Разбавленный раствор поступает на выпарку при 30°C. Полезная разность температур 12 К. Гидростатическая депрессия $\Delta t_{г,эфф} = 4$ К. Коэффициент теплопередачи 900 Вт/(м2.К). Тепловые потери принять равным 5 % от полезно используемого количества теплоты $Q_{нагр} + Q_{бон}$.

5.25. Растор потока упаривается от 8 до 36% (масс.) под вакуумом 0,2 кгс/см2. Начальное количество раствора 1500 кг/ч. Определить количество воды, подаваемой: а) в барометрический конденсатор; б) в поверхностный конденсатор, принимая температуру отходящего конденсата на 5°C ниже температуры конденсации. Вода в обоих случаях нагревается от 15 до 35°C.

5.26. В выпарном аппарате происходит концентрирование водного раствора от 12 до 38% (масс.) под вакуумом (в конденсаторе) 600 мм рт. ст. (см. рис. 5.1). Расход охлаждающей воды в барометрическом конденсаторе 40 м3/ч, вода нагревается от 14 до 30°C. Определить часовую производительность выпарного аппарата по разбавленному и концентрированному раствору. Температурной депрессией пренебречь. Атмосферное давление 747 мм рт. ст.

5.27. Вакуум в выпарном аппарате над раствором 0,7 кгс/см2. Расход разбавленного водного раствора, поступающего на выпарку, 2,4 т/ч, его концентрация 12% (масс.). Конечная концентрация 32% (масс.). В барометрический конденсатор подается 38,6 м3/ч холодной воды с температурой 12°C. Определить температуру воды на выходе из барометрического конденсатора.
Гидравлическим сопротивлением паропровода и температурной депрессией пренебречь.

5.28. В трехкорпусной выпарной батарее, работающей по прямоточной схеме (см. рис. 5.7), подвергается упаривание 1300 кг/ч водного раствора с начальной концентрацией 9% (масс.) до конечной концентрации 43% (масс.). Вычислить концентрации раствора по корпусам, если известно, что в каждом следующем корпусе выпаривается воды на 10% больше, чем в предыдущем.

5.29. Какое предельное число корпусов может быть в много-корпусной выпарной установке, если избыточное давление греющего насыщенного водяного пара в первом корпусе $p_{аб} = 2.3$ кгс/см², остаточное давление в конденсаторе 147 мм рт. ст. Сумму температурных потерь во всех корпусах принять равной $\sum \Delta t_{пот} = 41$ К. Допустимая полезная разность температур в каждом корпусе должна быть не меньше 8 К.

5.30. В двухкорпусной установке, работающей по прямоточной схеме, упаривается 1000 кг/ч водного раствора азотнокислотного натрия. Начальная концентрация 10% (масс.), конечная после первого корпуса 15% (масс.), конечная после второго 30% (масс.). Конечная температура раствора после первого корпуса 103 °С, после второго 90 °С. Определить, сколько воды испаряется во втором корпусе за счет самоиспарения и какой это составляет процент от общего количества воды, испаряющейся во втором корпусе.

5.31. В двухкорпусную выпарную установку,рабатывающую по прямоточной схеме, поступает 1000 кг/ч водного раствора хлористого магния. Начальная концентрация раствора 8% (масс.). Концентрация раствора после первого корпуса 12% (масс.). Абсолютное давление над раствором в первом корпусе 1 кгс/см², во втором корпусе 0.3 кгс/см². Конечная температура раствора после первого корпуса 104 °С, после второго 77 °С. Определить, до какой конечной концентрации упаривается раствор во втором корпусе, если обогрев второго корпуса осуществляется за счет вторичного пара первого корпуса (отбора экстра-пара нет). Темповыми потерями пренебречь.

5.32. Во второй корпус двухкорпусной установки, работающей по прямоточной схеме без отбора экстра-пара, поступает из первого корпуса 500 кг/ч 16% водного раствора углекислого натрия с температурой 103 °С. Абсолютное давление над кипящим раствором в первом корпусе 1 кгс/см², во втором корпусе 0,6 кгс/см². Концентрированный раствор, выходящий из II корпуса с температурой 89 °С и концентрацией 28% (масс.), используется в противоточном теплообменнике для подогрева разбавленного раствора, поступающего на выпарку. Пренебрегая темповыми потерями и депрессией, определить: а) концентрацию разбавленного раствора, подаваемого на выпарку; б) на сколько градусов будет подогрет разбавленный раствор в теплообменнике, если концентрированный раствор выходит из теплообменника с тем-
температуру 32°С. Удельная теплоемкость концентрированного раствора 3,35·10³ Дж/(кг·К).

5.33. В двухкорпусную выпарную установку, работющую по прямоточной схеме, поступает 1000 кг/ч водного раствора хлористого кальция. Начальная концентрация раствора 8 % (масс.), конечная 30 % (масс.). В первом корпусе абсолютное давление вторичного пара 1 кгс/см², во втором 0,3 кгс/см². Конечная температура раствора после первого корпуса 104°С, после второго 78°С. В первом корпусе образуется 400 кг/ч вторичного пара. Часть этого пара (рис. 5.5) отбирается на сторону (экстра-пар). Пренебрегая тепловыми потерями, определить, какое количество экстра-пара отбирается.

5.34. В однокорпусный выпарной аппарат (рис. 5.6), работающий с тепловым насосом (сжатие вторичного пара в турбокомпрессоре), поступает разбавленный водный раствор с концентрацией 5 % (масс.). Из аппарата выходит 550 кг/ч раствора с концентрацией 15 % (масс.). Температурная депрессия 2,5 К. Гидростатическим эффектом и гидравлическим сопротивлением пренебречь. Турбокомпрессор сжимает вторичный пар от 1 до 2 кгс/см². Тепловые потери составляют 5 % от (Q_нагр + Q_исп). Начальная температура разбавленного раствора 70°С. Определить: а) сколько приходится добавлять греющего насыщенного водяного пара (пар сухой насыщенный, избыточное давление p_нас = 2 кгс/см²); б) какую мощность потребляет турбокомпрессор, если общий к. п. д. его равен 0,72.

5.35. До какой температуры надо охладить горячий 40 % водный раствор карбоната кальция, чтобы после охлаждения и выпадения кристаллов концентрация маточного раствора стала вдвое меньше исходной?

5.36. Сколько килограммов кристаллов выделятся при охлаждении от 30 до 15°С 4,2 т раствора соли, содержащего 2,5 моль
соды на 1000 г воды? Сода кристаллизуется с 10 молекулами воды.

5.37. Определить необходимую площадь поверхности охлаждения противоточного кристаллизатора, в котором охлаждается от 85 до 35 °C 10 000 кг/ч раствора, содержащего 7,0 моль сернокислого аммония на 1000 г воды. При охлаждении испаряется вода (5% от массы начального раствора). Коэффициент тепло-передачи 127 Вт/(м²·К). Охлаждающая вода нагревается от 13 до 24 °C. Определить также ее расход.

ПРИМЕР РАСЧЕТА ТРЕХКОРПУСНОЙ ВЫПАРНОЙ УСТАНОВКИ

Рассчитать трехкорпусную прямоточную выпарную установку с естественной циркуляцией раствора (рис. 5.7) для концентрирования 5 т/ч 12 % водного раствора азотнокислого натрия. Конечная концентрация раствора 40 % (масс.). Рассор поступает на выпарку подогретым до температуры кипения в выпарном аппарате. Абсолютное давление греющего насыщенного водяного пара 4 кгс/см². Высота греющих труб 4 м. Вакуум (разрежение) в барометрическом конденсаторе 0,8 кгс/см².

Решение*. 1. Количество воды, выпариваемой в трех корпусах установки:

\[W = \frac{5000}{3600} \left(1 - \frac{12}{40}\right) = 3500 \text{ кг/ч} = 0,97 \text{ кг/с.} \]

2. Распределение нагрузки по корпусам.

Сделаем это распределение на основании практических данных, принимая следующее соотношение массовых количеств выпариваемой воды по корпусам: \(I : II : III = 1,0 : 1,1 : 1,2. \)

* В литературе описано несколько методов расчета многоскорпных выпарных установок. Все они включают те или иные допущения, снижающие точность окончательного результата. Одни из подобных упрощенных методов расчета использован в настоящем примере.

Рис. 5.7. Схема трехкорпусной выпарной установки.

276
Следовательно, количество выпариваемой воды:

В I корпусе \[W_1 = \frac{3500 \cdot 1}{3600 (1 + 1,1 + 1,2)} = 0,295 \text{ кг/с} \]

Во II \[W_{II} = \frac{3500 \cdot 1,1}{3600 \cdot 3,3} = 0,324 \text{ кг/с} \]

В III \[W_{III} = \frac{3500 \cdot 1,2}{3600 \cdot 3,3} = 0,351 \text{ кг/с} \]

Итого \[W = 0,97 \text{ кг/с} \]

3. Расчет концентраций раствора по корпусам.
Начальная концентрация раствора \(x_{\text{нач}} = 12 \% \). Из I корпуса во II переходит раствор:

\[G_I = G_{\text{нач}} - W_I = \frac{5000}{3600} - 0,295 = 1,39 - 0,295 = 1,09 \text{ кг/с}. \]

Концентрация раствора, конечная для I корпуса и начальная для II, будет равна:

\[x_I = \frac{G_{\text{нач}} x_{\text{нач}}}{G_{\text{нач}} - W_I} = \frac{1,39 \cdot 1,2}{1,39 - 0,295} = 15,2 \%. \]

Из II корпуса в III переходит раствор \[G_2 = G_{\text{нач}} - W_I - W_{II} = 1,39 - 0,295 - 0,324 = 0,77 \text{ кг/с} \]
с концентрацией

\[x_2 = \frac{1,39 \cdot 1,2}{0,77} = 21,6 \%. \]

Из III корпуса выходят раствор

\[G_{\text{кон}} = G_{\text{нач}} - W = 1,39 - 0,97 = 0,42 \text{ кг/с} \]
с концентрацией

\[x_{\text{кон}} = \frac{1,39 \cdot 1,2}{0,42} = 40 \%. \]
что соответствует заданию.

4. Распределение перепада давлений по корпусам.
Разность между давлением греечного пара (в I корпусе) и давлением пара в барометрическом конденсаторе:

\[\Delta p = 4,0 - 0,2 = 3,8 \text{ кгс/см}^2. \]

Предварительно распределим этот перепад давлений между корпусами поровну, т. е. на каждый корпус примем:

\[\Delta p = 3,8/3 = 1,27 \text{ кгс/см}^2. \]

Тогда абсолютные давления по корпусам будут:

В III корпусе \(p_3 = 0,2 \text{ кгс/см}^2 \) (задано)

Во II \[p_2 = 0,2 + 1,27 = 1,47 \text{ кгс/см}^2 \]

В I \[p_1 = 1,47 + 1,27 = 2,74 \text{ кгс/см}^2 \]

Давление греечного пара:

\[p = 2,74 + 1,27 \approx 4 \text{ кгс/см}^2. \]

277
По паровым таблицам находим температуры насыщенных паров воды и удельные теплоты парообразования для принятых давлений в корпусах:

<table>
<thead>
<tr>
<th>Корпус</th>
<th>Температура насыщенного пара, °С</th>
<th>Удельная теплота парообразования, кДж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>129,4</td>
<td>2179</td>
</tr>
<tr>
<td>II</td>
<td>110,1</td>
<td>2234</td>
</tr>
<tr>
<td>III</td>
<td>59,7</td>
<td>2357</td>
</tr>
<tr>
<td>Греющий пар (из котельной)</td>
<td>143</td>
<td>2441</td>
</tr>
</tbody>
</table>

Эти температуры и будут температурами конденсации вторичных паров по корпусам.

5. Расчет температурных потерь по корпусам.

От депрессии

В справочных таблицах (например, табл. XXXVI) находим температуры кипения растворов при атмосферном давлении:

<table>
<thead>
<tr>
<th>Корпус</th>
<th>Концентрация NaNO₃, %</th>
<th>Температура кипения, °С</th>
<th>Депрессия, °С или K</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15,2</td>
<td>102</td>
<td>2,0</td>
</tr>
<tr>
<td>II</td>
<td>21,6</td>
<td>103</td>
<td>3,0</td>
</tr>
<tr>
<td>III</td>
<td>40,0</td>
<td>107</td>
<td>7,0</td>
</tr>
</tbody>
</table>

Для упрощения расчета не уточняем температурную депрессию (в связи с отличием давления в корпусах от атмосферного).

Следовательно, по трем корпусам:

\[\Delta t_{\text{депр}} = 2 + 3 + 7 = 12^\circ \text{C} = 12 \text{ K}. \]

От гидростатического эффекта

По справочнику * плотность раствора NaNO₃ при 20 °C:

<table>
<thead>
<tr>
<th>Концентрация NaNO₃, %</th>
<th>Плотность, кг/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,2</td>
<td>1098</td>
</tr>
<tr>
<td>21,6</td>
<td>1156</td>
</tr>
<tr>
<td>40,0</td>
<td>1317</td>
</tr>
</tbody>
</table>

Эти значения плотностей примем (с небольшим запасом) и для температур кипения по корпусам.

Расчет ведем для случая кипения раствора в трубках при оптимальном уровне [формула (5.23)].

1 корпус. \(H_{\text{опт}} = [0,26 + 0,0014 \ (\rho_г - \rho_в)] \) \(H =
\[= [0,26 + 0,0014 \ (1098 - 1000)] \ 4 = 1,589 \text{ м}; \]

\(\rho_г = \rho_1 + 0,5\rho_р g H_{\text{опт}} = 2,74 + \frac{0,5 \cdot 1098 \cdot 9,81 \cdot 1,589}{9,81 \cdot 10^4} = 2,827 \text{ кгс/см}^2. \)

При \(\rho_1 = 2,74 \text{ кгс/см}^2; \) \(t_{\text{нлп}} = 129,4^\circ \text{C}; \) при \(\rho_в = 2,827 \text{ кгс/см}^2; \) \(t_{\text{нвп}} = 130,6^\circ \text{C}. \)

\[\Delta t_{\text{г. c.}} = 130,6 - 129,4 = 1,2^\circ \text{C} = 1,2 \text{ K}. \]

II корпус. \(H_{\text{опт}} = [0,26 + 0,0014 \ (1156 - 1000)] \ 4 = 1,91 \text{ м}; \)

\(\rho_г = 1,47 + \frac{0,5 \cdot 1156 \cdot 9,81 \cdot 1,91}{9,81 \cdot 10^4} = 1,58 \text{ кгс/см}^2. \)

При $p_1 = 1,47$ кгс/см2 $t_{нпп} = 110,1^\circ$C; при $p_{ср} = 1,58$ кгс/см2 $t_{нпп} = 112,3^\circ$C.

$\Delta t_{г. оп} = 112,3 - 110,1 = 2,2^\circ$C = 2,2 K.

III корпус. $N_{опт} = [0,26 + 0,0014 (1317 - 1000)] 14 = 2,81$ м;

$\rho_{ср} = 0,2 + \frac{0,5 \cdot 1317 \cdot 9,81 \cdot 2,81}{9,81 \cdot 10^4} = 0,385$ кгс/см2.

При $p_{ср} = 0,385$ кгс/см2 $t_{нпп} = 74,39^\circ$C; при $p_1 = 0,2$ кгс/см2 $t_{нпп} = 59,7^\circ$C.

$\Delta t_{г. оп} = 74,39 - 59,7 = 14,69^\circ$C = 14,69 K.

Всего $\sum \Delta t_{г. оп} = 1,2 + 2,2 + 14,69 = 18,09^\circ$C = 18,09 K.

От гидравлических сопротивлений
Потерю разности температур на каждом интервале между корпусами принимаем в 1 K. Интервалов всего три (1—II, II—III, III — конденсатор), следовательно,

$\Delta t_{г. е} = 1 \cdot 3 = 3$ K.

Сумма всех температурных потерь для установки в целом:

$\sum \Delta t_{пот} = 12 + 18,09 + 3 = 33,09$ K.

6. Полезная разность температур.
Общая разность температур $143 - 59,7 = 83,3^\circ$C = 83,3 K; следовательно, полезная разность температур:

$\Delta t_{пол} = 83,3 - 33,09 = 50,21$ K.

7. Определение температур кипения в корпусах:
В III корпусе $t_3 = 59,7 + 1 + 7 + 14,69 = 82,4^\circ$C
Во II $t_2 = 110,1 + 1 + 3 + 2,2 = 116,3^\circ$C
В I $t_1 = 129,4 + 1 + 2 + 1,2 = 133,6^\circ$C

8. Расчет коэффициентов теплопередачи по корпусам.
По найденным температурам кипения и концентрациям растворов в корпусах подбираем в справочниках расчетные константы — физические характеристики растворов (плотность, теплопроводность, теплоемкость, вязкость). Далее задаемся диаметром труб и их длиной (в зависимости от типа выпарного аппарата).
По этим данным рассчитываем коэффициенты теплоотдачи для конденсатора пара и кипящего раствора и коэффициенты теплопередачи (примеры таких расчетов даны в гл. 4). При этом следует учесть слой накипи порядка 0,5 мм.
На основании таких предварительных расчетов примем:

Для I корпуса $K_1 = 1700$ Вт/(м2·К)
» II $K_2 = 990$
» III $K_3 = 580$

Ориентировочное соотношение коэффициентов теплопередачи по корпусам при выпаривании водных растворов солей $K_1 : K_2 : K_3 = 1 : 0,58 : 0,34$.

9. Составление тепловых балансов по корпусам.
Для упрощения приближенного расчета составляем тепловые балансы без учета тепловых потерь и принимаем, что из каждого корпуса в последующий раствор поступает при средней температуре кипения.
По условию раствор подается на выпарку подогретым до температуры кипения в I корпусе,
Тогда расход теплоты в I корпусе:

\[
Q_I = W_1 r_1 = 0,295 \cdot 2179 \cdot 10^3 = 643 \, 000 \text{ Вт.}
\]

Раствор приходит во II корпус перегретым, следовательно, теплота отрицательно (теплота самонсварения) и расход теплоты во II корпусе

\[
Q_{II} = W_{II} r_2 - C_1 c_1 (t_1 - t_2) = 0,324 \cdot 2234 \cdot 10^3 - \\
- 1,09 \cdot 4190 \cdot 0,848 (133,6 - 116,3) = 657 \, 000 \text{ Вт.}
\]

Количество теплоты, которое даст вторичный пар I корпуса при конденсации, составляет \(W_{III} r_3 = 643 \, 000 \text{ Вт.} \) Расхождение прихода и расхода теплоты в тепловом балансе II корпуса меньше 1 %.

Расход теплоты в III корпусе:

\[
Q_{III} = W_{III} r_3 - C_2 c_2 (t_2 - t_3) = \\
= 0,351 \cdot 2357 \cdot 10^3 - 0,77 \cdot 4190 \cdot 0,784 (116,3 - 82,7) = 743 \, 000 \text{ Вт.}
\]

Вторичный пар II корпуса дает теплоты при конденсации (приход теплоты в III корпусе):

\[
W_{IV} r_2 = 0,324 \cdot 2234 \cdot 10^3 = 724 \, 000 \text{ Вт.}
\]

10. Расход греющего пара в I корпусе:

\[
G_{\text{гр. п}} = \frac{643 \, 000}{2 \cdot 141 \cdot 10^3} = 0,3 \text{ кг/с.}
\]

Удельный расход пара:

\[
d = G_{\text{гр. п}} / W = 0,3 / 0,97 = 0,31 \text{ кг/кг.}
\]

11. Распределение полезной разности температур по корпусам.

Распределение полезной разности температур по корпусам сделаем в двух вариантах: из условия равной площади поверхности и из условия минимальной общей площади поверхности корпусов, т.е. пропорционально \(Q/K \) и пропорционально \(\sqrt[3]{Q/K} \).

Найдем факторы пропорциональности:

<table>
<thead>
<tr>
<th>Отношение</th>
<th>(\frac{Q}{K})</th>
<th>(\sqrt[3]{\frac{Q}{K}})</th>
<th>(10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I корпус</td>
<td>(\frac{643 , 000}{1700} = 378)</td>
<td></td>
<td>615</td>
</tr>
<tr>
<td>II</td>
<td>(\frac{657 , 000}{990} = 664)</td>
<td></td>
<td>815</td>
</tr>
<tr>
<td>III</td>
<td>(\frac{743 , 000}{580} = 1280)</td>
<td></td>
<td>1131</td>
</tr>
</tbody>
</table>

\[
\sum \frac{Q}{K} = 2322 \quad \sum \sqrt[3]{\frac{Q}{K}} \cdot 10^3 = 2561
\]
Полезные разности температур по корпусам:

<table>
<thead>
<tr>
<th>Вариант равной площади поверхности корпусов</th>
<th>Вариант минимальной общей площади поверхности корпусов</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta t_1 = \frac{50,21 \cdot 378}{2322} = 8,174)</td>
<td>(\Delta t_1 = \frac{50,21 \cdot 615}{2561} = 12,057)</td>
</tr>
<tr>
<td>(\Delta t_2 = \frac{50,21 \cdot 664}{2322} = 14,358)</td>
<td>(\Delta t_2 = \frac{50,21 \cdot 815}{2561} = 15,978)</td>
</tr>
<tr>
<td>(\Delta t_3 = \frac{50,21 \cdot 1280}{2322} = 27,682)</td>
<td>(\Delta t_3 = \frac{50,21 \cdot 1131}{2561} = 22,174)</td>
</tr>
<tr>
<td>(\Sigma \Delta t_{\text{пол}} = 50,21 , \text{K})</td>
<td>(\Sigma \Delta t_{\text{пол}} = 50,21 , \text{K})</td>
</tr>
</tbody>
</table>

12. Определение площади поверхности нагрева:

<table>
<thead>
<tr>
<th>Вариант равной площади поверхности корпусов</th>
<th>Вариант минимальной общей площади поверхности корпусов</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 = \frac{643 , 000}{1700 \cdot 8,174} = 46,27)</td>
<td>(F_1 = \frac{643 , 000}{1700 \cdot 12,057} = 31,37)</td>
</tr>
<tr>
<td>(F_2 = \frac{657 , 000}{990 \cdot 14,358} = 46,22)</td>
<td>(F_2 = \frac{657 , 000}{990 \cdot 15,978} = 41,53)</td>
</tr>
<tr>
<td>(F_3 = \frac{743 , 000}{580 \cdot 27,682} = 46,28)</td>
<td>(F_3 = \frac{743 , 000}{580 \cdot 22,174} = 57,77)</td>
</tr>
<tr>
<td>(\Sigma F = 138,8 , \text{м}^2)</td>
<td>(\Sigma F = 130,7 , \text{м}^2)</td>
</tr>
</tbody>
</table>

Следовательно, при равных площадях поверхностей корпусов общая площадь поверхности нагрева больше лишь на 6%.

Принимаем поэтому вариант равной площади поверхности корпусов, обеспечивающей однотипность оборудования.

Проверим температуру вторичного пара и давление по корпусам:

<table>
<thead>
<tr>
<th>Корпус</th>
<th>Температура кипения, °C (t_{\text{кип}} = t_p) п – (\Delta t_{\text{пол}})</th>
<th>Температура конденсации вторичного пара, °C (t_0 = t_{\text{кип}} - \sum \Delta t_{\text{пол}})</th>
<th>Давление (p_{\text{раб}}), кгс/см²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>143,0 – 10,1 = 132,9</td>
<td>132,9 – 3,59 = 129,3</td>
<td>2,7</td>
</tr>
<tr>
<td>II</td>
<td>129,3 – 17,6 = 111,7</td>
<td>111,7 – 4,96 = 106,7</td>
<td>1,31</td>
</tr>
<tr>
<td>III</td>
<td>106,7 – 33,4 = 73,3</td>
<td>73,3 – 13,32 = 60</td>
<td>0,2</td>
</tr>
</tbody>
</table>

После этого необходимо, исходя из найденных площадей поверхностей корпусов, произвести уточненный расчет установки, в котором учесть потери теплоты в окружающую среду и несколько изменившегося распределение температур и давлений по корпусам.
Глава 6

ОСНОВЫ МАССОПЕРЕДАЧИ. АБСОРБЦИЯ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Способы выражения состава фаз двухкомпонентных систем жидкость — газ (пар) представлены в табл. 6.1.
Формулы для пересчета концентраций (в жидкой фазе) даны в табл. 6.2. Для газовой (паровой) фазы справедливы те же соотношения, но с заменой обозначений \(x \) на \(y \), \(X \) на \(Y \), \(C_x \) на \(C_y \).

2. Концентрация компонента в газовой фазе может быть выражена также через его парциальное давление. На основании уравнений Клапейрона и Дальтона мольная (объемная) доля у любого компонента смеси идеальных газов равняется:

\[
y = \frac{p}{\Pi},
\]

где \(p \) — парциальное давление компонента газовой смеси; \(\Pi = p_A + p_B + \ldots \) — общее давление смеси газов или паров, равное сумме парциальных давлений всех компонентов.

3. Законы межфазного равновесия для идеальных растворов.
 а) Закон Генри:

\[
p^* = E x,
\]

где \(p^* \) — парциальное давление компонента в газовой фазе над равновесной с газом жидкостью; \(x \) — мольная доля компонента в жидкости; \(E \) — коэффициент Генри, зависящий от температуры и от природы газа и жидкости.

Таблица 6.1

<table>
<thead>
<tr>
<th>Концентрация</th>
<th>Обозначение концентрации компонента (A)</th>
<th>в жидкой фазе</th>
<th>в газовой или паровой фазе</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мольная доля, (\frac{\text{кмоль} A}{\text{кмоль} (A + B)})</td>
<td>(x)</td>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>Массовая доля, (\frac{\text{кг} A}{\text{кг} (A + B)})</td>
<td>(\xi)</td>
<td>(\eta)</td>
<td></td>
</tr>
<tr>
<td>Относительная мольная концентрация (доля), (\frac{\text{кмоль} A}{\text{кмоль} B})</td>
<td>(X)</td>
<td>(Y)</td>
<td></td>
</tr>
<tr>
<td>Относительная массовая концентрация (доля), (\frac{\text{кг} A}{\text{кг} B})</td>
<td>(\bar{X})</td>
<td>(\bar{Y})</td>
<td></td>
</tr>
<tr>
<td>Объемная мольная концентрация, (\frac{\text{кмоль} A}{\text{м}^3 (A + B)})</td>
<td>(C_x)</td>
<td>(C_y)</td>
<td></td>
</tr>
<tr>
<td>Объемная массовая концентрация, (\frac{\text{кг} A}{\text{м}^3 (A + B)})</td>
<td>(\bar{C}_x)</td>
<td>(\bar{C}_y)</td>
<td></td>
</tr>
</tbody>
</table>

282
<table>
<thead>
<tr>
<th>Выражение концентрации компонента А</th>
<th>x</th>
<th>\bar{x}</th>
<th>\bar{X}</th>
<th>c_x</th>
<th>\bar{c}_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$\frac{xM_{cm}}{M_A}$ или $\frac{x}{M_A + \frac{1-x}{M_B}}$</td>
<td>$\frac{X}{1+X}$</td>
<td>$\frac{M_B\bar{X}}{M_B\bar{X} + M_A}$</td>
<td>$\frac{c_xM_{cm}}{\rho}$ или $\frac{c_xM_B}{\rho + c_x(M_B - M_A)}$</td>
<td>$\frac{\bar{c}xM{cm}}{\rho M_A}$ или $\frac{\bar{c}_xM_B}{\rho M_A + \bar{c}_x(M_B - M_A)}$</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>$\frac{M_Ax}{M_{cm}}$</td>
<td>$\frac{M_AX}{M_AX + M_B}$</td>
<td>$\frac{\bar{X}}{1+\bar{X}}$</td>
<td>$\frac{M_AC_x}{\rho}$</td>
<td>$\frac{\bar{c}_x}{\rho}$</td>
</tr>
<tr>
<td>X</td>
<td>$\frac{x}{1-x}$</td>
<td>$\frac{\bar{x}M_B}{M_A (1-\bar{x})}$</td>
<td>$\frac{M_B\bar{X}}{M_A}$</td>
<td>$\frac{M_BC_x}{\rho - M_AC_x}$</td>
<td>$\frac{M_B\bar{c}_x}{M_A (\rho - \bar{c}_x)}$</td>
</tr>
<tr>
<td>\bar{X}</td>
<td>$\frac{M_AX}{M_B (1-x)}$</td>
<td>$\frac{\bar{x}}{1-\bar{x}}$</td>
<td>$\frac{M_AX}{M_B}$</td>
<td>$\frac{M_AC_x}{\rho - M_AC_x}$</td>
<td>$\frac{\bar{c}_x}{\rho - \bar{c}_x}$</td>
</tr>
<tr>
<td>c_x</td>
<td>$\frac{\rho x}{M_{cm}}$</td>
<td>$\frac{\rho \bar{x}}{M_A}$</td>
<td>$\frac{\rho X}{M_AX + M_B}$</td>
<td>$\frac{\rho \bar{X}}{M_A (\bar{X} + 1)}$</td>
<td>$\frac{\rho \bar{c}_x}{M_A}$</td>
</tr>
<tr>
<td>\bar{c}_x</td>
<td>$\frac{\rho M_AX}{M_{cm}}$</td>
<td>$\frac{\rho \bar{x}}{M_A}$</td>
<td>$\frac{M_A \rho X}{M_AX + M_B}$</td>
<td>$\frac{\rho \bar{X}}{\bar{X} + 1}$</td>
<td>M_AC_x</td>
</tr>
</tbody>
</table>

M_A, M_B, и M_{cm} — мольные массы компонентов и смеси, кг/кмоль; $M_{cm} = M_Ax + M_B (1-x)$; ρ — плотность смеси, кг/м³.
Для смеси идеальных газов:

$$\frac{\rho}{M_{cm}} = \frac{\Pi}{RT} = \frac{\Pi T_a}{22.4 \Pi_a T_a}.$$
Значения \(E \) для водных растворов некоторых газов даны в табл. XL1.

Подставляя в уравнение (6.2) значение \(\rho^* = y^* \Pi \) по уравнению (6.1), получаем:

\[
y^* = mx.
\] (6.3)

Здесь \(y^* \) — мольная доля компонента в газовой фазе, равновесной с жидкостью; \(m = E/\Pi \) — безразмерный коэффициент (коэффициент распределения), постоянный для данной системы газ — жидкость при \(t = \text{const} \) и \(\Pi = \text{const} \).

Если, применимительно к двухфазной трехкомпонентной системе (газовая фаза: \(A + B \), жидкая фаза: \(A + C \)), подставить в уравнение равновесия (6.3) значения \(x \) и \(y^* \) для компонента \(A \), выраженные через его относительные концентрации \(X \) и \(Y^* \), \(\bar{X} \) и \(\bar{Y}^* \) (табл. 6.2), получим:

\[
\frac{Y^*}{1 + Y^*} = m \frac{X}{1 + X};
\] (6.4)

\[
\frac{\bar{Y}^*}{\bar{Y}^* + \frac{M_A}{M_B}} = m \frac{\bar{X}}{\bar{X} + \frac{M_A}{M_C}},
\] (6.5)

где \(M_A \) — мольная massa распределенного между фазами компонента \(A \); \(M_B \) — то же второго компонента бинарной газовой смеси; \(M_C \) — то же второго, компонента бинарной жидкой смеси.

При малых концентрациях распределенного компонента в газе и в жидкости, когда \(Y^* \ll 1 \) и \(X \ll 1 \), в знаменателях уравнения (6.4) величинами \(Y^* \) и \(X \) можно пренебречь, и оно получает вид:

\[
Y^* = mx.
\] (6.6)

Аналогично при \(\bar{Y}^* \ll \frac{M_A}{M_B} \) и \(\bar{X} \ll \frac{M_A}{M_C} \), из уравнения (6.5) получим:

\[
\bar{Y}^* = m \frac{M_C}{M_B} \bar{X}.
\] (6.6a)

6) закон Равуля:

\[
\rho^* = Px,
\] (6.7)

где \(\rho^* \) — парциальное давление компонента в парогазовой смеси над жидкостью в условиях равновесия; \(P \) — давление насыщенного пара чистого компонента — однозначная функция температуры; \(P = f(t); x \) — мольная доля компонента в жидкости.

При подстановке в уравнение (6.7) значения \(\rho^* = y^* \Pi \) из уравнения (6.1) получаем:

\[
y^* = \frac{P}{\Pi} x,
\] (6.8)

где \(y^* \) — мольная доля компонента в парогазовой фазе, равновесной с жидкостью.
Для двухкомпонентной смеси, когда оба ее компонента следуют закону Рауля, уравнение (6.8) приводится к виду:

$$y^* = \frac{\alpha x_A}{1 + (\alpha - 1) x_A}.$$
(6.9)

Здесь $\alpha = P_A/P_B$ — коэффициент относительной летучести; P_A — давление насыщенного пара более летучего (низкокипящего) компонента при той же температуре; P_B — давление насыщенного пара менее летучего (высококипящего) компонента при той же температуре.

4. Многочисленные экспериментальные данные о равновесных составах жидкости и пара для различных растворов имеются в справочнике [6.7]. Для некоторых бинарных смесей данные о равновесных составах жидкости и пара при $\Pi = \text{const}$ приведены в табл. XLVII и на рис XXI и XXII.

5. Причиной (движущей силой) процесса массопередачи — перехода какого-либо компонента из одной фазы в другую (например, из жидкой фазы Φ_x с моллярной концентрацией переходящего компонента x в газовую фазу Φ_y с моллярной концентрацией y) является неравновесность соприкасающихся фаз, их отклонение от состояния динамического равновесия. В химической термодинамике устанавливается, что величина этого отклонения, при равенстве температур и давлений фаз, определяется разностью химических потенциалов переходящего компонента ($\mu_x - \mu_y$), которая и является движущей силой процесса массопередачи. При равновесии фаз потенциалы μ_x и μ_y равны.

Заменяя потенциал μ_x равным ему потенциалом равновесной газовой смеси μ_y^*, получим для движущей силы процесса массопередачи выражение

$$\mu_x - \mu_y = \mu_y^* - \mu_y.$$

Аналогично, заменяя потенциал μ_y равным ему потенциалом равновесной жидкой фазы μ_x^*, получим:

$$\mu_x - \mu_y = \mu_x^* - \mu_x.$$

Из последних равенств следует, что движущая сила процесса ($\mu_x - \mu_y$) может быть выражена двумя способами: либо как разность химических потенциалов, взятых по газовой фазе, либо как разность потенциалов, взятых по жидкой фазе. При этом необходимо помнить, что газовая фаза с потенциалом μ_y^* и концентрацией y^*, так же как и жидкая фаза с потенциалом μ_x^* и концентрацией x^*, — фазы гипотетические, в реальном процессе массопередачи отсутствующие — см. рис. 6.1.

В технических расчетах применяют не химические потенциалы, а более простые, легко определяемые величины — концентрации, с помощью которых также может быть охарактеризовано отклонение фаз Φ_x и Φ_y от состояния равновесия. Однако, в отличие от разности химических потенциалов ($\mu_x - \mu_y$), которая равна нулю при равновесии фаз, разность концентраций $(x - y)$, в общем.
случае не равной нулю при равновесии *, не может служить мерой отклонения фаз от равновесного состояния, т. е. движущей силой процесса массопередачи. При технических расчетах движущую силу процесса массопередачи — отклонение системы от состояния равновесия — выражают поэтому как разность концентраций \((y^* - y)\) или \((x - x^*)\). Так как концентрации могут быть выражены в различных единицах, то движущая сила процесса массопередачи может иметь различные значения — см. пример 6.3.

6. В соответствии с двумя возможными способами выражения движущей силы процесса массопередачи — по газовой фазе \((\Delta y = y^* - y)\) или по жидкой фазе \((\Delta x = x - x^*)\) — уравнение массопередачи, аналогичное уравнению теплопередачи, может быть написано в двух видах:

\[
M = K_y \Delta y_{cp} F \tag{6.10}
\]

или

\[
M = K_x \Delta x_{cp} F. \tag{6.11}
\]

Здесь \(M\) — расход компонента, переходящего из одной фазы в другую, кмоль/с; \(F\) — площадь поверхности массопередачи, м\(^2\); \(K_y\) — коэффициент массопередачи, отнесенный к движущей силе \(\Delta y\), выраженной через мольные доли компонента в газовой фазе, кмоль/(м\(^2\)-с); \(K_x\) — коэффициент массопередачи, отнесенный к движущей силе \(\Delta x\), выраженной через мольные доли компонента в жидкой фазе, кмоль/(м\(^2\)-с); \(\Delta y_{cp}\) и \(\Delta x_{cp}\) — соответствующие средние для всего процесса движущие силы (см. ниже).

В последних уравнениях вместо мольных расходов и концентраций могут быть массовые, а вместо \(\Delta y_{cp}\) могут быть \(\Delta Y_{cp}\); \(\Delta C_{y_{cp}}\) и \(\Delta \rho_{cp}\); соответственно, вместо \(\Delta x_{cp}\) могут быть \(\Delta X_{cp}\) или \(\Delta C_{x_{cp}}\).

7. При определенных допущениях (отсутствие диффузионного сопротивления при переходе компонента через поверхность раздела фаз, существование равновесия на этой поверхности, линей-

* См., например, данные о равновесных концентрациях в табл. XLVII.

** Иногда пишут кмоль/м\(^2\)-с \((\Delta y = 1)\) или кмоль/м\(^2\)-с кмоль/кмоль.
нность уравнения равновесия \(y^* = mx \) или \(y^* = mx + b \) получаются следующие зависимости между коэффициентами массопередачи \(K_y \) и \(K_x \) и фазовыми коэффициентами массоотдачи \(\beta_y \) и \(\beta_x \):

\[
K_y = \frac{1}{\frac{1}{\beta_y} + \frac{m}{\beta_x}}; \\
K_x = \frac{1}{\frac{m\beta_y}{\beta_x} + \frac{1}{\beta_x}},
\]

где \(m \) — тангенс угла наклона линии равновесия. Коэффициенты массоотдачи и массопередачи выражены в кмоль/(м²·с).

Знаменатели последних уравнений представляют собой общее диффузионное сопротивление, равное сумме диффузионных сопротивлений газовой и жидкой фаз.

Когда основное диффузионное сопротивление сосредоточено в газовой фазе, т. е. при \(\frac{m}{\beta_x} \ll \frac{1}{\beta_y} \),

\[
K_y \approx \beta_y.
\]

Когда основное диффузионное сопротивление сосредоточено в жидкой фазе, т. е. при \(\frac{1}{m\beta_y} \ll \frac{1}{\beta_x} \),

\[
K_x \approx \beta_x.
\]

Из уравнений (6.12) и (6.13) следует, что

\[
K_y = K_x/m.
\]

8. Основные диффузионные критерии подобия установившихся процессов массоотдачи.

Диффузионный критерий Нуссельта:

\[
Nu' = \beta l/D.
\]

Диффузионный критерий Пекле:

\[
Pe' = \omega l/D.
\]

Диффузионный критерий Прандтля:

\[
Pr' = Pe'/Re = \nu/D.
\]

Здесь \(\beta \) — коэффициент массоотдачи, м/с \(\frac{\text{Кмоль}}{\text{м}^2 \cdot \text{с} \cdot \text{моль}^2/\text{м}^3} \) или \(\frac{\text{кг}}{\text{м}^2 \cdot \text{с} \cdot \text{кг}^2/\text{м}^3} \); \(l \) — характерный линейный размер, м; \(D \) — коэффициент молекулярной диффузии, м²/с; \(\omega \) — скорость газа или жидкости, м/с; \(\nu \) — кинематический коэффициент вязкости, м²/с.
<table>
<thead>
<tr>
<th>Атомный объем, см³/атом</th>
<th>Мольный объем, см³/моль</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>27,0</td>
</tr>
<tr>
<td>C</td>
<td>14,8</td>
</tr>
<tr>
<td>Cl</td>
<td>24,6</td>
</tr>
<tr>
<td>H</td>
<td>3,7</td>
</tr>
<tr>
<td>Н в первичных аминах</td>
<td>10,5</td>
</tr>
<tr>
<td>Н во вторичных аминах</td>
<td>12,0</td>
</tr>
<tr>
<td>Н с двумя насыщенными</td>
<td>15,6</td>
</tr>
<tr>
<td>связями</td>
<td></td>
</tr>
<tr>
<td>О с двумя насыщенными</td>
<td>7,4</td>
</tr>
<tr>
<td>связями</td>
<td></td>
</tr>
<tr>
<td>О в альдегидах и кетонах</td>
<td>7,4</td>
</tr>
<tr>
<td>О в сложных эфирах</td>
<td>9,1</td>
</tr>
<tr>
<td>О в простых эфирах</td>
<td>9,9</td>
</tr>
<tr>
<td>О в высших простых и</td>
<td>11,0</td>
</tr>
<tr>
<td>сложных эфирах</td>
<td></td>
</tr>
<tr>
<td>О в кислотах</td>
<td>12,0</td>
</tr>
<tr>
<td>О в соединениях с S, P</td>
<td>8,3</td>
</tr>
<tr>
<td>N</td>
<td>25,6</td>
</tr>
</tbody>
</table>

СТРУКТУРНЫЕ ПОСТОЯННЫЕ

- Бензольное кольцо: -15
- Нафталинное кольцо: -30
- Антраценовое кольцо: -47,5

9. При отсутствии экспериментальных данных коэффициент диффузии (молекулярной) газа A в газе B (или газа B в газе A) может быть вычислен по формуле:

\[
D_r = \frac{4.3 \cdot 10^{-7} T^{3/2}}{\rho \left(u_A^{1/3} + u_B^{1/3} \right)^2} \sqrt{\frac{1}{M_A} + \frac{1}{M_B}},
\]

где \(D_r \) — коэффициент диффузии, м²/с; \(T \) — температура, К; \(\rho \) — давление (абсолютное), кгс/см²; \(M_A \) и \(M_B \) — мольные массы газов A и B; \(u_A \) и \(u_B \) — мольные объемы газов A и B, определяемые как сумма атомных объемов элементов, входящих в состав газа — см. пример 6.6 (атомные объемы некоторых элементов и мольные объемы некоторых газов приведены в табл. 6.3).

Как следует из формулы (6.20), если известно значение коэффициента диффузии \(D_1 \) при температуре \(T_1 \) и давлении \(p_1 \), то значение его \(D_2 \) при температуре \(T_2 \) и давлении \(p_2 \) можно найти из уравнения:

\[
D_2 = D_1 \frac{p_1}{p_2} \left(\frac{T_2}{T_1} \right)^{3/2}.
\]

Значения коэффициентов диффузии в воздухе для некоторых газов и паров приведены в табл. XLII.

* При расчете мольного объема химического соединения величину соответствующей структурной постоянной надо прибавить к сумме атомных объемов.
10. Коэффициент диффузии в жидкости $D_ж$ при 20 °C можно вычислить по приближенной формуле:

$$D_ж = \frac{1 \cdot 10^{-8}}{AB} \sqrt{\frac{1}{M_A^2} + \frac{1}{M_B}},$$

(6.22)

gде $D_ж$ — коэффициент диффузии, м²/с; μ — динамический коэффициент вязкости жидкости, мПа·с; v_A и v_B — мольные объемы растворенного вещества и растворителя; M_A и M_B — мольные массы растворенного вещества и растворителя; A и B — коэффициенты, зависящие от свойств растворенного вещества и растворителя.

Значения коэффициентов A для некоторых веществ, растворенных в воде:

<table>
<thead>
<tr>
<th>Вещество</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для газов</td>
<td>1</td>
</tr>
<tr>
<td>Этилового спирта</td>
<td>1,24</td>
</tr>
<tr>
<td>Метилового спирта</td>
<td>1,19</td>
</tr>
<tr>
<td>Уксусной кислоты</td>
<td>1,27</td>
</tr>
</tbody>
</table>

Коэффициент B равен:

<table>
<thead>
<tr>
<th>Вещество</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для воды</td>
<td>4,7</td>
</tr>
<tr>
<td>Этилового спирта</td>
<td>2,0</td>
</tr>
<tr>
<td>Метилового спирта</td>
<td>2,0</td>
</tr>
<tr>
<td>Ацетона</td>
<td>1,15</td>
</tr>
<tr>
<td>Неассоциированных жидкостей</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Коэффициент диффузии газа в жидкости D_t (при температуре t) связан с коэффициентом диффузии D_{20} (при температуре 20 °C) следующей приближенной зависимостью

$$D_t = D_{20} [1 + b (t - 20)],$$

(6.23)

в которой температурный коэффициент b может быть определён по эмпирической формуле:

$$b = 0,2 \sqrt[3]{\frac{\mu}{\gamma / \rho}},$$

(6.24)

gде μ — динамический коэффициент вязкости жидкости при 20 °C, мПа·с; ρ — плотность жидкости, кг/м³.

Значения коэффициентов диффузии некоторых газов в воде приведены в табл. XLIII.

Коэффициент диффузии в разбавленных растворах может быть вычислен также по формуле:

$$D_ж = 7,4 \cdot 10^{-12} \frac{(\beta M)^{1/2} T}{\mu v^{0,6}}.$$

(6.25)

Здесь $D_ж$ — коэффициент диффузии, м²/с; M — мольная масса растворителя; v — мольный объем диффундирующего вещества; T — температура, К; μ — динамический коэффициент вязкости растворителя, мПа·с; β — параметр, учитывающий ассоциацию молекул растворителя и равный:

<table>
<thead>
<tr>
<th>Вещество</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для воды</td>
<td>2,6</td>
</tr>
<tr>
<td>Этилового спирта</td>
<td>1,9</td>
</tr>
<tr>
<td>Метилового спирта</td>
<td>1,5</td>
</tr>
<tr>
<td>Бензола, эфира, гептана</td>
<td>1</td>
</tr>
</tbody>
</table>

11. Материальный баланс абсорбера (рис. 6.2).
Рис. 6.2. Схема абсорбера.

Рис. 6.3. Рабочая и равновесная линии абсорбера:
\[AB \] — рабочая линия при расходе поглотителя \(L \); \[AC \] — рабочая линия при расходе поглотителя \(L_{\text{мин}} \); \[OC \] — равновесная линия \(Y^* = f(X) \).

При расчете абсорбера с нелетучим жидким поглотителем массовые (или мольные) расходы поглотителя и инертного, нерастворяющегося в жидкости газа будут постоянными по высоте абсорбера. Выражая концентрации поглощаемого компонента в газе и жидкости в относительных массовых (или мольных) единицах, получим уравнение материального баланса (в массовых единицах):

\[
M = G (\overline{Y}_n - \overline{Y}_r) = L (\overline{X}_n - \overline{X}_r),
\]

где \(M \) — расход поглощаемого компонента, \(\text{кг}/\text{с} \); \(G \) и \(L \) — расходы инертного газа и жидкого поглотителя, \(\text{кг}/\text{с} \); \(\overline{Y}_n \) и \(\overline{Y}_r \) — концентрации поглощаемого компонента в газе в нижу и на верху абсорбера, \(\text{кг}/\text{кг} \) инертного газа; \(\overline{X}_n \) и \(\overline{X}_r \) — то же в жидкости в нижу и на верху абсорбера, \(\text{кг}/\text{кг} \) жидкого поглотителя.

В координатах \(\overline{Y} - \overline{X} \) уравнение (6.26), при постоянных \(G \) и \(L \), выражает отрезок прямой, проходящей через точки \(B (\overline{X}_n, \overline{Y}_n) \) и \(A (\overline{X}_r, \overline{Y}_r) \) — см. рис. 6.3.

Уравнение этой прямой — рабочей линии:
\[
\overline{Y} = \overline{Y}_n + \frac{L}{G} (\overline{X} - \overline{X}_n)
\]
или
\[
\overline{Y} = \overline{Y}_r + \frac{L}{G} (\overline{X} - \overline{X}_r),
\]

где \(\overline{Y} \) и \(\overline{X} \) — переменные по высоте колонны концентрации поглощаемого компонента в контактирующих неравновесных потоках газа и жидкости в данном сечении абсорбера — рис. 6.2.

Расход жидкого поглотителя:
\[
L = \varphi L_{\text{мин}}.
\]
Здесь \(\varphi > 1 \) — коэффициент избытка поглотителя; \(L_{\text{мин}} \) — теоретически минимальный расход поглотителя, определяемый графическим (см. рис. 6.3) или аналитическим путем:

\[
L_{\text{мин}} = \frac{M}{X_\text{н} - X_\text{в}}.
\]

(6.30)

Степенью поглощения (или извлечения) называется величина

\[
c_\text{n} = \frac{\overline{Y}_\text{n} - \overline{Y}_\text{в}}{\overline{Y}_\text{n}} = \frac{Y_\text{в} - Y_\text{в}}{Y_\text{n}}.
\]

(6.30а)

12. Средняя движущая сила в абсорбере с непрерывным контактом фаз.

В общем уравнении массопередачи

\[
F = \frac{M}{K_\text{y} \Delta \overline{Y}_\text{ср}}
\]

(6.31)

(где \(F \) — поверхность массопередачи в абсорбере, м²; \(M \) — расход поглощаемого компонента, кг/с; \(K_\text{y} \) — коэффициент массопередачи, \(\frac{\text{кг}}{\text{м}^2 \cdot \text{с} \cdot \text{кг инертного газа}} \)) средняя движущая сила \(\Delta \overline{Y}_\text{ср} \) определяется следующим образом.

Если в пределах от \(X_\text{в} \) до \(X_\text{n} \) (рис. 6.3) линия равновесия прямая, то

\[
\Delta \overline{Y}_\text{ср} = \frac{\Delta \overline{Y}_\text{n} - \Delta \overline{Y}_\text{в}}{2,3 \log \left(\frac{\Delta \overline{Y}_\text{n}}{\Delta \overline{Y}_\text{в}} \right)},
\]

(6.32)

где \(\Delta \overline{Y}_\text{n} \) и \(\Delta \overline{Y}_\text{в} \) — концевые движущие силы; \(\Delta \overline{Y}_\text{n} = \overline{Y}_\text{n} - \overline{Y}_\text{n}^* \) — внизу абсорбера при \(X = X_\text{n} \); \(\Delta \overline{Y}_\text{в} = \overline{Y}_\text{в} - \overline{Y}_\text{в}^* \) — на верху абсорбера при \(X = X_\text{в} \).

Когда отношение \(\Delta \overline{Y}_\text{n} \) и \(\Delta \overline{Y}_\text{в} \) находится в пределах

\[0,5 \leq \Delta \overline{Y}_\text{n}/\Delta \overline{Y}_\text{в} \leq 2,
\]

среднюю движущую силу в абсорбере можно рассчитывать по более простой формуле:

\[
\Delta \overline{Y}_\text{ср} = (\Delta \overline{Y}_\text{в} + \Delta \overline{Y}_\text{n})/2.
\]

(6.33)

Если же линия равновесия не прямая, то

\[
\Delta \overline{Y}_\text{ср} = \frac{\overline{Y}_\text{n} - \overline{Y}_\text{в}}{V_\text{n}} \left(\int \frac{d\overline{Y}}{\overline{Y} - \overline{Y}^*} \right).
\]

(6.34)

Величину интеграла в знаменателе последнего уравнения находят графическим построением или методом графического интегрирования. Другой метод расчета при криволинейной линии
равновесия: разбивают равновесную линию на участки, принимаемые приближенно за отрезки прямых, и для каждого участка в отдельности определяют среднюю движущую силу по уравнению (6.32) или (6.33).

При расчетах абсорберов движущую силу часто выражают в единицах давления — см. пример 6.9.

13. Определение диаметра насадочного абсорбера.
Диаметр абсорбционной колонны D (в м) рассчитывают по уравнению расхода для газового потока:

$$D = \sqrt[3]{\frac{V}{0.785w}}; \quad (6.35)$$

где V — расход газа, проходящего через абсорбер, $м^3/с; w$ — скорость газа, отнесенная к полному поперечному сечению колонны (фактическая), $м/с$.

Скорость газа w находят следующим путем.
Сначала рассчитывают фактическую скорость газа w_3 в точке захлебывания (инверсии) по уравнению (при $\rho_ж \gg \rho_г$):

$$\lg \left(\frac{w_3^2 \rho_г \mu_{ж}^{0.16}}{g V_3^3 \rho_ж} \right) = A - 1.75 \left(\frac{L}{G} \right)^{0.25} \left(\frac{\rho_г}{\rho_ж} \right)^{0.125}. \quad (6.36)$$

Здесь g — удельная поверхность насадки, $м^2/м^3; g$ — ускорение свободного падения, $м/с^2; V_3$ — свободный объем насадки, $м^3/м^3; \rho_г$ и $\rho_ж$ — плотности газа и жидкости, $кг/м^3; \mu_ж$ — динамический коэффициент вязкости жидкости, $мПа·с; L$ и G — массовые расходы жидкости и газа, $кг/с; A = 0.022$ для насадки из колец или спиралей [6.3], для ректификации $A = -0.125$.

Затем определяют рабочую скорость газа w (фактическую), принимая для абсорберов, работающих в пленочном режиме

$$w = (0.75 + 0.9) w_3. \quad (6.37)$$

14. Определение высоты насадочного абсорбера.
a) Через высоту единицы переноса (ВЕП).
Поверхность контакта фаз в абсорбере при пленочном режиме работы:

$$F = H_н S \sigma \psi, \quad (6.38)$$

где $H_н$ — высота слоя насадки, $м; S = \pi D^2/4$ — площадь поперечного сечения колонны, $м^2; D$ — диаметр колонны, $м; \sigma$ — удельная поверхность сухой насадки, $м^2/м^3; \psi$ — коэффициент смоченности насадки, безразмерный — расчет величины этого коэффициента см. [6.3].

Высота слоя насадки:

$$H_н = \frac{G}{K_у S \sigma \psi} \int_{\bar{Y}_н}^{\bar{Y}_в} \frac{d \bar{Y}}{\bar{Y} - \bar{Y}^*} = h_{0y} n_{0y}, \quad (6.39)$$

Здесь G — постоянный по высоте колонны расход инертного газа, $кг/с$ или кмоль/с; $K_у$ — средний коэффициент массопередачи, $кг/(м^2·с·кг инертного газа)$ (или кмоль/(м^2·с·кг инертного газа)); h_{0y} — высота единицы переноса, $м$:

$$h_{0y} = \frac{G}{K_у S \sigma \psi}; \quad (6.40)$$
\(n_{0y} \) — общее число единиц переноса:

\[
n_{0y} = \frac{1}{V} \int_{V_b} \frac{dV}{\hat{V} - \hat{V}^*}.
\]

(6.40а)

Из уравнения (6.34) следует:

\[
n_{0y} = (V_n - V_b)/\Delta \hat{V}_{cp}.
\]

(6.41)

При прямолинейной равновесной зависимости среднюю движущую силу \(\Delta \hat{V}_{cp} \) рассчитывают по уравнению (6.32) или (6.33), при криволинейной равновесной зависимости число единиц переноса \(n_{0y} \) находят графическим построением или методом графического интегрирования — см. пример 6.10.

Объемным коэффициентом массопередачи \(K_{uv} \) называют величину

\[
K_{uv} = K_u \sigma \psi = K_u a,
\]

(6.42)

где \(a = \sigma \phi \) — удельная смещённая (активная) поверхность насадки, \(m^2/m^3 \); при \(\psi = 1 \), \(a = \sigma \).

Применяя объемный коэффициент массопередачи, получаем для высоты единицы переноса:

\[
h_{0y} = \frac{G}{K_u S \sigma \psi} = \frac{G}{K_u v S}.
\]

(6.43)

б) Через высоту, эквивалентную теоретической тарелке (ВЭТТ).

Высота слоя насадки \(H_n \) может быть рассчитана также по уравнению:

\[
H_n = h_0 n_v,
\]

(6.44)

где \(h_0 \) — высота, эквивалентная теоретической тарелке (ВЭТТ) или теоретической ступени (ВЭТО), м (определается по экспериментальным данным); \(n_v \) — число теоретических тарелок (ступеней изменения концентрации).

Число теоретических тарелок — ступеней изменения концентрации в абсорбере определяют обычно графическим путем (рис. 6.4). На этом рисунке \(AB \) — рабочая линия, построенная по уравнению (6.27) или (6.28), \(OC \) — равновесная линия.

15. Критерийные формулы для расчета коэффициентов массоотдачи в насадочных абсорберах с неупорядоченной насадкой (навалом) при пленочном режиме.

Рис. 6.4. Графическое определение числа ступеней изменения концентрации (теоретических тарелок) в абсорбере.
а) Для газовой фазы:

$$
\text{Nu}_g = \frac{0.407 \cdot \text{Re}_g^{0.655} \cdot (\text{Pr}_g)^{0.33}}{\beta_g}.
$$

(6.45)

Здесь \(\text{Nu}_g = \frac{\beta_g \cdot D_g}{\mu_g} \); \(\text{Re}_g = \frac{4 \cdot \omega \cdot \varphi}{\mu_g} \); \(\text{Pr}_g = \frac{\mu_g}{\rho_g \cdot D_g} \); \(\beta_g \) — коэффициент массоотдачи для газа, \(\text{моль} / \text{м}^2 \cdot \text{с} / \text{моль} / \text{м}^3 \cdot \text{с} \); \(D_g \) — коэффициент диффузии поглощаемого компонента в газе, \(\text{м}^2 / \text{с} \). Остальные обозначения — см. формулы (6.36) и (6.38).

Уравнение (6.45) справедливо при значениях \(\text{Re}_g \) от 10 до 10 000.

б) Для жидкой фазы:

$$
\text{Nu}_ж = 0.0021 \cdot \text{Re}_ж^{0.75} \cdot (\text{Pr}_ж)^{0.5},
$$

(6.46)

где \(\text{Nu}_ж = \frac{\beta_ж \cdot \delta_пр}{D_ж} \); \(\text{Re}_ж = \frac{4L}{\Delta \varphi \cdot \varphi_ж} \); \(\text{Pr}_ж = \frac{\mu_ж}{\rho_ж \cdot D_ж} \); \(\beta_ж \) — коэффициент массоотдачи для жидкости, \(\text{м} / \text{с} \); \(\delta_пр = \left(\frac{\mu_ж}{\rho_ж^2 \cdot g} \right)^{1/2} \) — так называемая приведенная толщина жидкой пленки, \(\text{м} \); \(D_ж \) — коэффициент диффузии поглощаемого компонента в жидкости, \(\text{м}^2 / \text{с} \); \(L \) — массовый расход жидкости, \(\text{кг} / \text{с} \).

Выражение для критерия \(\text{Re}_ж \) получено следующим путем. Обозначения — см. уравнения (6.36) и (6.38). Омываемый жидкостью периметр сечения абсорбера находим из уравнения (6.38):

$$
\Pi = \frac{F}{H_ж} = \Delta \varphi.
$$

(6.47)

Скорость течения пленки жидкости через насадку:

$$
\Delta \varphi = \frac{l}{\rho_ж \cdot 11\delta} = \frac{l}{\rho_ж \cdot \Delta \varphi \cdot \delta},
$$

(6.48)

где \(\delta \) — средняя толщина пленки, \(\text{м} \).

Эквивалентный диаметр жидкой пленки:

$$
d_пл = 4 \Pi \delta / \Pi = 4 \delta.
$$

(6.49)

Подставляя эти значения в выражение для критерия \(\text{Re}_ж \), получаем:

$$
\text{Re}_ж = \frac{\Delta \varphi \cdot \rho_ж \cdot \delta}{\mu_ж} = \frac{4L}{\Delta \varphi \cdot \varphi_ж}.
$$

(6.50)

16. Определение диаметра и высоты тарельчатой абсорбционной колонны проводится так же, как и для тарельчатых ректификационных колонн — см. гл. 7. Диаметр тарельчатого абсорбера рассчитывают по уравнениям (7.16) и (7.17). Высоту тарельчатой части абсорбера \(H_т \) определяют по уравнению (7.18). Требуемое число тарелок находят графически с применением кинетических зависимостей для расчета коэффициентов массопередачи или
ВЕП. При приближенных расчетах для определения числа тарелок находят графически число ступеней изменения концентрации (рис. 6.4) и затем число тарелок \(n \) по уравнению (7.19).

ПРИМЕРЫ

Пример 6.1. Жидкая смесь содержит 58,8% (мол.) толуола и 41,2% (мол.) четыреххлористого углерода (ч. х. у.). Определить относительную массовую концентрацию толуола \(\bar{X} \) (в кг толуола \(\frac{\text{кг ч. х. у.}}{\text{кг кг}} \)) и его объемную массовую концентрацию \(\bar{C}_x \) (в кг/м³).

Решение. Относительная массовая концентрация толуола:

\[
\bar{X} = \frac{M_{\text{тол}}x}{M_{\text{ч. х. у.}}(1-x)},
\]

где \(M_{\text{тол}} \) — мольная масса толуола (92 кг/кмоль); \(M_{\text{ч. х. у.}} \) — то же четыреххлористого углерода (154 кг/кмоль); \(x \) — мольная доля толуола.

Имеем:

\[
\bar{X} = \frac{92 \cdot 0,588}{154 \cdot 0,412} = 0,853 \text{ кг толуола кг ч. х. у.}
\]

Чтобы рассчитать объемную массовую концентрацию толуола \(\bar{C}_x \), необходимо знать плотность смеси \(\rho_{\text{см}} \). Для расчета плотности предварительно найдем массовую долю толуола \(\bar{x} \).

По табл. 6.2:

\[
\bar{x} = \frac{\bar{X}}{1 + \bar{X}} = \frac{0,853}{1,853} = 0,461.
\]

Далее по табл. IV находим: плотность толуола \(\rho_{\text{тол}} = 870 \text{ кг/м³} \), плотность четыреххлористого углерода \(\rho_{\text{ч. х. у.}} = 1630 \text{ кг/м³} \).

Считая, что изменение объема при смешении не происходит, т. е. объем смеси равен сумме объемов компонентов, находим объем 1 кг смеси

\[
\frac{0,461}{870} + \frac{0,539}{1630} = 0,862 \cdot 10^{-8} \text{ м³},
\]

откуда плотность смеси:

\[
\rho_{\text{см}} = \frac{1}{0,862 \cdot 10^{-8}} = 1160 \text{ кг/м³}.
\]

Можно рассчитать \(\rho_{\text{см}} \) и так:

\[
\rho_{\text{см}} = \frac{1 + \bar{X}}{1 + \frac{\bar{X}}{\rho_{\text{ч. х. у.}}} + \frac{\bar{X}}{\rho_{\text{тол}}}} = \frac{1 + 0,853}{1630 + \frac{0,853}{870}} = 1160 \text{ кг/м³}.
\]

Объемная массовая концентрация толуола:

\[
\bar{C}_x = \rho_x = 1160 \cdot 0,461 = 535 \text{ кг/м³}.
\]
Пример 6.2. Воздух атмосферного давления при температуре 34 °C насыщен водяным паром. Определить парциальное давление воздуха, объемный и массовый \% пара в воздушно-паровой смеси и его относительную массовую концентрацию, считая оба компонента смеси идеальными газами. Атмосферное давление 745 мм рт. ст. Определить также плотность воздушно-паровой смеси, сравнить ее с плотностью сухого воздуха.

П р е ш е н и е. По табл. XXXVIII находим, что при \(t = 34 \) °C давление насыщенного водяного пара составляет 39,9 мм рт. ст. Это давление является парциальным давлением водяного пара \(p_в \) в воздушно-паровой смеси, а парциальное давление воздуха равняется:

\[
p_в = \Pi - p_в = 745 - 39,9 \approx 705 \text{ мм рт. ст.}
\]

Мольная (объемная) доля водяного пара в смеси:

\[
y = \frac{p_в}{\Pi} = \frac{39,9}{745} = 0,0535.
\]

Массовая доля пара:

\[
y = \frac{M_в y}{M_в y + M_в (1 - y)} = \frac{18 \cdot 0,0535}{18 \cdot 0,0535 + 29 \cdot 0,9465} = 0,0339.
\]

Относительная массовая концентрация:

\[
\varphi = \frac{y}{1 - y} = \frac{0,0339}{0,9661} = 0,0351 \text{ кг пара} \div \text{кг воздуха}.
\]

Плотность воздушно-паровой смеси рассчитываем как сумму плотностей компонентов, взятых каждой при своем парциальном давлении:

\[
\rho_см = \rho_в + \rho_п = \frac{M_в p_в T_0}{22,47 \Pi_0} + \frac{M_п p_п T_0}{22,47 \Pi_0} = \frac{T_0}{22,47 \Pi_0} \left(M_в p_в + M_п p_п \right) = \frac{273}{22,4 \cdot 307 \cdot 760} (29 \cdot 705 + 18 \cdot 39,9) = 1,105 \text{ кг/м}^3.
\]

Можно рассчитать плотность смеси иначе.

Мольная масса смеси:

\[
M_см = M_в y + M_в (1 - y) = 18 \cdot 0,0535 + 29 \cdot 0,9465 = 28,4 \text{ кг/кмоль}.
\]

Плотность смеси при \(\Pi = 745 \) мм рт. ст. и \(t = 34 \) °C:

\[
\rho_см = \frac{M_см \Pi T_0}{22,47 \Pi_0 T_0} = \frac{28,4 \cdot 745 \cdot 273}{22,4 \cdot 760 \cdot 307} = 1,105 \text{ кг/м}^3.
\]

Плотность сухого воздуха при тех же давлении и температуре:

\[
\rho_{с в} = \frac{M_в \Pi T_0}{22,47 \Pi_0 T_0} = \frac{29 \cdot 745 \cdot 273}{22,4 \cdot 307 \cdot 760} = 1,13 \text{ кг/м}^3.
\]

Пример 6.3. При температуре 25 °C приведены в соприкосновение: воздух атмосферного давления, содержащий 14 \% (об.) ацетилена (\(C_2H_2 \)), и вода, содержащая растворенный ацетилен
в количестве: а) $0,29 \cdot 10^{-3}$ кг на 1 кг воды; б) $0,153 \cdot 10^{-3}$ кг на 1 кг воды. Определить: 1) из какой фазы в какую будет переходить ацетилен; 2) движущую силу этого процесса перехода в начальный момент времени (в относительных мольных концентрациях). Атмосферное давление 765 мм рт. ст. Равновесные концентрации ацетиlena в газовой и в жидкой фазах определяются законом Генри.

Решение. Закон Генри (уравнение (6.2)):

$$p^* = Ex.$$

По табл. XL1 находим, что при $t = 25^\circ C$ коэффициент Генри $E = 1,01 \cdot 10^6$ мм рт. ст.

Парциальное давление ацетилена в воздухе по уравнению (6.1):

$$p = y\Pi = 0,14 \cdot 765 = 107 \text{ мм рт. ст.}$$

а) Мольная доля ацетилена в воде при $\bar{X} = 0,29 \cdot 10^{-3}$ $\frac{\text{кг ацетилена}}{\text{кг воды}}$

(табл. 6.2):

$$\chi = \frac{\bar{X}}{\chi + \frac{M_{\text{ад}}}{M_{\text{б}}}} = \frac{0,29 \cdot 10^{-3}}{0,29 \cdot 10^{-3} + \frac{26}{18}} \approx \frac{18 \cdot 0,29 \cdot 10^{-3}}{26} = 0,2 \cdot 10^{-3}.$$

Ответы на вопросы примера могут быть получены двумя путями.

1. В условиях равновесия парциальное давление ацетилена в газовой фазе над жидкостью с $x = 0,2 \cdot 10^{-3}$ по закону Генри должно составлять:

$$p^* = Ex = 1,01 \cdot 10^6 \cdot 0,2 \cdot 10^{-3} = 202 \text{ мм рт. ст.}$$

Имеющееся в действительности над этой жидкостью парциальное давление ацетилена меньше: $p = 107 \text{ мм рт. ст.}$. Чтобы в процессе массопередачи система газ—жидкость приближалась к состоянию равновесия, парциальное давление ацетилена в газовой фазе должно увеличиваться, т. е. он будет переходить из воды в воздух.

Движущая сила этого процесса перехода (отклонение от состояния равновесия) в начальный момент времени будет равна: в единицах парциального давления ацетилена

$$\Delta p = p^* - p = 202 - 107 = 95 \text{ мм рт. ст.;}$$

в мольных долях

$$\Delta y = y^* - y = \frac{202}{765} - 0,14 = 0,264 - 0,14 = 0,124;$$

в относительных мольных концентрациях

$$\Delta Y = Y^* - Y = \frac{y^*}{1 - y^*} - \frac{y}{1 - y} = \frac{0,264}{1 - 0,264} - \frac{0,14}{1 - 0,14} =$$

$$= 0,359 - 0,163 = 0,196 \frac{\text{кмоль ацетилена}}{\text{кмоль воздуха}}.$$
II. В условиях равновесия с газовой фазой, в которой парциальное давление ацетилена равно 107 мм рт. ст., вода по закону Генри должна иметь концентрацию ацетилена (в мольных долях):

\[x^* = \frac{p}{E} = \frac{107}{1,01 \cdot 10^6} = 0,106 \cdot 10^{-8}. \]

Имеющаяся в действительности мольная доля ацетилена в воде больше: \(x = 0,2 \cdot 10^{-8} \). Для того чтобы в процессе массопереноса система приближалась к состоянию равновесия, мольная доля ацетилена в воде должна уменьшаться, т. е. ацетилен будет переходить из воды в воздух.

Двигающая сила этого процесса перехода в начальный момент времени (считая ее по концентрации в жидкой фазе): в мольных долях

\[\Delta x = x - x^* = 0,2 \cdot 10^{-8} - 0,106 \cdot 10^{-8} = 0,094 \cdot 10^{-8}; \]

в относительных мольных концентрациях

\[\Delta X = X - X^* = \frac{x}{1-x} - \frac{x^*}{1-x^*}. \]

Так как в данном примере \(x \) и \(x^* \) оба много меньше единицы, то в знаменателях последнего уравнения ими можно пренебречь и

\[\Delta X = x - x^* = 0,094 \cdot 10^{-3} \cdot \frac{\text{кмоль ацетилена}}{\text{кмоль воды}}. \]

б) Мольная доля ацетилена в воде:

\[x \approx 18 \cdot 0,153 \cdot 10^{-8}/26 = 0,106 \cdot 10^{-3}. \]

Перехода ацетилена из одной фазы в другую не будет, так как соприкасающиеся фазы находятся в равновесии:

\[x = x^* = 0,106 \cdot 10^{-8}, \quad y = y^* = 0,14. \]

Пример 6.4. В массообменном аппарате, работающем под давлением \(p_{абс} = 3,1 \text{ кгс/см}^2 \), коэффициенты массоотдачи имеют следующие значения: \(\beta_y = 1,07 \frac{\text{кмоль}}{\text{м}^2 \cdot \text{ч} \cdot \text{дм} \cdot 1}, \quad \beta_x = 22 \frac{\text{кмоль}}{\text{м}^2 \cdot \text{ч} \cdot \text{дм} \cdot 1}. \)

Равновесные составы газовой и жидкой фаз характеризуются законом Генри \(p^* = 0,08 \cdot 10^8 \cdot x \). Определить: а) коэффициенты массопередачи \(K_y \) и \(K_x \); б) сколько раз диффузионное сопротивление жидкой фазы отличается от диффузионного сопротивления газовой фазы:

Решение. Приведем уравнение равновесия к виду \(y^* = mx \):

\[y^* = \frac{p^*}{\Pi} = \frac{0,08 \cdot 10^8}{3,1 \cdot 735} \cdot x = 35,1x. \]
Находим коэффициенты массопередачи:

\[K_y = \frac{1}{\frac{1}{\beta y} + \frac{m}{\beta x}} = \frac{1}{\frac{1}{1,07} + \frac{35,1}{22}} = \frac{1}{0,935 + 1,595} = \]
\[= 0,396 \frac{\text{кмоль}}{\text{м}^2\cdot\text{ч} (\Delta y = 1)} \]
\[K_x = \frac{1}{\frac{1}{m\beta y} + \frac{1}{\beta x}} = \frac{1}{\frac{1}{35,1 \cdot 1,07} + \frac{1}{22}} = \frac{1}{0,0266 + 0,0455} = \]
\[= 13,9 \frac{\text{кмоль}}{\text{м}^2\cdot\text{ч} (\Delta x = 1)} \]

Проверка:
\[K_x/K_y = 13,9/0,396 = 35,1 = m. \]

Отношение диффузионных сопротивлений жидкой и газовой фаз при движущей силе \(\Delta y \):
\[\frac{m}{\beta x} : \frac{1}{\beta y} = \frac{1,595}{0,935} = 1,71. \]

Такое же отношение будет и при движущей силе \(\Delta x \).
Диффузионное сопротивление жидкой фазы в 1,71 раза больше сопротивления газовой фазы.

Пример 6.5. В массообменном аппарате — абсорбере коэффициент массопередачи \(K_y = 10,4 \frac{\text{кмоль}}{\text{м}^2\cdot\text{ч} \cdot \text{кмоль} / \text{м}^3} \). Инертный газ (не переходящий в жидкость) — азот. Давление \(p_{абс} \) в аппарате 760 мм рт. ст., температура 20 °C. Определить значения коэффициента массопередачи \(K_y \) в следующих единицах: 1) \(\frac{\text{кмоль}}{\text{м}^2\cdot\text{ч} (\Delta y = 1)} \); 2) \(\frac{\text{кмоль}}{\text{м}^2\cdot\text{ч} \cdot \text{мм рт. ст.}} \); 3) \(\frac{\text{кг}}{\text{м}^2\cdot\text{ч} \cdot \text{кг инертного газа}} \).

Решение. Напишем равенства:
\[M = K_y \Delta C_y F = K_y \Delta y F = K_y'' \Delta p F, \]
где \(M \) — мольный расход переходящего в жидкость компонента, кмоль/ч.

Отсюда:
1) \[K_y \Delta C_y = K_y' \Delta y, \text{ т. е. } \]
\[K_y' = K_y \frac{\Delta C_y}{\Delta y}. \]

Из табл. 6.2:
\[C_y = \frac{\rho}{M_{см}} y = \frac{11 T_0}{22,4 \Pi_0 T} y. \]
В данном примере $\Pi = \Pi_0$ и

$$\frac{\Delta C_y}{\Delta y} = \frac{T_0}{22,4 T} = \frac{273}{22,4 \cdot 293} = 0,0416;$$

$$K'_y = K_y \frac{\Delta C_y}{\Delta y} = 10,4 \cdot 0,0416 = 0,433 \frac{\text{кмоль}}{\text{м}^2 \cdot \text{ч} \cdot (\Delta y = 1)}.$$

2) $K'_y \Delta y = K''_y \Delta p$.

По уравнению (6.1):

$$y = \frac{p}{\Pi}; \quad \Delta y = \Delta p/\Pi;$$

$$K''_y = K'_y \frac{\Delta y}{\Delta p} = \frac{K'}{\Pi} = \frac{0,433}{760} = 5,69 \cdot 10^{-4} \frac{\text{кмоль}}{\text{м}^2 \cdot \text{ч} \cdot \text{мм рт. ст.}},$$

или

$$\frac{5,69 \cdot 10^{-4}}{3600 \cdot 133,3} = 1,19 \cdot 10^{-9} \frac{\text{кмоль}}{\text{м}^2 \cdot \text{с} \cdot \text{Па}}.$$

3) Из равенств

$$W = M_r M = M_k K'_y \Delta y F = K''_y \Delta \bar{y} F$$

(где W — массовый расход переходящего компонента, кг/ч) находим:

$$K''' _y = K'_y M_k \frac{\Delta y}{\Delta \bar{y}}.$$

По табл. 6.2:

$$\bar{y} = \frac{M_k y}{M_k y (1 - y)}.$$

Здесь M_k и $M_{и. г.}$ — мольные массы переходящего компонента и инертного газа. При малых значениях y,

$$\bar{y} \approx \frac{M_k}{M_{и. г.}} y.$$

Отсюда

$$\Delta y/\Delta \bar{y} \approx M_{и. г.}/M_k;$$

$$K''''_y = K'_y \frac{M_k \Delta y}{\Delta \bar{y}} = K'_y M_{и. г.} = 0,433 \cdot 28 = 12,1 \frac{\text{кг}}{\text{м}^2 \cdot \text{ч} \cdot \frac{\text{кг}}{\text{кг инертного газа}}}$$.

Пример 6.6. Вычислить коэффициент диффузии сероводорода в воде при 40 °C.

Решение. Сначала вычислим коэффициент диффузии при 20 °C по формуле (6.22):

$$D_{20} = \frac{1 \cdot 10^{-6}}{AB V \mu (v^{1/3}_A + v^{1/3}_B)^2} \sqrt{\frac{1}{M_A} + \frac{1}{M_B}}.$$

300
Для сероводорода

\[A = 1 \]
\[v_A = 2 \cdot 3,7 + 25,6 = 33,0 \] (табл. 6.3)
\[M_A = 34 \]

Для воды

\[B = 4,7 \]
\[\mu = 1 \text{ сП} = \]
\[= 1 \text{ мПа·с} \]
\[v_B = 2 \cdot 3,7 + \]
\[+ 7,4 = 14,8 \]
\[M_B = 18 \]

Подставляем эти значения в формулу (6.22):

\[D_{20} = \frac{1 \cdot 10^{-6}}{4,7 \cdot 1 \left(14,8^{1/8} + 33^{1/3}\right)^2} \sqrt{\frac{1}{18} + \frac{1}{34}} = 1,93 \cdot 10^{-9} \text{ м}^2/\text{с}. \]

Вычисляем температурный коэффициент \(b \) по формуле (6.24):

\[b = 0,2 \sqrt{\frac{\mu}{\sqrt{\rho}}} = 0,2 \sqrt{1/\sqrt{1000}} = 0,02. \]

Искомый коэффициент диффузии по формуле (6.23) равняется:

\[D_{40} = 1,93 \cdot 10^{-9} \left[1 + 0,02 \left(40 - 20\right)\right] = 2,7 \cdot 10^{-9} \text{ м}^2/\text{с}. \]

Для сравнения рассчитаем коэффициент диффузии сероводорода в воде при 40°С по формуле (6.25):

\[D_{40} = \frac{7,4 \cdot 10^{-12} \left(2,6 \cdot 18\right)^{0,5} \cdot 313}{0,656 \cdot 33^{0,5}} = \frac{7,4 \cdot 10^{-12} \cdot 6,83 \cdot 313}{0,656 \cdot 8,15} = 2,96 \cdot 10^{-9} \text{ м}^2/\text{с}. \]

Здесь 0,656 мПа·с — динамический коэффициент вязкости воды при 40°С (табл. VI).

Пример 6.7. Определить расход серной кислоты для осушки воздуха при следующих данных. Производительность скруббера 500 м³/ч (считая на сухой воздух при нормальных условиях). Начальное содержание влаги в воздухе 0,016 кг/кг сухого воздуха, конечное содержание 0,006 кг/кг сухого воздуха. Начальное содержание воды в кислоте 0,6 кг/кг моногидрата, конечное содержание 1,4 кг/кг моногидрата. Осушка воздуха производится при атмосферном давлении.

Решение. Массовый расход воздуха:

\[G = 500 \cdot 1,293 = 646 \text{ кг/ч}, \]

где 1,293 кг/м³ — плотность воздуха при нормальных условиях.

По уравнению (6.26) расход серной кислоты (моногидрата):

\[L = G \frac{\bar{Y}_n}{\bar{X}_n} - \frac{\bar{Y}_b}{\bar{X}_b} = 646 \frac{0,016 - 0,006}{1,4 - 0,6} = 8,1 \text{ кг/ч}. \]

Пример 6.8. Скруббер для поглощения паров ацетона из воздуха орошается водой в количестве 3000 кг/ч. Средняя температура в скруббере 20°С. Через скруббер пропускается под атмосферным давлением смесь воздуха с парами ацетона, содержащая 6% (об.) ацетона. Чистого воздуха в этой смеси содержит 1400 м³/ч (считая на нормальные условия). В скруббере улавливается 98% ацетона.
Уравнение линии равновесия:

\[Y^* = 1.68X. \]

Здесь \(X \) и \(Y^* \) выражены в киломолях ацетона на 1 кмоль второго компонента, т. е. воды или воздуха.

Найти диаметр и высоту скруббера, заполненного керамическими кольцами размером 25х25х3 мм. Скорость газа принять на 25% меньше скорости захлебывания.

Коэффициент массопередачи \(K_y = \frac{0.4 \text{ кмоль ацетона}}{\text{м}^2 \cdot \text{ч} \times \frac{\text{моль ацетона}}{\text{моль воздуха}}} \). Коэффициент смоченности насадки принять равным единице.

Решение. Количество поглощаемого ацетона:

\[M = \frac{V_\text{ин.} \cdot \eta \cdot \eta_n \cdot c_n}{(1 - y) \cdot 22.4} = \frac{1400 \cdot 0.06 \cdot 0.98}{0.94 \cdot 22.4} = 3.9 \text{ кмоль/ч}, \]

где \(c_n = 0.98 \) — степень поглощения.

Начальная концентрация ацетона в воде, подаваемой на верх скруббера, \(X_\text{в} = 0 \).

Конечная концентрация ацетона в воде, вытекающей внизу из скруббера:

\[X_\text{н} = \frac{M_\text{в}}{L/M_\text{в}} = \frac{3.9}{3000/18} = 0.0234 \text{ кмоль ацетона} \quad \text{кмоль воды}. \]

Начальная концентрация ацетона в воздухе внизу при входе в скруббер:

\[Y_\text{в} = \frac{y_n}{1 - y_n} = \frac{0.06}{0.94} = 0.0639 \text{ кмоль ацетона} \quad \text{кмоль воздуха}. \]

Конечная концентрация ацетона в воздухе, выходящем из скруббера:

\[Y_\text{н} = \frac{y_n (1 - c_n)}{1 - y_n} = \frac{0.06 \cdot 0.02}{0.94} = 0.00128 \text{ кмоль ацетона} \quad \text{кмоль воздуха}. \]

По этим точкам на диаграмме \(Y-X \) (рис. 6.5) нанесена рабочая линия; ниже проведена равновесная линия по уравнению \(Y^* = 1.68X \).

Рис. 6.5 (к примеру 6.8).
Находим движущую силу абсорбции в низу скруббера:

\[\Delta Y_n = Y_n - Y_n^* = 0,0639 - 0,0393 = 0,0246 \ \text{кмоль ацетона} \ \text{кмоль воздуха}. \]

Значение \(Y_n^* \) находим по уравнению равновесной линии для \(X_n \), соответствующего низу скруббера:

\[Y_n^* = 1,68X_n = 1,68 \cdot 0,0234 = 0,0393 \ \text{кмоль ацетона} \ \text{кмоль воздуха}. \]

Движущая сила абсорбции на верху скруббера:

\[\Delta Y_v = Y_v - Y_v^* = 0,00128 - 0 = 0,00128 \ \text{кмоль ацетона} \ \text{кмоль воздуха}. \]

Средняя движущая сила:

\[\Delta Y_{ср} = \frac{\Delta Y_n - \Delta Y_v}{2,3 \lg \frac{\Delta Y_n}{\Delta Y_v}} = \frac{0,0246 - 0,00128}{2,3 \lg \frac{0,0246}{0,00128}} = 0,0079 \ \text{кмоль ацетона} \ \text{кмоль воздуха}. \]

Требуемую поверхность массопередачи находим по уравнению:

\[F = \frac{M}{K_y \Delta Y_{ср}} = \frac{3,9}{0,4 \cdot 0,0079} = 1230 \ \text{м}^2. \]

Объем слоя керамических колец, необходимый для создания найденной поверхности, при \(\psi = 1 \) [см. уравнение (6.38)]:

\[V = H_nS = F/\sigma = 1230/204 = 6 \ \text{м}^3, \]

где \(\sigma = 204 \ \text{м}^2/\text{м}^3 \) — удельная поверхность насадки (табл. XVII).

Определим сечение скруббера.

По уравнению (6.36) вычисляем фиктивную скорость газа в точке инверсии, пренебрегая небольшим содержанием ацетона в жидкости и газе.

Значения входящих в уравнение величин:

\[L = 3000 \ \text{кг/ч}; \ \rho_r = \rho_0 \frac{T_0}{T} = 1,293 \frac{273}{293} = 1,2 \ \text{кг/м}^3; \]

\[G = 1400 \cdot 1,293 = 1810 \ \text{кг/ч}; \ \rho_{ж} = 1000 \ \text{кг/м}^3; \]

\[\frac{L}{G} = \frac{3000}{1810} = 1,66; \ \rho_r/\rho_{ж} = 1,2/1000 = 0,0012; \]

\[\mu_{ж} = 1 \ \text{Па} \cdot \text{с}; \ V_{cp} = 0,74 \ \text{м}^3/\text{м}^3 \] (табл. XVII).

Подставляем эти значения в формулу (6.36):

\[\lg \left(\frac{w^2 \cdot 0,0012}{9,81 \cdot 0,74^3} \right)^{10^{16}} = 0,022 - 1,75 \cdot 1,66^{0,25} \cdot 0,0012^{0,125} \]

или

\[\lg 0,0616w^3 = -0,8265, \]

откуда \(w = 1,56 \ \text{м/с}. \)
По условию берем рабочую фиктивную скорость газа \(w \) на 25% меньше:
\[
 w = 0,75 \cdot w_0 = 0,75 \cdot 1,56 = 1,17 \text{ м/с}.
\]

Площадь поперечного сечения скруббера:
\[
 S = \frac{G}{3600 \cdot \omega_{р_т}} = \frac{1810}{3600 \cdot 1,17 \cdot 1,2} = 0,358 \text{ м}^2.
\]

Отсюда диаметр скруббера:
\[
 D = \sqrt{\frac{0,358}{0,785}} = 0,675 \text{ м}.
\]

Требуемая высота насадки:
\[
 H_н = \frac{V}{S} = \frac{6}{0,358} = 16,8 \text{ м}.
\]

Пример 6.9. Определить коэффициент массопередачи в водяном скруббере при поглощении из газа диоксида углерода по следующим данным. В скруббере поступает 5000 м³/ч газовой смеси, содержащей при атмосферном давлении и при рабочей температуре. На скруббер подается 650 м³/ч чистой воды. Начальное содержание диоксида углерода в газе 28,4% (об.), конечное (в верху скруббера) 0,2% (об.). Давление в скруббере \(p_{абс} = 16,5 \) кгс/см². Температура 15°С. В нижнюю часть скруббера загружено 3 т керамических колец \(50 \times 50 \times 5 \) мм. Выше загружено 17 т колец \(35 \times 35 \times 4 \) мм. Коэффициент смоченности считать равным единице.

Решение. Вычислим суммарную поверхность всех колец.
Поверхность колец \(50 \times 50 \times 5 \) мм:
\[
f_1 = \frac{G_1}{\rho_1} \sigma_1 = \frac{3000}{530} 87,5 = 495 \text{ м}^2,
\]
где \(\rho_1 = 530 \) кг/м³ — насыпная плотность насадки из колец \(50 \times 50 \times 5 \) мм; \(\sigma_1 = 87,5 \) м²/м³ — удельная поверхность насадки (табл. XVII).

Аналогично вычисляем поверхность колец \(35 \times 35 \times 4 \) мм:
\[
f_2 = \frac{G_2}{\rho_2} \sigma_2 = \frac{17000}{505} 140 = 4717 \text{ м}^2.
\]

Суммарная поверхность всех колец:
\[
F = f_1 + f_2 = 495 + 4717 = 5212 \text{ м}^2.
\]

Определим количество диоксида углерода, поглощенного водой.
Начальное количество диоксида углерода в газе (в низу скруббера):
\[
V_{нСO_2} = V_{ном} y_н = 5000 \cdot 0,284 = 1420 \text{ м}^3/ч.
\]

Количество диоксида углерода в выходящем газе (в верху скруббера):
\[
V_{вСO_2} = V_{вом} y_в = \frac{V_{ном} - V_{нСO_2}}{1 - y_в} y_в = \frac{5000 - 1420}{1 - 0,002} y_в = 7,2 \text{ м}^3/ч}.
\]

804.
Поглощается водой:

\[
V_{погл} = V_{НСO_2} - V_{ВCO_2} = 1420 - 7,2 = 1412,8 \text{ м}^3/\text{ч} \ (\rho = 1 \text{ кг} / \text{см}^3, \\
\text{или} \sim 0,1 \text{ МПа}, \text{ и } t = 15^\circ \text{C})
\]

или

\[
G_{погл} = \frac{V_{погл}T_0}{T} \rho_0 = \frac{1412,8 \cdot 273}{273 + 15} \cdot 1,976 = 2630 \text{ кг/ч},
\]

т. е. 2630/44 = 60 кмоль/ч.

Здесь 1,976 кг/м³ — плотность СО₂ при нормальных условиях; 44 кг/кмоль — мольная масса СО₂.

Находим движущую силу процесса абсорбции в низу скрубберов.

Парциальное давление диоксида углерода на входе в скруббер:

\[
\rho_n = \Pi y_n = 0,284 \cdot 1620 = 460 \text{ кПа},
\]

где 1620 = 16,5·98,1 кПа — общее давление в скруббере.

Мольная доля СО₂ в воде, вытекающей из скруббера:

\[
x_n = \frac{G_{CO_2}/M_{CO_2}}{G_{CO_2}/M_{CO_2} + G_{H_2O}/M_{H_2O}} = \frac{2630/44}{2630/44 + 18} = 0,00166.
\]

Коэффициент Генри \(E \) для диоксида при 15 °C равен 0,93 x x 10⁸ мм рт. ст. (табл. XLI), или 0,124·10⁸ кПа; отсюда парциальное давление диоксида углерода в газе, равновесном с жидкостью, вытекающей из скруббера [уравнение (6.2)]:

\[
\rho_n^* = E x_n = 0,00166 \cdot 0,124 \cdot 10^8 = 206 \text{ кПа}.
\]

Движущая сила процесса абсорбции в низу скруббера:

\[
\Delta \rho_n = \rho_n - \rho_n^* = 460 - 206 = 254 \text{ кПа}.
\]

Определяем движущую силу процесса абсорбции на верху скруббера.

Парциальное давление диоксида углерода в газе, выходящем вверху из скруббера:

\[
\rho_v = \Pi y_v = 1620 - 0,002 = 3,24 \text{ кПа}.
\]

Так как вода на орошение скруббера подается чистая, то парциальное давление диоксида углерода в равновесном с водой газе равно нулю; отсюда движущая сила процесса абсорбции на верху скруббера:

\[
\Delta \rho_v = \rho_v - \rho_v^* = 3,24 - 0 = 3,24 \text{ кПа}.
\]

Средняя движущая сила для всего процесса:

\[
\Delta \rho_{ср} = \frac{254 - 3,24}{2,3 lg (254/3,24)} = 57,4 \text{ кПа}.
\]
<table>
<thead>
<tr>
<th>(X) кмоль аммиака кмоль воды</th>
<th>(Y^*) кмоль аммиака кмоль инертного газа</th>
<th>(X) кмоль аммиака кмоль воды</th>
<th>(Y^*) кмоль аммиака кмоль инертного газа</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0,015</td>
<td>0,0183</td>
</tr>
<tr>
<td>0,005</td>
<td>0,0045</td>
<td>0,020</td>
<td>0,0273</td>
</tr>
<tr>
<td>0,010</td>
<td>0,0102</td>
<td>0,023</td>
<td>0,0327</td>
</tr>
<tr>
<td>0,0125</td>
<td>0,0138</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Коэффициент массопередачи:

\[
K_{\Delta p} = \frac{M}{F_{\Delta p_{кр}}} = \frac{2630}{5212 \cdot 57,4} = 0,0088 \frac{кг}{м^2 \cdot ч \cdot кПа}.
\]

Если коэффициент массопередачи отнести к разности давлений \(\Delta p \), выраженной в мм рт. ст., то получим следующее его значение:

\[
K_{\Delta p} = \frac{2630}{5212 (57,4/0,133)} = 0,0012 \frac{кг}{м^2 \cdot ч \cdot мм рт. ст}.
\]

Пример 6.10. В скруббере аммиак поглощается водой из газа под атмосферным давлением. Начальное содержание аммиака в газе 0,03 кмоль/кмоль инертного газа. Степень извлечения равна 90%. Вода, выходящая из скруббера, содержит аммиак 0,02 кмоль/кмоль воды. Путем отвода теплоты в скруббере поддерживаются постоянная температура.

Данные о равновесных концентрациях аммиака в жидкости и газе при температуре поглощения приведены в табл. 6.4.

Определить требуемое число единиц переноса \(n_{0y} \): 1) графическим построением; 2) методом графического интегрирования.

Решение. 1) По данным табл. 6.4 на рис. 6.6 построена равновесная линия \(AB \). На этом же графике нанесена рабочая линия \(CD \). Она проходит через точку \(C \) с координатами \(X_B = 0, Y_B = 0,03 (1 - 0,9) = 0,003 \) (верх скруббера) и точку \(D \) с координатами \(X_B = 0,02, Y_B = 0,03 \) (низ скруббера).

Число единиц переноса \(n_{0y} \) находим следующим путем. Отрезки ординат между рабочей и равновесной линиями разделены пополам; через середины их проведена вспомогательная пунктирная линия. Затем, начиная от точки \(C \), построение выполнено таким образом, что для каждой ступени \(ab = bc \). Каждая из полученных ступеней представляет собой единицу переноса, т. е. каждой ступени соответствует такой участок аппарата, на котором изменение рабочей концентрации \(Y_1 - Y_2 \) равно средней движущей силе на этом участке \((Y - Y^*)_{ср} \).

Всего получено 5,82 ступени (последняя неполная ступень равна отношению отрезков \(Dd/ef = 0,82 \)):

\[
n_{0y} = 5,82.
\]
Как следует из графика, на нижнем участке кривой равновесия, где ее наклон меньше наклона рабочей линии, единица переноса меньше ступени изменения концентрации; на верхнем участке равновесной линии, где ее наклон больше наклона рабочей линии, наблюдается обратная картина.

2) Для определения числа единиц переноса методом графического интегрирования по данным табл. 6.4 и рис. 6.6 составляем табл. 6.5.

По данным последней таблицы строим график \(\frac{1}{(Y - Y^*)} = \frac{dY}{Y - Y^*} \) — рис. 6.7. Подсчитываем на этом графике отмеченную штриховкой площадь (например, методом трапеций) (см. пример

Таблица 6.5

<table>
<thead>
<tr>
<th>(x)</th>
<th>(Y)</th>
<th>(Y^*)</th>
<th>(Y - Y^*)</th>
<th>(\frac{1}{Y - Y^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,003</td>
<td>0</td>
<td>0,003</td>
<td>333</td>
</tr>
<tr>
<td>0,005</td>
<td>0,0097</td>
<td>0,0045</td>
<td>0,0052</td>
<td>193</td>
</tr>
<tr>
<td>0,010</td>
<td>0,0165</td>
<td>0,0102</td>
<td>0,0063</td>
<td>159</td>
</tr>
<tr>
<td>0,0125</td>
<td>0,0200</td>
<td>0,0138</td>
<td>0,0062</td>
<td>161</td>
</tr>
<tr>
<td>0,015</td>
<td>0,0234</td>
<td>0,0183</td>
<td>0,0051</td>
<td>196</td>
</tr>
<tr>
<td>0,020</td>
<td>0,0300</td>
<td>0,0273</td>
<td>0,0027</td>
<td>371</td>
</tr>
</tbody>
</table>
Величина этой площади (5,83) дает значение интеграла \[\int_{y_{b}}^{0,03} \frac{dV}{V - y^*}, \] t. e. число единиц переноса \(n_{0y} \).

Пример 6.11. Определить теоретически минимальный расход жидкого поглотителя с мольной массой 224 кг/кмоль, необходимый для полного извлечения пропана и бутана из 1000 м³/ч (считая при нормальных условиях) газовой смеси. Содержание пропана в газе 15% (об.), бутана 10% (об.). Температура в абсорбере 30 °C, абсолютное давление 3 кгс/см² (294 кПа). Растворимость бутана и пропана в поглотителе характеризуются законом Рауля.

Решение. Максимальная концентрация (мольная доля) пропана в поглотителе, вытекающем из скруббера (равновесная с входящим газом), определяется по уравнению (6.8):

\[x_{n}^{*} = \frac{P_{n}}{P_{n}} \cdot y_{n} = \frac{294}{981} \cdot 0,15 = 0,045, \]

где \(P_{n} = 981 \) кПа (10 кгс/см²) — давление насыщенного пара пропана при 30 °C.

Количество содержащегося в газовой смеси пропана, которое требуется поглощать:

\[G_{n} = V_{y_{n}}/22,4 = 1000 \cdot 0,15/22,4 = 6,7 \text{ кмоль/ч}. \]

Минимальный расход поглотителя для поглощения пропана определяется из уравнения:

\[\frac{L_{\text{мин}} x_{n}^{*}}{1 - x_{n}^{*}} = G_{n}, \]

откуда

\[L_{\text{мин}} = \frac{G_{n} \cdot (1 - x_{n}^{*})}{x_{n}^{*}} = \frac{6,7 \cdot 0,955}{0,045} = 142 \text{ кмоль/ч}, \]

или 142 \cdot 224 = 31 800 кг/ч.

Наибольшая возможная концентрация бутана в поглотителе, вытекающем внизу из скруббера:

\[x_{b}^{*} = \frac{P_{b}}{P_{b}} \cdot y_{b} = \frac{294}{265} \cdot 0,1 = 0,11, \]

где \(P_{b} = 265 \) кПа (2,7 кгс/см²) — давление насыщенного пара бутана при 30 °C.

Количество поглощаемого бутана:

\[G_{b} = V_{y_{b}}/22,4 = 1000 \cdot 0,1/22,4 = 4,47 \text{ кмоль/ч}. \]

Минимальный расход поглотителя для поглощения бутана:

\[L_{\text{мин}} = G_{b} \cdot (1 - x_{b})/x_{b} = 4,47 \cdot 0,89/0,11 = 36,1 \text{ кмоль/ч}. \]

Минимальный расход поглотителя для полного поглощения бутана значительно меньше, чем для поглощения пропана, следо-
вательно, найденным выше количеством поглотителя (142 кмоль/ч) бутан будет полностью уловлен.

Пример 6.12. Определить коэффициент массоотдачи для газовой фазы в насадочном абсорбере, в котором производится поглощение диоксида серы из инертного газа (азота) под атмосферным давлением. Температура в абсорбере 20 °C, он работает в плечном режиме. Скорость газа в абсорбере (фиктивная) 0,35 м/с. Абсорбер заполнен кусками кокса (с = 42 м²/м³, \(V_{cb} = 0,58 \text{ м}^3/\text{м}^3 \)).

Решение. По уравнению (6.45):

\[
Nu' = 0,407 \, Re_G^{0,655} \, (Pr_G')^{0,33},
\]

где

\[
Re_G = \frac{4\sigma_\rho}{\sigma_\mu} = \frac{4 \cdot 0,35 \cdot 1,16}{42 \cdot 0,0175 \cdot 10^{-3}} = 2210;
\]

\[
\rho_G = \frac{28 \cdot 273}{22,4 \cdot 293} = 1,16 \text{ кг/м}^3; \quad \mu_G = 0,175 \cdot 10^{-3} \text{ Па·с (рис. VI).}
\]

Коэффициент диффузии \(D \) принимаем такой же, как в воздухе. Имеем:

\[
D = 10,3 \cdot 10^{-6} (293/273)^{1,5} = 11,45 \cdot 10^{-6} \text{ м}^2/\text{с (табл. XLIII)};
\]

\[
Pr_G = \frac{\mu_G}{\rho_G D} = \frac{0,0175 \cdot 10^{-3}}{1,16 \cdot 11,45 \cdot 10^{-6}} = 1,32.
\]

Диффузионный критерий Нуссельта:

\[
Nu' = \beta_G d_v/D_v = 0,407 \cdot 2210^{0,655} \cdot 1,32^{0,33} = 69.
\]

Эквивалентный диаметр:

\[
d_v = 4V_{cb}/\sigma = 4 \cdot 0,58/42 = 0,055 \text{ м.}
\]

Коэффициент массоотдачи:

\[
\beta_G = Nu'D_v/d_v = 69 \cdot 11,45 \cdot 10^{-6}/0,055 = 144 \cdot 10^{-4} \text{ м/с.}
\]

Пример 6.13. Из критериального уравнения (6.45) вывести расчетную формулу для определения высоты единицы переноса по газовой фазе.

Решение. Из уравнения (6.12)

\[
\frac{1}{K_y} = \frac{1}{\beta_y} + \frac{m}{\beta_x},
\]

в котором \(K_y, \beta_y, \) и \(\beta_x \) выражены в кмоль/(м²·с), получаем

\[
\frac{G}{K_y S \sigma} = \frac{G}{\beta_y S \sigma} + \frac{mG}{L} \frac{L}{\beta_x S \sigma}
\]

или в соответствии с уравнением (6.43) при \(\psi = 1 \)

\[
h_{yy} = h_y + \frac{mG}{L} h_x.
\]
Здесь G и L — мольные расходы газа и жидкости, кмоль/с; S — поперечное сечение абсорбера, м2; σ — удельная поверхность насадки, м2/м3; $h_y = G/(\beta_y S\sigma)$ — высота единицы переноса для газовой фазы, м; $h_x = L/(\beta_x S\sigma)$ — то же для жидкой фазы, м.

В критериальном уравнении (6.45)

$$Nu_y' = 0,407 \operatorname{Re}_y^{0.65} \left(Pr_y'
ight)^{0.33},$$

где $Nu_y' = \frac{\beta_y d_3}{D_3}$, коэффициент массоотдачи β_y выражен в $\frac{\text{кмоль}}{\text{м}^2 \cdot \text{с} \cdot \text{моль}} = \text{м/с}$.

Соотношение между β_y и β_r находим из уравнения:

$$\beta_y \Delta y = \beta_r \Delta C_y,$$

откуда

$$\beta_y = \beta_r \frac{\Delta C_y}{\Delta y} = \beta_r \frac{\rho_r}{M_{cm}} \ (\text{см. табл. 6.2}).$$

Тогда

$$h_y = \frac{G}{\beta_y S\sigma} = \frac{GM_{cm}}{\beta_r \rho_r S\sigma} = \frac{\omega}{\beta_r \sigma} \quad \text{и} \quad \beta_r = \frac{\omega}{h_y \sigma},$$

где $\omega = \frac{GM_{cm}}{\rho_r S}$ — фиктивная скорость, м/с.

Подставляя найденное значение β_r в выражение для диффузионного критерия Нусселята, получаем:

$$Nu_y' = \frac{\omega \mu_r \rho_r}{h_y \sigma D_r \mu_r \rho_r} = \frac{\omega \mu_r}{\sigma \mu_r} \frac{\mu_r}{D_r \rho_r} \frac{d_3}{h_y} = \frac{\operatorname{Re}_y \operatorname{Pr}_y' d_3}{4 h_y}$$

и из уравнения (6.45):

$$h_y = 0,615 d_3 \operatorname{Re}_y^{0.345} \left(Pr_y'
ight)^{0.67}.$$
Характеристики насадки \(V_{sv} = 0,785 \text{ м}^3/\text{м}^3 \) и \(\sigma = 87,5 \text{ м}^2/\text{м}^3 \) берем из табл. XVII. Таким образом,

\[
d_0 = \frac{4V_{sv}}{\sigma} = \frac{4 \cdot 0,785}{87,5} = 0,0359 \text{ м};
\]

\[
Re_t = \frac{4\omega r}{\sigma u_r} = \frac{4 \cdot 0,041 \cdot 13,4}{87,5 \cdot 1,31 \cdot 10^{-4}} = 1920.
\]

Здесь

\[
\rho_v = \frac{M_r \Pi T_0}{22,4 \Pi_0 T} = \frac{20,3 \cdot 16 \cdot 273}{22,4 \cdot 295} = 13,4 \text{ кг/м}^3;
\]

\[
Pr_r = \frac{\mu_r}{\rho_r D_r} = \frac{1,31 \cdot 10^{-5}}{13,4 \cdot 1,7 \cdot 10^{-8}} = 0,575.
\]

Высота единицы переноса для газовой фазы:

\[
h_y = 0,615 \cdot 0,0359 \cdot 1920^{0,345 \cdot 0,575^{0,67}} = 0,205 \text{ м}.
\]

Находим \(h_x \) — высоту единицы переноса для жидкой фазы по формуле

\[
h_x = 119 \delta_{np} Re_{ж}^{0,25} (Pr_{ж})^{0,5},
\]

полученной из уравнения (6.46) так же, как в предыдущем примере из уравнений (6.45) получено выражение для \(h_y \).

Значения физико-химических свойств воды при 22 °С:

\(\rho_{ж} = 1000 \text{ кг/м}^3; \mu_{ж} = 0,958 \cdot 10^{-3} \text{ Па} \cdot \text{с} \) (из табл. VI); \(D_{ж} = 1,87 \cdot 10^{-9} \text{ м}^2/\text{с} \) (табл. XL111).

Приведенная толщина жидкой пленки:

\[
\delta_{np} = \left(\frac{\mu_{ж}^2}{\rho_{ж}^2 g} \right)^{1/3} = \left(\frac{0,958 \cdot 10^{-3}}{10^8 \cdot 9,81} \right)^{1/3} = 4,55 \cdot 10^{-5} \text{ м}.
\]

По условию плотность орошения:

\[
\frac{L_m}{S \rho_{ж}} = 0,064 \text{ м}^3/(\text{м}^2 \cdot \text{с}),
\]

где \(L_m \) — массовый расход жидкости, кг/с.

Массовая плотность орошения:

\[
L_m/S = 0,064 \rho_{ж} = 64 \text{ кг}/(\text{м}^2 \cdot \text{с}).
\]

По уравнению (6.50):

\[
Re_{ж} = \frac{4L_m}{S \sigma \mu_{ж}} = \frac{4 \cdot 0,64}{87,5 \cdot 0,958 \cdot 10^{-3}} = 3060;
\]

\[
Pr_{ж} = \frac{\mu_{ж}}{\rho_{ж} D_{ж}} = \frac{0,958 \cdot 10^{-3}}{1000 \cdot 1,87 \cdot 10^{-9}} = 512.
\]

Высота единицы переноса для жидкой фазы:

\[
h_x = 119 \cdot 4,55 \cdot 10^{-5} \cdot 3060^{0,25} \cdot 512^{0,5} = 0,91 \text{ м}.
\]
Находим отношение мольных расходов газа и жидкости G/L.
Из уравнения расхода для газа $\omega = GM_*/(\rho S)$ получаем:

$$G/S = \omega_0/M_0 = 0,041 \cdot 13,4/20,3 = 0,0271 \text{ кмоль}/(\text{м}^2 \cdot \text{с}).$$

Для жидкости:

$$L_0/S = L_m/SM_\text{м} = 64/18 = 3,56 \text{ кмоль}/(\text{м}^2 \cdot \text{с}).$$

Отсюда

$$G/L = 0,0271/3,56 = 0,00761.$$

Коэффициент распределения m в уравнении (6.12):

$$m = \frac{E}{\Pi} = \frac{1,144 \cdot 10^6}{16.735} = 97,3 - \text{см. уравнение (6.3)},$$

где коэффициент Генри $E = 1,144 \cdot 10^6$ мм рт. ст. (при 22°C) получен интерполяцией данных табл. XLI.

Общая высота единицы переноса:

$$h_0y = h_y + \frac{mG}{L} h_x = 0,205 + 97,3 \cdot 0,00761 \cdot 0,91 = 0,205 + 0,675 = 0,88 \text{ м.}$$

Пример 6.15. По данным примера 6.8 определить число единиц переноса в абсорбере с учетом обратного (продольного) перемешивания.

Решение. Число единиц переноса для условий идеального вытеснения, т. е. без учета обратного перемешивания, составляет:

$$n_{0y} = (Y_\text{в} - Y_\text{в})/\Delta Y_\text{ср} = (0,0639 - 0,00128)/0,0079 = 7,93.$$

Искомое число единиц переноса с учетом обратного перемешивания $n_{0y}^\text{обр}$ находим из уравнения

$$\frac{1}{n_{0y}^\text{обр}} = \frac{1}{n_{0y}} - \frac{1}{n_{0y}^\text{обр}},$$

в котором поправка на обратное перемешивание $n_{0y}^\text{обр}$ равняется

$$n_{0y}^\text{обр} = A \ln A / A - 1 \Phi + Pe_{\text{пр}}^\text{обр},$$

где $A = L/mG$; $\Phi = 1 - \frac{0,05}{(Pe_{\text{пр}})^{0.25}} \left(\frac{A}{n_{0y}^\text{обр}}\right)^0.5$.

Значение критерия $Pe_{\text{пр}}^\text{обр}$ вычисляют по уравнению:

$$\frac{1}{Pe_{\text{пр}}^\text{обр}} = \frac{1}{A / Pe_{\text{м. г}}} + \frac{1}{f_{\text{ж}} Pe_{\text{м. ж}}}.$$

Здесь $f_{\text{ж}} = \frac{n_{0y}^\text{обр} + 6,7 A^{0.5}}{n_{0y}^\text{обр} + 6,8 A^{1.5}}$; $f_{\text{ж}} = \frac{n_{0y}^\text{обр} + 6,7 A^{0.5}}{n_{0y}^\text{обр} + 6,8 A^{-0.5}}$; $Pe_{\text{м. г}} = \frac{w_{\text{ж}} H}{E_{\text{ж}}}$,

$Pe_{\text{м. ж}} = \frac{w_{\text{ж}} H}{E_{\text{ж}}}$ — модифицированные критерии Пекле для газа и жидкости; $w_{\text{ж}}$, $w_{\text{ж}}$ — скорости потоков газа и жидкости, м/с; $E_{\text{ж}}$, $E_{\text{ж}}$ — соответствующие коэффициенты обратного перемешивания, м2/с; H — рабочая длина аппарата — высота слоя насадки, м.
По данным примера 6.8 находим:

\[
\frac{L'}{G'} = \frac{Y_n - Y_v}{X_n - X_v} = \frac{0.0639 - 0.00128}{0.0234 - 0} = 2.67,
\]

\[
m = \frac{dY^*}{dX} = 1.68; \quad A = \frac{l'}{mG'} = \frac{2.67}{1.68} = 1.59.
\]

Примем предварительно \(n_{\psi} = 9 \). Тогда

\[
f_r = \frac{9 + 6.8 \cdot 1.59^{0.5}}{9 + 6.8 \cdot 1.59^{1.5}} = 0.78; \quad f_n = \frac{9 + 6.8 \cdot 1.59^{0.5}}{9 + 6.8 \cdot 1.59^{-0.5}} = 1.22.
\]

Для определения скоростей газа и жидкости (\(\omega_r \) и \(\omega_n \)) необходимо найти доли попечерного сечения абсорбера, занимаемые каждым потоком в отдельности. Долю объема насадки \(\delta \), занятую жидкостью, рассчитываем по уравнению [6.3]:

\[
\delta = 4.83 \cdot 10^{-4} \cdot \sigma^{0.435} / d_{\phi}^{0.24},
\]

в котором

\[
\Gamma = \frac{L_c}{S \sigma} = \frac{3000}{3600 \cdot 0.358 \cdot 204} = 0.0114 \text{ кг/(с⋅м)};
\]

\[
d_{\phi} = 4V_{cb}/\sigma = 4 \cdot 0.74 / 204 = 0.0145 \text{ м}.
\]

Подставляя эти значения, находим:

\[
\delta = 4.83 \cdot 10^{-4} \cdot 204 \cdot 0.0114^{0.435} / 0.0145^{0.24} = 0.039.
\]

Скорость течения жидкости в слое насадки:

\[
\omega_n = \frac{L_c}{\rho_n S S} = \frac{3000}{3600 \cdot 1000 \cdot 0.358 \cdot 0.039} = 0.06 \text{ м/с}.
\]

Скорость газа:

\[
\omega_r = \frac{G_c}{\rho_r (V_{cb} - \delta)} = \frac{1810}{3600 \cdot 1.2 \cdot 0.358 \cdot (0.74 - 0.039)} = 1.67 \text{ м/с}.
\]

Величины коэффициентов обратного перемешивания \(E_n \) и \(E_r \) находят опытным путем — см. пример 1.37. Для ориентировочного их определения в насадочном абсорбере воспользуемся критериальными уравнениями.

Для жидкой фазы:

\[
\omega_n d_n / E_n = 7.58 \cdot 10^{-3} \text{ Re}_n^{0.703}.
\]

Для газовой фазы:

\[
\omega_r d_n / E_r = 2.4 \text{ Re}_r^{-0.2} \cdot 10^{-0.002 \text{ Re}_n}.
\]

В этих уравнениях:

\[
\text{Re}_n = \frac{d_n L_c}{S \mu_n}; \quad \text{Re}_r = \frac{d_n G_c}{S \mu_r},
\]

где \(d_n \) — номинальный размер элементов насадки, м.
В нашем случае:

$$Re_\text{ж} = \frac{0,025 \cdot 3000}{3600 \cdot 0,358 \cdot 1 \cdot 10^{-3}} = 58;$$

$$Re_\text{г} = \frac{0,025 \cdot 1810}{3600 \cdot 0,358 \cdot 0,0182 \cdot 10^{-3}} = 1930.$$

Для жидкой фазы:

$$w_\text{ж}d_\text{ж}/E_\text{ж} = 7,58 \cdot 10^{-3} \cdot 58^{0,703} = 130 \cdot 10^{-3}.$$

Коэффициент обратного перемешивания в жидкой фазе:

$$E_\text{ж} = w_\text{ж}d_\text{ж}/0,13 = 0,06 \cdot 0,025/0,13 = 0,0116 \text{ м}^2/\text{с};$$

$$\text{Pe}_{\text{ж, м}} = w_\text{ж}H/E_\text{ж} = 0,06 \cdot 16,8/0,0116 = 87.$$

Для газовой фазы:

$$\frac{w_\text{г}d_\text{г}}{E_\text{г}} = \frac{2,4}{Re_\text{г}^{0,2} \cdot 10^{-0,002}Re_\text{ж}} = \frac{2,4}{1930^{0,2} \cdot 10^{-0,002}58} = 0,403.$$

Коэффициент обратного перемешивания в газовой фазе:

$$E_\text{г} = w_\text{г}d_\text{г}/0,403 = 1,67 \cdot 0,025/0,403 = 0,104 \text{ м}^2/\text{с};$$

$$\text{Pe}_{\text{г, м}} = w_\text{г}H/E_\text{г} = 1,67 \cdot 16,8/0,104 = 270.$$

Приведенный критерий Пекле:

$$\text{Pe}_{\text{пр}} = \left(\frac{1}{A_\text{ф} \text{Pe}_{\text{г, м}}} + \frac{1}{f_\text{ж} \text{Pe}_{\text{ж, м}}} \right)^{-l} = \left(\frac{1}{1,59 \cdot 0,78 \cdot 270} + \frac{1}{1,22 \cdot 87} \right)^{-1} = 80,5;$$

$$\Phi = 1 - \frac{0,05}{(\text{Pe}_{\text{пр}})^{0,25}} \left(\frac{A}{\pi^0,25} \right)^{0,5} = 1 - \frac{0,05}{80,5^{0,25}} \left(\frac{1,59}{y} \right)^{0,5} = 1 - 0,007 = 0,993.$$

Поправки на обратное перемешивание:

$$n_{0\text{пр}} = \frac{A \cdot 2,3 \cdot 1g A}{A - 1} \Phi - \text{Pe}_{\text{пр}} = \frac{1,59 \cdot 2,3 \cdot 1g 1,59}{n_{0\text{пр}}} = 0,993 + 80,5 = 81,7.$$

Число единиц переноса с учетом обратного перемешивания:

$$n_{0y} = \left(\frac{1}{n_{0y}} - \frac{1}{n_{0\text{пр}}} \right)^{-l} = \left(\frac{1}{7,93} - \frac{1}{81,7} \right)^{-1} = 8,8,$$

что близко к значению $n_{0y} = 9$, принятому в начале расчета.

КОНТРОЛЬНЫЕ ЗАДАЧИ

6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую кон-
центрацию \(\bar{X} \) нитробензола и его объемную мольную концентрацию \(C_x \).

6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходят.

6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60 °C. Приемная оба компонента смеси за идеальные газы, определить относительную массовую концентрацию \(\bar{Y} \) этилового спирта в смеси и плотность смеси.

6.4. Газ состава: водород 26%, метан 60%, этилен 14% (преценты мольные) имеет давление \(\rho_{abc} = 30 \text{ кгс/см}^2 \) и температуру 20 °C. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации \(C_y \) (в кг/м³).

6.5. Показать, что в формуле

\[
y = \frac{C_y M_B}{\rho + C_y (M_B - M_A)}
\]

(см. табл. 6.2)

при любых значениях \(M_B \) и \(M_A \) \(y \) не может быть отрицательным.

6.6. В условиях примера 6.3 (а) определить движущую силу процесса массопереноса в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.

6.7. Пар бинарной смеси хлороформ — бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях). Данные о равновесных составах см. в табл. XLVII.

6.8. Смесь воздуха с паром четыреххлористого углерода, сжатая до абсолютного давления 10 кгс/см², охлаждается в трубчатом водах холодильнике. При 40 °C начинается конденсация четыреххлористого углерода. Определить: а) массовый процент его в воздухе в начальной смеси и б) степень выделения из газовой смеси после охлаждения ее до 27 °C. Давление насыщенного пара четыреххлористого углерода — см. рис. XIV или XXIV.

6.9. Газовая смесь, содержащая 0,8% (об.) октанана, сжимается компрессором до \(\rho_{abc} = 5 \text{ кгс/см}^2 \) и затем охлаждается до 25 °C. Определить степень выделения октана. Как изменится степень выделения, если охладить сжатую газовую смесь холодильным рассолом до 0 °C? Давление насыщенного пара октана — см. рис. XIV, точка 31.
6.10. Рассчитать коэффициенты молекулярной диффузии под атмосферным давлением: а) пара бензола в паре толуола при температуре 100 °C; б) пара этилового спирта в водяном паре при температуре 92 °C.

6.11. Определить коэффициент массопередачи в орошаемом водой абсорбере, в котором \(\beta_y = 2,76 \cdot 10^{-3} \) кмоль/(м²·ч·кПа), а \(\beta_x = 1,17 \cdot 10^{-4} \) м/с. Давление в аппарате \(p_{аб} = 1,07 \) кгс/см². Уравнение линии равновесия в мольных долях: \(y^* = 102x \).

6.12. Определить среднюю движущую силу и общее число единиц переноса \(n_{0y} \) при поглощении из газа паров бензола маслом. Начальная концентрация бензола в газе 4% (об.); улавливается 80% бензола. Концентрация бензола в масле, вытекающем из скруббера, 0,02 кмоль бензола/кмоль чистого масла. Масло, поступающее в скруббер, бензола не содержит. Уравнение равновесной линии в относительных мольных концентрациях:

\[
Y^* = 0,126X.
\]

Движущую силу выразить в единицах концентрации \(Y \) (кмоль бензола/кмоль инертного газа).

6.13. В скруббере поглощается водой диоксид серы из инертного газа (азота) под атмосферным давлением (760 мм рт. ст.). Начальное содержание диоксида серы в газе 5% (об.). Температура воды 20 °C, ее расход на 20% больше теоретически минимального. Извлекается из газа 90% \(\text{SO}_2 \). Определить: 1) расход воды на поглощение 1000 кг/ч сернистого газа; 2) среднюю движущую силу процесса; 3) общее число единиц переноса \(n_{0y} \). Линия равновесия может быть принята за прямую; координаты двух ее точек: 1) парциальное давление \(\text{SO}_2 \) в газовой фазе \(p = 39 \) мм рт. ст., \(\bar{X} = 0,007 \) кг \(\text{SO}_2/\)кг воды; 2) \(p = 26 \) мм рт. ст., \(\bar{X} = 0,005 \) кг \(\text{SO}_2/\)кг воды.

6.14. В насадочном абсорбере производится поглощение пара метилового спирта водой из газа под атмосферным давлением при средней температуре 27 °C. Содержание метилового спирта в газе, поступающем в скруббер, 100 г на 1 м³ инертного газа (считая объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от максимально возможной, т. е. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях: \(Y^* = 1,15X \). Извлекается водой 98% от исходного количества спирта. Коэффициент массопередачи:

\[
K_x = 0,5 \text{ кмоль спирта} / \left(\text{м}^2 \cdot \text{ч} \cdot \frac{\text{кмоль} \text{спирта}}{\text{кмоль} \text{воды}} \right).
\]

Расход инертного газа 1200 м³/ч (при рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью 190 м²/м³. Коэффициент смачивания насадки \(\psi = 0,87 \). Фиктивная скорость газа в абсорбере \(\omega = 0,4 \) м/с. Определить расход воды и требуемую высоту слоя насадки.
6.15. В скруббер диаметром 0,5 м подается 550 м³/ч (при 760 мм рт. ст. и 20 °C) воздуха, содержащего 2,8% (об.) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить: 1) расход воды; 2) общее число единиц переноса n_0; 3) высоту слоя насадки из керамических колец 50×50×5 мм. Коефициент массопередачи: K_y = 0,001 кмоль аммиака / (м³·с·кмоль воздуха). Данные о равновесных концентрациях жидкости и газа взять из примера 6.10. Коефициент смоченности насадки ψ = 0,9.

6.16. Вывести формулу для определения высоты единицы переноса в насадочном абсорбере для жидкой фазы h_x из критериального уравнения (6.46).

6.17. Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м²/м³. Свободный объем насадки 0,79 м³/м³. Температура абсорбции 28 °C, абсолютное давление 1 кгс/см². Среднее содержание аммиака в газовой смеси 5,8% (об.). Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1 кг/(м²·с). Определить коэффициент массоотдачи для газа, считая, что скруббер работает при пленочном режиме.

6.18. Рассчитать коэффициент массоотдачи от жидкой фазы в насадочном абсорбере, в котором производится поглощение диоксида углерода водой при температуре 20 °C. Плотность орошения 60 м³/(м²·ч). Насадка — керамические кольца 35×35×4 мм навалом. Коефициент смоченности насадки ψ = 0,86.

6.19. Определить коэффициент массоотдачи для газа в скруббере при поглощении пара бензола из коксового газа по следующим данным: насадка хордовая из рек 12,5×100 мм с расстоянием между рейками b = 25 мм (для такой насадки d_o = 2b = 0,05 м); скорость газа, считая на полное сечение скруббера, 0,95 м/с; плотность газа 0,5 кг/м³; динамический коэффициент вязкости газа 0,013 мПа·с; коэффициент диффузии бензола в газе 16·10⁻⁶ м²/с. Режим считать пленочным.

6.20. Определить диаметр и высоту тарельчатого абсорбера для поглощения водой аммиака из воздушно-аммиачной смеси при атмосферном давлении и температуре 20 °C. Начальное содержание аммиака в газовой смеси 7% (об.). Степень извлечения 90%. Расход инертного газа (воздуха) 10 000 м³/ч (при рабочих условиях). Линию равновесия считать прямой, ее уравнение в относительных массовых концентрациях: Y* = 0,611X. Скорость газа в абсорбере (фикация) 0,8 м/с. Расстояние между тарелками 0,6 м. Средний к. п. д. тарелок 0,62. Коэффициент избытка поглотителя φ = 1,3.

6.21. По условиям предыдущей задачи определить: 1) высоту насадочного абсорбера с насадкой из керамических колец 50×
х 50 х 5 мм, приняв \(h_\phi \) — высоту слоя насадки, эквивалентную теоретической тарелке (ВЭТТ), равной 0,85 м; 2) величину коэффициента массопередачи в этом насадочном абсорбере \(K_y \) кг аммиака \((\text{м}^2 \cdot \text{с} / \text{кг аммиака}) \), считая коэффициент смоачности насадки \(\psi \) равным 0,9.

6.22. По данным контрольных задач 6.20 и 6.21 определить высоту слоя насадки через общее число единиц переноса \(n_{0y} \) и высоту единицы переноса (ВЕП) \(h_{0y} \).

6.23. Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере \(p_{вак} = 800 \) мм рт. ст., температура 40°C. Расход парогазовой смеси 3600 м³/ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.) извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбер после регенерации, 0,2% (мл.). Расход поглотительного масла в 1,5 раза больше теоретически минимального. Для расчета равновесных составов принять, что растворимость бензола в масле определяется законом Рауля. При концентрациях бензола в жидкости до \(X = 0,1 \) кмоль бензола/кмоль масла равновесную зависимость \(Y^* = f (X) \) считать прямолинейной.

Определить: 1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при скорости газа в нем (фактической) 0,5 м/с и высоте единицы переноса (ВЕП) \(h_{0y} = 0,9 \) м; 4) высоту тарельчатого абсорбера при среднем к. п. д. тарелок 0,67 и расстоянии между тарелками 0,4 м.

6.24. В насадочном абсорбере диаметром 1 м диноксид серы поглощается водой из воздуха. Начальное содержание \(\text{SO}_2 \) в поступающей смеси 7% (об.). Степень поглощения 0,9. На выходе из абсорбера вода содержит 0,0072 кг \(\text{SO}_2 \)/кг воды. Коэффициент массопередачи в абсорбере \(K_y = 0,005 \) кг \(\text{SO}_2 \)/(м²·с·кг воздуха).

Насадка из керамических колец 50 х 50 х 5 мм. Коэффициент смоачности насадки \(\psi = 1 \). Высота единицы переноса \(h_{0y} = 1,17 \) м. Определить расход воды в абсорбере.

6.25. В абсорбере под атмосферным давлением при температуре 20°C поглощается из парогазовой смеси 300 кг бензола в 1 ч. Начальное содержание пара бензола в парогазовой смеси 4% (об.). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия: \(Y^* = 0,2X \), где \(Y^* \) и \(X \) выражены соответственно в кмоль бензола/кмоль инертного газа и кмоль бензола/кмоль поглотителя. Коэффициент избытка поглотителя \(\varphi = 1,4 \). Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера.
Глава 7

ПЕРЕГОНКА И РЕКТИФИКАЦИЯ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Уравнение простой перегонки:

\[\ln \frac{F}{W} = \int_{x_W}^{x_F} \frac{dx}{y^* - x}, \]
(7.1)

где \(F \) — начальное количество перегоняемой смеси; \(W \) — остаток жидкости в кубе после перегонки; \(y^* \) и \(x \) — равновесные концентрации легколетучего (низкокипящего) компонента в паре и в жидкости; \(x_F \) — содержание легколетучего компонента в начальной смеси; \(x_W \) — содержание легколетучего компонента в остатке после перегонки.

Средний состав перегнанной жидкости:

\[x_D = \frac{F x_F - W x_W}{F - W}. \]
(7.2)

Расчет по уравнениям (7.1) и (7.2) проводят, применяя либо мольные количества и мольные концентрации, либо массовые количества и массовые концентрации.

2. При перегонке нерастворимых в воде жидкостей с водяным паром (или инертным газом) расход пара рассчитывают по уравнению:

\[G_B = G - \frac{M_B (\Pi - P)}{MP_f}. \]
(7.3)

Здесь \(G_B \) — количество водяного пара, уходящего с паром перегоняемой жидкости, кг; \(G \) — количество перегоняемой жидкости, кг; \(M_B \) и \(M \) — мольные массы воды и перегоняемой жидкости; \(P \) — давление насыщенного пара перегоняемой жидкости при температуре перегонки; \(\Pi \) — общее давление смеси паров; \(f \) — коэффициент, учитывающий неполноту насыщения водяного пара паром перегоняемого вещества (при ориентировочных расчетах принимают \(f = 0,7 + 0,8 \)).

3. Уравнения материального баланса ректификационной колонны непрерывного действия * (рис. 7.1):

\[G_F = G_D + G_W; \]
(7.4)

\[G_F x_F = G_D x_D + G_W x_W, \]
(7.5)

где \(G_F, G_D, G_W \) — массовые или мольные расходы питания, дистилята и кубового остатка; \(x_F, x_D, x_W \) — содержание легколетучего (низкокипящего) компонента в питании, дистиляте и кубовом остатке, массовые или мольные доли.

* Приводимые ниже уравнения справедливы для ректификационной колонны, обогреваемой глухим паром. При ректификации водных смесей с подачей в колонну остrego пара уравнения материального баланса и рабочей линии нижней части колонны изменяются — см. пример 7.16.
4. Уравнения рабочих линий (при питании колонны кипящей смесью):

а) верхней (укрепляющей) части ректификационной колонны

\[y = \frac{R}{R+1} x + \frac{x_D}{R+1}; \quad (7.6) \]

б) нижней (испаряющей) части колонны

\[y = \frac{R+F}{R+1} x - \frac{F-1}{R+1} x_W. \quad (7.7) \]

В ректификационной колонне принимают на основании теоретических предпосылок постоянными по высоте колонны общие мольные расходы пара и жидкости. В соответствии с этим в уравнениях (7.6) и (7.7) применяются мольные расходы и концентрации.

В верхней части колонны, выше ввода исходной жидкой смеси, постоянный по высоте колонны мольный расход жидкости равен \(G_R \), в нижней части колонны он равен \(G_R + G_F \) — см. рис. 7.1. Постоянный по высоте мольный расход пара \(G_V \) одинаков в верхней и в нижней части колонны.

В уравнениях (7.6) и (7.7): \(y \) и \(x \) — переменные по высоте колонны неравновесные концентрации (мольные доли) легколетучего компонента в паре и в жидкости в данном сечении колонны. Для тарельчатых колонн: \(y \) — мольная доля легколетучего компонента в паре, входящем сверху на тарелку; \(x \) — мольная доля легколетучего компонента в жидкости, стекающей с этой тарелки; \(R = G_R/G_D \) — число флегмы; \(F = \frac{G_F}{G_D} = \frac{x_D - x_W}{x_F - x_W} \) — относительный (на 1 кмоль дистиллята) мольный расход питания.

При применении относительных мольных расходов уравнения материального баланса колонны (7.4) и (7.5) получают вид:

\[F = 1 + W; \quad (7.8) \]

\[Fx_F = x_D + Wx_W, \quad (7.9) \]

где \(W = \frac{G_W}{G_D} = \frac{x_D - x_F}{x_F - x_W} \) — относительный мольный расход кубового остатка; \(x_F, x_D, x_W \) — мольные доли легколетучего компонента в питании, дистилляте, кубовом остатке.
5. Минимальное число флегмы $R_{\text{мин}}$ в ректификационной колонне непрерывного действия, когда кривая равновесия не имеет точек перегиба (падин), определяют по уравнению:

$$R_{\text{мин}} = \frac{x_D - y_F}{y_F - x_F},$$ \hspace{1cm} (7.10)

где x_D — мольная доля легкоколетучего компонента в дистилляте; x_F — то же в исходной жидкости (питании) колонны; y_F — то же в паре, равновесном с жидкостью питания.

Рабочее (действительное) число флегмы:

$$R = \varphi R_{\text{мин}}.$$ \hspace{1cm} (7.11)

Здесь $\varphi > 1$ — коэффициент избытка флегмы.

При расчетах ректификационных колонн рабочее число флегмы часто определяют по формуле:

$$R = 1,3 R_{\text{мин}} + 0,3.$$ \hspace{1cm} (7.12)

Об экономически оптимальном флегмовом числе см. [6.1]. Если на кривой равновесия имеется впадина, то величину определяют графическим путем — см. пример 7.16.

6. Расход теплоты в кубе-испарителе ректификационной колонны непрерывного действия определяют из уравнения теплового баланса колонны с дефлегматором-конденсатором (рис. 7.1):

$$Q_n + G_F c_F t_F = Q_D + G_D c_D t_D + G_W c_W t_W + Q_{\text{пот}},$$ \hspace{1cm} (7.13)

где Q_n — расход теплоты, получаемой кипящей жидкостью от конденсирующегося греющего пара в кубе-испарителе, Вт; Q_D — расход теплоты, отнимаемой охлаждающей водой от конденсирующихся в дефлегматоре паров, Вт; $Q_{\text{пот}}$ — тепловые потери колонны в окружающую среду, Вт; G_F, G_D, G_W — массовые расходы питания, дистиллята, кубового остатка, кг/ч; c_F, c_D, c_W — соответствующие удельные энтальпии, Дж/кг.

Из уравнения (7.13) получаем:

$$Q_n = Q_D + G_D c_D t_D + G_W c_W t_W - G_F c_F t_F + Q_{\text{пот}},$$ \hspace{1cm} (7.14)

где c_D, c_W, c_F — средние удельные теплоемкости, Дж/(кг·К); t_D, t_W, t_F — соответствующие температуры, °C.

Расход теплоты, отдаваемой охлаждающей воде в дефлегматоре:

$$Q_n = G_D (1 + R) r_D.$$ \hspace{1cm} (7.15)

Здесь R — число флегмы; r_D — удельная теплота конденсации паров в дефлегматоре, Дж/кг.

7. Определение диаметра тарельчатой ректификационной колонны производится по уравнению:

$$D = \sqrt{\frac{V}{0,785 w}},$$ \hspace{1cm} (7.16)

где V — расход проходящего по колонне пара, м3/с; w — скорость пара, отнесенная к полному поперечному сечению колонны, м/с.

11 Павлов К. Ф. и др.
Рекомендуемую скорость пара в колонне рассчитывают по формуле

\[w = C \sqrt{\frac{(\rho_w - \rho_p)/\rho_p}{}} \] \hspace{1cm} (7.17)

в которой \(C \) — коэффициент, зависящий от конструкции тарелок, расстояния между тарелками, рабочего давления в колонне, нагрузки колонны по жидкости; \(\rho_w \) и \(\rho_p \) — плотности жидкости и пара, кг/м³.

Когда \(\rho_w \gg \rho_p \),

\[w = C \sqrt{\frac{\rho_w}{\rho_p}} \] \hspace{1cm} (7.17а)

На рис. 7.2 по данным, приведенным в [7.2], представлены в зависимости от расстояния между тарелками \(h \) значения коэффициента \(C \) для ректификационных колонн, работающих при атмосферном давлении и средних нагрузках по жидкости.

После определения по уравнению (7.16) диаметра колонны его уточняют в соответствии с имеющимися нормами.

8. Определение высоты тарельчатой ректификационной колонны (расстояния \(H_r \) между верхней и нижней тарелками) проводятся по уравнению:

\[H_r = (n - 1) h \] \hspace{1cm} (7.18)

где \(n \) — число тарелок в колонне; \(h \) — расстояние между тарелками.

Расчет требуемого числа тарелок \(n \) ведут графическим путем, используя кинетические закономерности — уравнение массопередач и расчетные зависимости для коэффициентов массоотдачи (или чисел единиц переноса) в паровой и жидкой фазах на тарелке [7.2].

При приближенных расчетах применяют теоретически менее обоснованный, но более простой метод определения числа тарелок с помощью так называемого среднего к. п. д. тарелок (к. п. д. колонны):

\[n = n_t/\eta, \] \hspace{1cm} (7.19)

где \(n_t \) — число теоретических тарелок — ступеней изменения концентрации, которое находит графическим построением между равновесной и рабочими линиями на \(y - x \) диаграмме — см. рис. 7.3.

Величина среднего к. п. д. тарелок \(\eta \), который вводят для учета реальных условий массообмена на тарелках, зависит от многих переменных величин (конструкция и размеры тарелки, гидродинамические факторы, физико-химические свойства пара и жидкости). Значения \(\eta \) определяют по опытным данным, большей частью они находятся в пределах 0,3—0,8.

На тарелках с перекрестным током пара и жидкости с увеличением длины пути жидкости по тарелке массообмен улучшается, величина среднего к. п. д. \(\eta \) возрастает.

На рис. 7.4 приведены значения среднего к. п. д. тарелок, полученные по опытным данным для промышленных ректификационных колонн.
Рис. 7.2. Значение коэффициента C:
A, B — кольцевые тарелки с круглыми колпачками; B — сечатые тарелки.

Рис. 7.3. Графическое определение числа ступеней изменения концентрации (теоретических тарелок) в ректификационной колонне:
AB — рабочая линия верхней части колонны; AC — рабочая линия нижней части колонны.

ных колонн сравнительно небольшого диаметра. По оси абсцис на этом графике отложены произведения коэффициента относительной летучести разделляемых компонентов α [см. уравнение (6.9)] на динамический коэффициент вязкости жидкости питания μ (в мПа·с) при средней температуре в колонне.

При определении среднего к. п. д. тарелок в колоннах большого диаметра (с длиной пути жидкости $l \geq 0,9$ м) рекомендуем к значениям, найденным по рис. 7.4, давать поправку Δ:

$$\eta_l = \eta (1 + \Delta).$$

(7.20)

Значения поправки Δ для смесей с $\alpha \mu = 0,1 \div 1,0$ приведены на рис. 7.5.

Рис. 7.4. Диаграмма для приближенного определения среднего к. п. д. тарелок.
9. Коэффициентом обогащения (коэффициентом полезного действия) отдельной тарелки называют величину:

$$
\eta_0 = \frac{y_2 - y_1}{y^*_1 - y_1}, \quad (7.21)
$$

где y_1 — мольная доля легкоколетучего компонента в паре, поступающем свинзу на тарелку; y_2 — то же в паре, уходящем с тарелки; y^*_1 — то же в паре, равновесном с жидкостью, стекающей с тарелки.

Если жидкость на тарелке полностью перемешивается, то y^*_1 — мольная доля легкоколетучего компонента в паре, равновесном с жидкостью на тарелке.

10. Определение диаметра и высоты насадочной ректификационной колонны проводится так же, как и абсорбционных насадочных колонн — см. гл. 6.

Диаметр насадочной колонны рассчитывается по уравнению (6.35). Фиктивную скорость пара в точке захлебывания ω_μ при $\rho_\mu \gg \rho_\mu$ находят по уравнению (6.36), но с другим значением A.

Для ректификационных колонн $A = -0,125$.

Высоту слоя насадки H_n при пленочном режиме работы колонны находят отдельно для верхней и для нижней части колонны по уравнению

$$
H_n = \frac{G}{K_y S \sigma} \int_{y_1}^{y^*_1} \frac{dy}{y^* - y} = h_{by} n_{by}, \quad (7.22)
$$

аналогичному уравнению (6.39).

В уравнении (7.22): G — постоянный по высоте колонны мольный расход пара, кмоль/с; K_y — коэффициент массопередачи, кмоль/(м3·с·Дж = 1); $S = \pi D^2/4$ — площадь поперечного сечения колонны, м2; σ — удельная поверхность насадки, м2/м3; ψ — коэффициент смоченности насадки, безразмерный; y^* и y — равновесная и рабочая концентрация (мольные доли) легкоколетучего компонента в паре.

Для насадочных ректификационных колонн, работающих в режиме эмульгирования, эквивалентная высота насадки h_{by} (в точке инверсии) может быть определена из уравнения [6.1]:

$$
\frac{h_{by}}{d_{by}} = 5,2 \text{Re}_{\mu}^{0,2} \left(\frac{G}{L} \right)^{0,35} \left(\frac{\rho_{\mu K}}{\rho_{\mu}} \right)^{0,2} \frac{1 + G}{L} \frac{1}{1 - m G} = 0, \quad (7.23)
$$
где $d_n = 4V_с/B/\sigma$ — эквивалентный диаметр насадки, m; $Re_n = 4\omega r_n/(\mu_0)$ — критерий Рейнольдса; G/L — отношение потоков пара и жидкости (в верхней части колонны $G/L = \frac{R + 1}{R}$, в нижней части колонны $G/L = \frac{R + 1}{R + F}$ — см. уравнения (7.6) и (7.7); m — тангенс угла наклона равновесной линии.

Высоту слоя насадки находят по уравнению (6.44).

ПРИМЕРЫ

Пример 7.1. Вычислить состав равновесной паровой фазы при 50 °C для жидкости, состоящей из смеси гексана и воды, предполагая их полную взаимную нерастворимость.

Общее давление смеси паров:

$$II = \rho_b + \rho_r = P_b + P_r = 400 + 92,5 = 492,5 	ext{ мм рт. ст.}$$

Мольную долю гексана в паровой фазе найдем по уравнению (6.1):

$$y_b = \frac{p_r}{II} = \frac{400}{492,5} = 0,812.$$

Мольная доля воды:

$$y_w = \frac{p_b}{II} = 1 - y_r = 0,188.$$

Пример 7.2. Определить температуру кипения при атмосферном давлении жидкой смеси толуола и воды, учитывая их полную взаимную нерастворимость.

Решение. Данная смесь будет кипеть при такой температуре, при которой сумма давлений насыщенных паров толуола и воды будет равна 760 мм рт. ст.

Из диаграммы (рис. XXIV) следует, что пересечение кривой давления насыщенного пара толуола с кривой давления насыщенного пара воды (отложенного от 760 мм рт. ст. сверху вниз) происходит при 84 °C. Так как точка пересечения этих кривых соответствует такой температуре, при которой сумма давлений насыщенных паров равна 760 мм рт. ст., то эта температура и будет температурой кипения смеси.

Пример 7.3. Вычислить состав равновесной паровой фазы при 60 °C для жидкой смеси, состоящей из 40% (мол.) бензола и 60% (мол.) толуола, считая, что данная смесь характеризуется законом Рауля. Найти также, какого состава жидкая смесь бензола и толуола кипит при 90 °C под давлением 760 мм рт. ст.

Решение. Давление насыщенного пара бензола и толуола при 60 °C определяем по рис. XXIV: для бензола $P_b = 385$ мм рт. ст.; для толуола $P_r = 140$ мм рт. ст.
Парциальные давления бензола и толуола определяем по формуле (6.7):

\[p_6 = P_6 x_6 = 385 \cdot 0.4 = 154 \text{ мм рт. ст.} \]
\[p_T = P_T x_T = P_T (1 - x_6) = 150 (1 - 0.4) = 84 \text{ мм рт. ст.} \]

Общее давление:

\[\Pi = p_6 + p_T = 154 + 84 = 238 \text{ мм рт. ст.} \]

Состав паровой фазы определяем по формуле (6.1):

\[y_6 = \frac{p_6}{\Pi} = \frac{154}{238} = 0.648. \]

Итак, равновесный пар содержит 64.8% (моль.) бензола и 35.2% (моль.) толуола.

Для определения состава жидкости, кипящей под давлением 760 мм рт. ст. при 90 °C, напишем уравнение

\[\Pi = P_6 x_6 + P_T x_T \text{ или } 760 = 1013 x_6 + 408 (1 - x_6), \]

откуда \(x_6 = 58.3\% \); \(x_T = 41.7\% \).

Здесь 1013 и 408 — давления насыщенного пара чистых бензола и толуола при 90 °C, мм рт. ст.

Пример 7.4. Вычислить равновесные составы фаз и построить диаграммы равновесия в координатах \(t - x, y \) и \(y^* - x \) для бензольно-толуольной смеси при атмосферном давлении, считая, что смесь характеризуется законом Рауля.

Решение. Для вычисления равновесных составов фаз воспользуемся уравнениями (6.7):

\[p_6 = P_6 x; \quad p_T = P_T (1 - x). \]

По закону Дальтона:

\[\Pi = p_6 + p_T = P_6 x + P_T (1 - x), \]

откуда

\[x = \frac{\Pi - P_T}{P_6 - P_T}. \]

По формуле (6.8):

\[y^* = \frac{P_6}{\Pi} x. \]

Здесь \(x \) и \(y^* \) — мольные доли бензола в жидкости и в равновесном с ней паре.

Весь расчет помещен в табл. 7.1.

Полученные данные нанесены в виде кривых в координатах \(t - x, y \) (рис. 7.6) и в координатах \(y^* - x \) (рис. 7.7).

Пример 7.5. С помощью диаграммы \(t-x, y \) (рис. 7.6) определить состав равновесного пара и температуру кипения для жидкости, содержащей 55% (моль.) бензола и 45% (моль.) толуола.

Решение. Проведя на рис. 7.6 линию \(ABCD \), находим:

а) температура кипения равна \(\sim 91 \text{ °C} \).
Таблица 7.1

<table>
<thead>
<tr>
<th>t, °C</th>
<th>(P_6), мм рт. ст.</th>
<th>(P_T), мм рт. ст.</th>
<th>(\Pi), мм рт. ст.</th>
<th>(x = \frac{\Pi - P_T}{P_6 - P_T})</th>
<th>(y^* = \frac{P_6^*}{\Pi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>760</td>
<td>300,0</td>
<td>760</td>
<td>1</td>
<td>(\frac{852}{852} = 1)</td>
</tr>
<tr>
<td>84</td>
<td>852</td>
<td>333,0</td>
<td>760</td>
<td>(\frac{760 - 333}{852 - 333} = 0,823)</td>
<td>(\frac{852}{760} = 0,823 = 0,922)</td>
</tr>
<tr>
<td>88</td>
<td>957</td>
<td>379,5</td>
<td>760</td>
<td>(\frac{760 - 379,5}{957 - 379,5} = 0,659)</td>
<td>(\frac{957}{760} = 0,659 = 0,830)</td>
</tr>
<tr>
<td>92</td>
<td>1078</td>
<td>432,0</td>
<td>760</td>
<td>(\frac{760 - 432}{1078 - 432} = 0,508)</td>
<td>(\frac{1078}{760} = 0,508 = 0,720)</td>
</tr>
<tr>
<td>96</td>
<td>1204</td>
<td>492,5</td>
<td>760</td>
<td>(\frac{760 - 492,5}{1204 - 492,5} = 0,376)</td>
<td>(\frac{1204}{760} = 0,376 = 0,596)</td>
</tr>
<tr>
<td>100</td>
<td>1344</td>
<td>559,0</td>
<td>760</td>
<td>(\frac{760 - 559,0}{1344 - 559,0} = 0,256)</td>
<td>(\frac{1344}{760} = 0,256 = 0,453)</td>
</tr>
<tr>
<td>104</td>
<td>1495</td>
<td>625,5</td>
<td>760</td>
<td>(\frac{760 - 625,5}{1495 - 625,5} = 0,155)</td>
<td>(\frac{1495}{760} = 0,155 = 0,304)</td>
</tr>
<tr>
<td>108</td>
<td>1659</td>
<td>704,5</td>
<td>760</td>
<td>(\frac{760 - 704,5}{1659 - 704,5} = 0,058)</td>
<td>(\frac{1659}{760} = 0,058 = 0,128)</td>
</tr>
</tbody>
</table>

б) состав равновесного пара:

Бензол 75 % (мол.)
Толуол 25 % (мол.)

Пример 7.6. 2500 кг загрязненного скипидара перегоняются в токе насыщенного водяного пара под атмосферным давлением (760 мм рт. ст.). Исходная смесь содержит 88% (масс.) скипидара, 12% (масс.) воды и подается в аппарат при 30 °C. Внешнего подогрева нет.

Рис. 7.6 (к примеру 7.4 и 7.5).

Рис. 7.7 (к примеру 7.4).
Для перегонки применяют насыщенный пар с давлением (в паропроводе) \(p_{абс} = 1,5 \text{ кгс/см}^2 \). Степень насыщения водяного пара скипидаром \(\varphi = 0,7 \).

Определить: a) расход пара на перегонку; b) массовый и мольный состав отгоняемых паров; в) парциальные давления скипидара и воды в смеси паров. Потери теплоты в окружающую среду принять в размере 10% от полезно затрачиваемой теплоты. Физические характеристики для скипидара: мольная масса 136 кг/кмоль; удельная теплоемкость жидкого скипидара 1,76 · 10\(^3\) Дж/(кг·К); удельная теплота испарения 310 · 10\(^3\) Дж/кг.

Решение. Определяем по рис. XXIV температуру перегонки и давление насыщенного пара скипидара. Температура перегонки 96 °C; \(P_{сн} = 115 \) мм рт. ст.

Количество водяного пара, уходящего вместе с паром скипидара, находим по формуле (7.3)

\[
G_{в} = G_{сн} \frac{M_{в} (\Pi - P_{сн})}{M_{сн} P_{сн} \varphi} = 2500 \cdot 0,88 \frac{18 (760 - 115)}{136 \cdot 115 \cdot 0,7} = 2330 \text{ кг.}
\]

Массовая доля в парах: скипидара

\[
\bar{y}_{сн} = \frac{G_{сн}}{G_{сн} + G_{в}} = \frac{2500 \cdot 0,88}{2500 \cdot 0,88 + 2330} = 0,485;
\]

воды

\[
\bar{y}_{в} = 1 - \bar{y}_{сн} = 1 - 0,485 = 0,515.
\]

Мольная доля:

\[
y_{сн} = \frac{\bar{y}_{сн}/M_{сн}}{M_{сн} + \bar{y}_{в}/M_{в}} = \frac{0,485/136}{0,485^2 + 0,515^2/18} = \frac{0,00356}{0,00356 + 0,0286} = 0,110;
\]

\[
y_{в} = 1 - y_{сн} = 1 - 0,11 = 0,89.
\]

Парциальные давления в смеси паров при общем давлении \(\Pi = 760 \) мм рт. ст.:

\[
\rho_{сн} = \Pi y_{сн} = 760 \cdot 0,11 = 84 \text{ мм рт. ст.};
\]

\[
\rho_{в} = \Pi - \rho_{сн} = 760 - 84 = 676 \text{ мм рт. ст.}
\]

Расход теплоты:

а) на подогрев исходной смеси от 30 °C до температуры перегонки 96 °C.

Скипидар:

\[
G_{сн}\rho_{сн} (t_{пер} - t_{нач}) = 2500 \cdot 0,88 \cdot 1,76 \cdot 10^3 (96 - 30) = 256 000 \cdot 10^3 \text{ Дж.}
\]

Вода:

\[
G_{в}\rho_{в} (t_{пер} - t_{нач}) = 2500 \cdot 0,12 \cdot 4,19 \cdot 10^3 (96 - 30) = 83 000 \cdot 10^3 \text{ Дж.}
\]

\[
Q_{нагр} = (256 + 83) \cdot 10^3 = 339 \cdot 10^3 \text{ Дж.}
\]

б) на испарение перегоняемого скипидара

\[
Q_{исп} = G_{сн}\rho_{сн} = 2500 \cdot 0,88 \cdot 310 \cdot 10^3 = 682 000 \cdot 10^3 \text{ Дж.}
\]
в) на компенсацию потерь теплоты в окружающую среду

\[Q_{\text{пот}} = 0.1 \ (Q_{\text{нагр}} + Q_{\text{неп}}) = (339\ 000 + 682\ 000) \cdot 10^3 \cdot 0.1 = 102\ 000 \cdot 10^3 \text{ Дж.} \]

Общий расход теплоты:

\[Q_{\text{обш}} = Q_{\text{нагр}} + Q_{\text{неп}} + Q_{\text{пот}} = (339\ 000 + 682\ 000 + 102\ 000) \cdot 10^3 = \]

\[= 1\ 123\ 000 \cdot 10^3 \text{ Дж} = 1123 \cdot 10^3 \text{ кДж.} \]

Определяем расход пара. Абсолютному давлению насыщенного пара в трубопроводе (1,5 кгс/см²) соответствует температура 110,7 °C (табл. LVII); уходит с перегонаемым спиртами 2330 кг пара при температуре перегонки 96 °C. Следовательно, этот уходящий пар охлаждается от 110,7 до 96 °C, причем выделяется теплота:

\[Q_{\text{выл}} = G_{\text{номл}} (t_1 - t_\text{пер}) = 2330 \cdot 1,97 \cdot 10^3 (110,7 - 96) = \]

\[= 67\ 900 \cdot 10^3 \text{ Дж} = 67\ 900 \text{ кДж}, \]

где 1,97 \cdot 10^3 = 35,5 \cdot 10^3 / 18 — удельная теплоемкость водяного пара, Дж/(кг·K) — табл. XXVII.

Остальное количество теплоты

\[Q_{\text{ост}} = Q_{\text{обш}} - Q_{\text{выл}} = (1\ 123\ 000 - 67\ 900) \cdot 10^3 = 1055 \cdot 10^3 \text{ кДж} \]

должно быть подведено за счет конденсации некоторого добавочного количества подаваемого пара и охлаждения получившегося конденсата до температуры перегонки.

Расход конденсирующегося (греющего) пара:

\[G_{\text{номл}} = \frac{Q_{\text{ост}}}{t_1 - t_\text{выл}} = \frac{1\ 055\ 000 \cdot 10^3}{(2700 - 402) \cdot 10^3} = 460 \text{ кг} \]

где 2700 \cdot 10^3 Дж/кг — удельная энтальпия насыщенного водяного пара при 1,5 кгс/см²; 402 \cdot 10^3 Дж/кг — удельная энтальпия воды при 96 °C.

Общий расход пара:

\[G_\text{п} = 2320 + 460 = 2790 \text{ кг.} \]

Пример 7.7. В простом перегонном кубе производится разгонка 1000 кг смеси, содержащей 60% (масс.) этакового спирта и 40% (масс.) воды. После отгонки в кубовом остатке содержится 5% (масс.) спирта. Определить состав дистиллята, его массу и массу кубового остатка. Данные о равновесных составах приведены в табл. 7.2, в которой \(\bar{x} \) обозначает массовую долю этакового спирта в жидкости, \(\bar{y}^* \) — массовую долю этакового спирта в равновесном паре.

Решение. Для решения используем уравнение (7.1):

\[\ln \frac{F}{W} = \int_{\bar{x}_1}^{\bar{x}_2} \frac{d\bar{x}}{\bar{y}^* - \bar{x}}. \]

329
Аналитически выполнить интегрирование невозможно, так как аналитическая форма зависимости $\tilde{y}^* \neq \tilde{x}$ неизвестна; поэтому решаем интеграл графически. Для этого строим график зависимости $\frac{1}{\tilde{y}^* - \tilde{x}}$ от \tilde{x} для спиртоводной смеси (рис. 7.8).

Принятый масштаб:

- По оси абсцисс: 1 мм = 0,02
- По оси ординат: 1 мм = 0,2
- 1 мм² = 0,02·0,2 = 0,004

Значение интеграла в пределах от $\tilde{x}_1 = 0,6$ до $\tilde{x}_2 = 0,05$ изображается заштрихованной площадью. Эта площадь равна 403 мм². Отсюда

$$\int_{0,05}^{0,6} \frac{d\tilde{y}^*}{\tilde{y}^* - \tilde{x}} = 403 \cdot 0,004 = 1,612^*.$$

Следовательно,

$$\ln \frac{F}{W} = 2,3 \lg \frac{F}{W} = 1,612; \quad \frac{F}{W} = 5,01.$$

По условию, $F = 1000$ кг. Масса кубового остатка:

$$W = 1000/5,01 = 200$$

откуда масса дистиллята:

$$D = F - W = 1000 - 200 = 800$$

<table>
<thead>
<tr>
<th>\tilde{x}</th>
<th>\tilde{y}^*</th>
<th>$\tilde{y}^* - \tilde{x}$</th>
<th>$\frac{1}{\tilde{y}^* - \tilde{x}}$</th>
<th>\tilde{x}</th>
<th>\tilde{y}^*</th>
<th>$\tilde{y}^* - \tilde{x}$</th>
<th>$\frac{1}{\tilde{y}^* - \tilde{x}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,025</td>
<td>0,225</td>
<td>0,200</td>
<td>5,00</td>
<td>0,45</td>
<td>0,754</td>
<td>0,304</td>
<td>3,29</td>
</tr>
<tr>
<td>0,05</td>
<td>0,360</td>
<td>0,310</td>
<td>3,22</td>
<td>0,50</td>
<td>0,767</td>
<td>0,267</td>
<td>3,74</td>
</tr>
<tr>
<td>0,10</td>
<td>0,516</td>
<td>0,416</td>
<td>2,40</td>
<td>0,55</td>
<td>0,778</td>
<td>0,228</td>
<td>4,38</td>
</tr>
<tr>
<td>0,15</td>
<td>0,600</td>
<td>0,450</td>
<td>2,22</td>
<td>0,60</td>
<td>0,789</td>
<td>0,189</td>
<td>5,29</td>
</tr>
<tr>
<td>0,20</td>
<td>0,655</td>
<td>0,455</td>
<td>2,20</td>
<td>0,65</td>
<td>0,800</td>
<td>0,150</td>
<td>6,66</td>
</tr>
<tr>
<td>0,25</td>
<td>0,690</td>
<td>0,440</td>
<td>2,27</td>
<td>0,70</td>
<td>0,810</td>
<td>0,110</td>
<td>9,09</td>
</tr>
<tr>
<td>0,30</td>
<td>0,710</td>
<td>0,410</td>
<td>2,44</td>
<td>0,75</td>
<td>0,835</td>
<td>0,085</td>
<td>11,75</td>
</tr>
<tr>
<td>0,35</td>
<td>0,728</td>
<td>0,378</td>
<td>2,64</td>
<td>0,80</td>
<td>0,855</td>
<td>0,055</td>
<td>18,20</td>
</tr>
<tr>
<td>0,40</td>
<td>0,740</td>
<td>0,340</td>
<td>2,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Приближенно значение интеграла может быть найдено по формуле трапеций — см. пример 4.20.
Количество спирта в остатке после перегонки:

\[G_W = W \times \bar{x}_W = 200 \cdot 0.05 = 10 \text{ кг.} \]

Количество спирта, перешедшего в дистиллят:

\[G_D = F \bar{x}_F - G_W = 1000 \cdot 0.6 - 10 = 590 \text{ кг.} \]

Массовый процент спирта в дистилляте:

\[\bar{x}_D = \frac{G_D}{D} \cdot 100 = 100 \cdot \frac{590}{800} = 73.7. \]

Пример 7.8. В условиях предыдущего примера найти для процесса перегонки расход греющего пара \((p_{абс} = 2 \text{ кгс/см}^2) \). Перегоняемая смесь подается в куб нагретой до температуры начала кипения. Потери теплоты в окружающую среду принять в размере 10% от полезно затрачиваемого количества теплоты. Влажность греющего пара 5%. По диаграмме \(t-x, y \) найдено, что температура начала перегонки, когда кипящая смесь содержит 60% (масс.) спирта, равняется 81 °C, а температура конца перегонки, когда кипящая смесь содержит 5% (масс.) спирта, 94,9 °C.

Решение. Средняя температура перегонки:

\[t = (81 + 94.9)/2 = 88.45 °C. \]

Расход теплоты на нагрев исходной смеси от 81 до 88 °C:

\[Q_1 = (1000 \cdot 0.6 \cdot 3.35 \cdot 10^3 + 1000 \cdot 0.4 \cdot 4.19 \cdot 10^3) \cdot (88 - 81) = 25800 \cdot 10^3 \text{ Дж,} \]

где 3.35 \cdot 10^3 и 4.19 \cdot 10^3 Дж/(кг \cdot К) — удельные теплоемкости спирта и воды (рис. XI).

Расход теплоты на испарение при 88 °C:

\[Q_2 = 590 \cdot 855 \cdot 10^3 + (800 - 590) \cdot 2290 \cdot 10^3 = 985000 \cdot 10^3 \text{ Дж.} \]

Здесь 855 \cdot 10^3 и 2290 \cdot 10^3 Дж/кг — удельные теплоемкости парообразования спирта и воды.

Расход теплоты на нагревание остатка от 88 до 94,9 °C:

\[Q_3 = (200 \cdot 0.05 \cdot 3.35 \cdot 10^3 + 200 \cdot 0.95 \cdot 4.19 \cdot 10^3) \cdot (94.9 - 88) = 5700 \cdot 10^3 \text{ Дж.} \]

Общий расход теплоты с учетом потерь:

\[Q = (25800 + 985000 + 5700) \cdot 10^3 \cdot 1,1 = 1120000 \cdot 10^3 \text{ Дж.} \]

Расход греющего пара:

\[G_{гр.} = \frac{1120000 \cdot 10^3}{2208 \cdot 10^3 \cdot 0.95} = 535 \text{ кг,} \]

где 2208 \cdot 10^3 Дж/кг — удельная теплота конденсации водяного пара при \(p_{абс} = 2 \text{ кгс/см}^2 \).

Пример 7.9. При расчете ректификационной колонны с колпачковыми тарелками принято расстояние между тарелками 300 мм. Через колонну проходит 3200 м³/ч пара. Плотность пара 1,25 кг/м³ (расход и плотность пара — при нормальных условиях). Плотность жидкости 430 кг/м³. Абсолютное давление в колонне
1,2 кгс/см² и средняя температура — 40 ºC. Определить требуемый диаметр колонны.

Решение. Для определения диаметра колонны необходимо найти допустимую рабочую скорость пара в ней.

По уравнению (7.17а)

\[w = \frac{C}{\rho_\text{м} / \rho_\text{p}} = \frac{0.0315 \cdot \sqrt{430/1,75}}{1,75} = 0,495 \text{ м/с.} \]

Плотность пара при рабочих условиях:

\[\rho_\text{p} = \frac{\rho_0 \cdot T_\text{p}}{T_\text{p} - T_\text{b}} = \frac{1,25 \cdot 273 \cdot 1,2}{233 \cdot 1,033} = 1,75 \text{ кг/м³.} \]

Значение \(C = 0,0315 \) определено по рис. 7.2.

Объемный расход пара в колонне при рабочих условиях:

\[V = \frac{V_0 T_\text{p}}{T_\text{p} \cdot 3600} = \frac{3200 \cdot 233 \cdot 1,033}{273 \cdot 1,2 \cdot 3600} = 0,632 \text{ м³/с.} \]

Требуемая площадь поперечного сечения колонны:

\[S = V / w = 0,632 / 0,495 = 1,28 \text{ м}^2, \]

откуда диаметр колонны:

\[D = \sqrt{S / 0,785} = \sqrt{1,28 / 0,785} = 1,275 \text{ м.} \]

По каталогу-справочнику «Колонные аппараты» [7.11] принимаем \(D = 1200 \text{ мм.} \)

Пример 7.10. Определить число тарелок в ректификационной колонне непрерывного действия для разделения смеси метиловый спирт — вода под атмосферным давлением. Содержание метилового спирта в питании колонны 31,5% (мол.). Дистилят требуется получать с содержанием спирта 97,5% (мол.), в кубовом остатке допускается содержание спирта 1,1% (мол.). Коэффициент избытка флегмы 1,77. Число тарелок, эквивалентное одной ступени изменения концентрации, 1,7. Колonna обогревается глухим паром.

Решение. Расчет числа тарелок проводим графически. Для этого по данным табл. XLVII для смеси метиловый спирт — вода при \(\Pi_{\text{абе}} = 760 \text{ мм рт. ст.} \) строим кривую равновесия в координатах \(y^* — x \) (рис. 7.9).

Определяем минимальное число флегм по формуле (7.10):

\[R_{\text{мин}} = \frac{x_D - y_p^*}{y_p^* - x_f} = \frac{0,975 - 0,675}{0,675 - 0,315} = 0,835, \]

где значение \(y_p^* = 0,675 \) найдено по равновесной кривой (рис. 7.9).

Действительное (рабочее) число флегм:

\[R = \varphi R_{\text{мин}} = 1,77 \cdot 0,835 = 1,48. \]

Уравнение рабочей линии верхней части колонны:

\[y = \frac{1,48}{1,48 + 1} x + \frac{0,975}{1,48 + 1}. \]
или

\[y = 0,598x + 0,393. \]

Отложив по оси ординат 0,393, наносим рабочую линию \(AB \) для верхней части колонны. Через точки \(A \) и \(C \) проводим рабочую линию для нижней части колонны.

Выполнив на диаграмме построение ломаной линии (начиная от точки \(B \)), находим необходимое число ступеней изменения концентрации: в верхней части колонны оно составляет \(\sim 7 \), в нижней \(\sim 4 \); всего 11.

Число действительных тарелок: в верхней части колонны \(1,7 \times 7 \approx 12 \); в нижней \(1,7 \times 4 \approx 7 \), всего 19 тарелок.

Пример 7.11. Построить кривую равновесия для смеси четыреххлористый углерод (CCl\(_4\)) — двуххлористая сера (SCl\(_2\)) при давлении 760 мм рт. ст.

Решение. При отсутствии экспериментальных данных кривую равновесия строим, исходя из допущения, что смесь следует закону Рэуля.

Давления насыщенного пара CCl\(_4\) в зависимости от температуры приведены в табл. 7.3.

Для SCl\(_2\) имеются две точки: температура кипения при давлении 760 мм рт. ст., равная 59 °C, и температура кипения при 400 мм рт. ст., равная 41 °C.
Таблица 7.3

<table>
<thead>
<tr>
<th>t, °C</th>
<th>P, мм рт. ст.</th>
<th>t, °C</th>
<th>P, мм рт. ст.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>214</td>
<td>70</td>
<td>624</td>
</tr>
<tr>
<td>50</td>
<td>315</td>
<td>75</td>
<td>715</td>
</tr>
<tr>
<td>65</td>
<td>580</td>
<td>80</td>
<td>843</td>
</tr>
</tbody>
</table>

Для нахождения давления насыщенного пара SCl₂ при других температурах воспользуемся правилом линейности.

Вычислим постоянную K для SCl₂ и воды, взятой в качестве стандартной жидкости:

$$K = \frac{59 - 41}{100 - 83} = 1,06,$$

где 83 °C — температура кипения воды при 400 мм рт. ст. (табл. XXXVIII)

Температуры кипения SCl₂ при разных давлениях могут быть определены из уравнения:

$$59 - t = 1,06 (100 - \Theta),$$

откуда

$$t = 1,06 \Theta - 47.$$

Здесь t — температура кипения SCl₂, °C; Θ — температура кипения воды при том же давлении, °C.

В табл. 7.4 приведены вычисленные по последней формуле значения t при разных давлениях.

На рис. 7.10 по данным табл. 7.3 и 7.4 нанесены давления насыщенных паров SCl₂ и CCl₄ в зависимости от температуры.

Имея данные о давлениях насыщенных паров чистых компонентов при разных температурах, можно построить диаграмму равновесия, применив закон Рауля. Методику построения см. в примере 7.4. На рис. 7.11 дана диаграмма равновесия в координатах y*—x.

Пример 7.12. В периодически действующей тарельчатой ректификационной колонне разгоняется под атмосферным давлением жидкая смесь четыреххлористого углерода CCl₄ и двуххлористой

Таблица 7.4

<table>
<thead>
<tr>
<th>P, мм рт. ст</th>
<th>Θ, °C</th>
<th>t, °C</th>
<th>P, мм рт. ст</th>
<th>Θ, °C</th>
<th>t, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td>100</td>
<td>50</td>
<td>1175</td>
<td>112,7</td>
<td>72,5</td>
</tr>
<tr>
<td>880</td>
<td>104,2</td>
<td>63,5</td>
<td>1320</td>
<td>116,3</td>
<td>76,3</td>
</tr>
<tr>
<td>1030</td>
<td>108,7</td>
<td>68,2</td>
<td>1470</td>
<td>119,6</td>
<td>79,8</td>
</tr>
</tbody>
</table>
Рис. 7.10 (к примеру 7.11).

C(С)Cl₂, содержащая 50% (моль.) Cl₂. Дистилят должен содержать 90% (моль.), а кубовый остаток после ректификации — 15% (моль.) Cl₂.

Определить необходимое число тарелок, если на одну ступень изменения концентрации приходится 1,7 тарелки. Определить также отношение минимальных чисел флегм в конце и в начале разгонки.

Решение. Воспользуемся данными о равновесии смеси четыреххлористый углерод — двуххлористая сера, полученными в предыдущем примере.

Находим по формуле (7.10) минимальное число флегмы \(R_{\text{мин}} \) для конечного момента разгонки, когда кубовая жидкость содер-
жит 15% SCl₂ (в этот момент существуют наиболее трудные условия разделения):

\[R_{\text{мин}} = \frac{x_D - y_F^*}{y_F^* - x_F} = \frac{0.9 - 0.25}{0.25 - 0.15} = 6.5. \]

Здесь 0,25 — мольная доля SCl₂ в парах, равновесных с кубовым остатком, содержащим 15% SCl₂, — определяется по диаграмме равновесия.

Для действительного процесса принимаем число флегмы на 20% больше \(R_{\text{мин}} \):

\[R = 1,2 \cdot 6.5 = 7.8. \]

Уравнение рабочей линии (7.6) для конечного момента перегона:

\[y = \frac{7.8}{7.8 + 1} x + \frac{0.9}{7.8 + 1} \]

или \(y = 0,887x + 0,102 \).

Строим рабочую линию и определяем графически число ступеней изменения концентрации. Как следует из рис. 7.11, числу флегмы \(R = 7,8 \) соответствуют 11 ступеней.

Число действительных тарелок, требуемое для разгонки:

\[n = 1,7 \cdot 11 \approx 19. \]

Для начального момента разгонки, когда \(x_F = 0.5 \), минимальное число флегмы:

\[R'_{\text{мин}} = \frac{0.9 - 0.64}{0.64 - 0.5} = 1.86, \]

где \(y_F^* = 0.64 \) найдено по диаграмме равновесия (рис. 7.11).

Отношение минимальных чисел флегмы в конце и в начале разгонки:

\[R_{\text{мин}}/R'_{\text{мин}} = 6.5/1.86 = 3.5. \]

Таким образом, в процессе разгонки флегмовое число меняется, достигая максимального значения \(R = 7,8 \) в конце процесса.

Пример 7.13. Построить диаграмму \(I - x \) в области насыщения для смеси CH₄—N₂ при \(p_{\text{абс}} = 10 \) кгс/см².

Решение. Методику построения и применения диаграммы \(I - x \) см. [6.11].

Для определения равновесных соотношений системы CH₄—N₂ воспользуемся экспериментальными данными.

По диаграмме состояния \(I - \lg p \) для N₂ и CH₄ определяем энталпию чистых компонентов на 1 кмоль пара и жидкости в пределах температур существования системы CH₄—N₂ при 10 кгс/см² (табл. 7.5).

Строим сетку диаграммы: по оси абсцисс откладываем содержание N₂, по оси ординат — энталпию в кДж/кмоль (рис. 7.12).

Далее наносим энтальпии чистых газообразных N₂ и CH₄ (табл. 7.5) на оси ординат для температур 170; 160 и 150 К. Соеди-
Таблица 7.5

<table>
<thead>
<tr>
<th>Т. К</th>
<th>I_{CH_4} кДж/кмоль</th>
<th>I_{N_2} кДж/кмоль</th>
<th>I_{CH_4} кДж/кмоль</th>
<th>I_{N_2} кДж/кмоль</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>11 100</td>
<td>9420</td>
<td>4690</td>
<td>—</td>
</tr>
<tr>
<td>160</td>
<td>10 700</td>
<td>9100</td>
<td>3930</td>
<td>—</td>
</tr>
<tr>
<td>150</td>
<td>10 270</td>
<td>8800</td>
<td>3310</td>
<td>—</td>
</tr>
<tr>
<td>145</td>
<td>—</td>
<td>8640</td>
<td>3040</td>
<td>—</td>
</tr>
<tr>
<td>140</td>
<td>—</td>
<td>8480</td>
<td>2820</td>
<td>—</td>
</tr>
<tr>
<td>135</td>
<td>—</td>
<td>8330</td>
<td>2550</td>
<td>—</td>
</tr>
<tr>
<td>130</td>
<td>—</td>
<td>8160</td>
<td>2310</td>
<td>—</td>
</tr>
<tr>
<td>125</td>
<td>—</td>
<td>7990</td>
<td>2050</td>
<td>—</td>
</tr>
<tr>
<td>120</td>
<td>—</td>
<td>7810</td>
<td>1830</td>
<td>—</td>
</tr>
<tr>
<td>115</td>
<td>—</td>
<td>7630</td>
<td>1580</td>
<td>3460</td>
</tr>
<tr>
<td>110</td>
<td>—</td>
<td>7420</td>
<td>1360</td>
<td>3160</td>
</tr>
<tr>
<td>105</td>
<td>—</td>
<td>7210</td>
<td>—</td>
<td>2890</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2610</td>
</tr>
</tbody>
</table>

ния эти точки прямыми, получаем соответствующие изотермы. Предполагаем, что теплота смешения равна нулю.

Ниже температуры 150 К газообразный метан при 10 кгс/см² не существует. Однако мы экстраполируем энтальпию CH_4 и ниже этой температуры, считая, что $\Delta I/\Delta T$ в области экстраполяции имеет то же значение, что и выше 150 К. В результате получаем изотермы пара вплоть до 100 К, т. е. до температуры конденсации чистого азота при 10 кгс/см². На рис. 7.12 показано несколько изотерм пара, построенных таким образом, начиная с изотермы 145 К.

Далее, пользуясь равновесными данными для системы CH_4-N_2, определяем температуры начала конденсации различных паровых смесей и наносим соответствующие точки на диаграмму $I-x$. Соединяя найденные точки, получаем линию конденсации.

Изотермы жидкости строятся по тому же принципу, что и для газа. Дело осложняется тем, что часть температур равновесия лежит выше критической температуры азота (126 К), вследствие чего энтальпию жидкого азота при этих температурах снять не представляется возможным. В этом случае можно поступить следующим образом: вычислить среднюю теплоемкость жидкого азота в интервале, скажем, 110—120 К и считать условно, что и далее, при температурах выше критической, теплоемкость азота в смеси остается такой же. Часть построенных таким образом изотерм жидкости на рис. 7.12 показана пунктиром (в области насыщения).

Принятое допущение не может привести к большим ошибках, так как для изотерм высоких температур (выше 125 К) ошибка смягчается тем, что эти изотермы пересекаются кривой кипения при большом проценте метана, энтальпии которого сняты без всяких допущений. Поэтому отклонение, вызванное неточностью в определении энтальпии азота, влияет незначительно вследствие
малой его доли. Для изотерм низких температур (ниже 125 К) энталпии жидкого азота сняты без допущений.

По данным фазового равновесия системы CH₄—N₂ наносят на диаграмму точки начала кипения для жидких смесей разного состава и после соединения этих точек получают линию кипения диаграммы l—x. В области насыщения проводят соединительные изотермы (соединяют составы жидкости на кривой кипения с равновесными составами пара на линии конденсации). На этом заканчивается построение диаграммы l—x.

Пример 7.14. В ректификационную колонну непрерывного действия подается смесь, состоящая из 30% (моль) CH₄ и 70% (моль)
Н2. Смесь поступает в количестве 1000 м³/ч в парообразном состоянии при \(p_{обс} = 10 \) кгс/см² и температуре насыщения. Здесь и далее в этом примере все объемные расходы (в м³/ч) указаны при нормальных условиях.

В результате разделения в колонне получаются газообразные продукты: фракция метана с содержанием 3% Н₂ и фракция азота с содержанием 5% СН₄.

Требуется, пользуясь диаграммой \(I-x \), определить: а) количество получаемых фракций; б) минимальное число флегмы \(R_{мн} \); в) число ступеней изменения концентрации при коэффициенте избытка флегмы 1,25; г) количество теплоты, передаваемой в дефлегматоре колонны; д) количество теплоты, передаваемой в кубе (в случае вывода из куба колонны метановой фракции в жидком состоянии).

Решение. Используем диаграмму равновесия системы СН₄—Н₂ при 10 кгс/см² в координатах \(I-x \), построенную в предыдущем примере.

а) Для определения количества получаемой фракции строим на диаграмме вверху (рис. 7.13) прямую линию \(III - I - II \); точка I характеризует исходную смесь (70% Н₂), точка II — азотную фракцию (95% Н₂) и точка III — метановой фракции (3% Н₂). Количество получаемой метановой фракции на 1 кмоль исходной смеси, как следует из уравнения материального баланса \(\frac{x_D - x_F}{x_D - x_W} = \frac{Q_W}{Q_F} \), равно отношению отрезков \(\frac{I - II}{III - II} = \frac{0,95 - 0,7}{0,95 - 0,03}. \)

Количество метановой фракции:

\[
V_{СН₄} = \frac{0,25}{0,92} 1000 = 272 \text{ м³/ч.}
\]

Количество азотной фракции:

\[
V_{Н₂} = 1000 - 272 = 728 \text{ м³/ч.}
\]

б) Определяем \(R_{мн} \). Точка М представляет собой состояние исходной смеси, поступающей на разделение. Она должна лежать на главной прямой, соединяющей полюса укрепляющей и исчерпывающей части колонны. Для определения наименьшего положения полюса колонны укрепления \(\pi_y \), соответствующего \(R_{мн} \), необходимо совместить главную прямую с изотермой, проходящей через точку М (линия MO). Продолжая эту линию до пересечения с вертикалями, проведенными из значений концентраций получаемых фракций, найдем полюсы \(\pi_y \) и \(\pi_u \), соответствующие \(R_{мн} \).

Отношение отрезков:

\[
\frac{MM'}{OK} = \frac{\piYM'}{\pi Y K} = \frac{R_{мин}}{R_{мин} + 1}.
\]

В нашем случае:

\[
\frac{MM'}{OK} = \frac{0,95 - 0,7}{0,95 - 0,217} = 0,341; \ R_{мин} = 0,518.
\]

339
По условию, действительное число флегмы:
\[R = 1,25R_{мнн} = 1,25 \cdot 0,518 = 0,647. \]
Определим положение действительного полюса \(\pi'_y \), соответствующего числу флегмы \(R = 0,647. \)
Для этого из соотношения
\[\frac{MM'}{O'K'} = \frac{R}{R + 1} \]
находим величину отрезка $O'K'$

$$O'K' = MM' \frac{R + 1}{R} = \frac{(0.95 - 0.7) \times 1.647}{0.647} = 0.637,$$

а затем абсциссу точки O':

$$0.95 - 0.637 = 0.313.$$

Проведя прямую через точки M и O' до пересечения ее с вертикалями, абсциссы которых x_D и x_W, получим главную прямую для $R = 0.647$. Точки пересечения главной прямой с вертикалями — действительные полюса π'_V и π'_N.

в) Далее определяем графическим путем число ступеней изменения концентрации. Для этого находим состав жидкости, равновесный с паром, содержащим 95% N_2 (точка N). Это будет точка I, соединенная с точкой N изотермой. Далее проводим луч $1 - \pi'_V$. Пересечение этого луча с кривой пара дает точку 2. Из точки 2 повторяем построение. Получив точку 5 на кривой жидкости левее главной прямой, дальнейшее построение ведем с помощью нижнего полюса π'_N. Число таких переходов дает число ступеней изменения концентрации. В результате получаем: в укрепляющей части (выше питания) две ступени (несколько больше); в исчерпывающей части (ниже питания) четыре ступени (несколько меньше).

g) Количества теплоы, отводимой в дефлегматоре, определяется разницей энталпий в точках π'_V и N, т. е.:

$$q_d = 12230 - 7330 = 4900 \text{ кДж/кмоль}.$$

Так как при разделении получается 728 м³/ч азотной фракции, то общее количество теплоы, передаваемое в дефлегматоре:

$$Q_d = 4900 \times \frac{728}{22.4} = 159 000 \text{ кДж/ч} = \frac{159 000 \times 10^3}{3600} = 44200 \text{ Вт.}$$

d) Количество теплоы, передаваемой в кубе колонны, q_k при отводе фракции метана в газообразном состоянии определяется разницей энталпий в точках P и π'_N. При отводе метановой фракции в жидком виде отсутствует затраты теплоы на испарение фракции; в этом случае тепло q_k определяется разницей энталпий в точках L и π'_N, что составляет 5150 кДж на 1 кмоль метановой фракции.

Общее количество теплоы, передаваемой в кубе колонны:

$$Q_k = \frac{5150 \times 10^3}{3600} \times \frac{272}{22.4} = 17300 \text{ Вт.}$$

Пример 7.15. Определить высоту и диаметр верхней (укрепляющей) части насадочной ректификационной колонны для разделения смеси метиловый спирт — вода под атмосферным давлением.

В колонну подается 1550 кг/ч исходной смеси, состоящей из 40% спирта и 60% воды. Концентрация дистиллята 97,5% спирта. В кубовом остатке содержится 2% спирта (проценты мольные).
Число флегмы \(R = 1,48 \). В качестве насадки применены колпаки 25×25×3 мм. Колонна работает в режиме эмульгирования. Обогрев глухим паром.

Решение. При работе насадочной ректификационной колонны в режиме эмульгирования скорость пара в ней находим из уравнения (6.36), \(A = -0,125 \).

\[
\lg \left(\frac{\omega^2 \rho_{мп} \rho_{ж}^{0.16}}{g V_{cb}^3 \rho_{ж}} \right) = -0,125 - 1,75 \left(\frac{L}{G} \right)^{0.25} \left(\frac{\rho_{мп}}{\rho_{ж}} \right)^{0.125}.
\]

В нашем случае: \(\sigma = 204 \text{ м}^2/\text{м}^3 \) (табл. XVII); \(V_{cb} = 0,74 \text{ м}^3/\text{м}^3 \).

Средний состав жидкости:

\[
x_{cp} = \frac{x_F + x_D}{2} = \frac{40 + 97,5}{2} = 70 \% \text{ (мол.) спирта};
\]

\[
\rho_{ж} \approx 840 \text{ кг/м}^3; \quad \mu_{ж} \approx 0,5 \cdot 10^{-3} \text{ Па·с};
\]

\[
M_{ж} = 32 \cdot 0,7 + 18 \cdot 0,2 = 26,0.
\]

Средний состав пара:

\[
y_{cp} = \frac{y_F + y_D}{2} = \frac{63 + 97,5}{2} = 80 \% \text{ (мол.) спирта}.
\]

Здесь \(y_F = 63 \% \text{ (мол.)} \) — содержание спирта в паре, поступающем в верхнюю часть колонны (рис. 7.9; в примере 7.10 рабочая линия верхней части колонны занимает такое же положение, как и в нашем случае). Средняя температура в верхней части колонны \(\sim 72 \text{ °C} \). Имеем:

\[
\rho_{пб} = \frac{[M_{cb} y_{cp} + M_{ж} (1 - y_{cp})] T_0 \rho_0}{22,4 T_0 \rho_0} = \frac{(0,8 \cdot 32 + 0,2 \cdot 18) \cdot 273 \cdot 1,033}{22,4 \cdot 345 \cdot 1} = 1,03 \text{ кг/м}^3;
\]

\[
\mu_{пб} = 1,11 \cdot 10^{-6} \text{ Па·с}.
\]

Отношение массовых расходов жидкости и пара равно (при близких значениях \(M_{пб} \) и \(M_{ж} \)):

\[
\frac{L}{G} = \frac{R}{R + 1} \frac{M_{ж}}{M_{пб}} \approx 1,48 \frac{2,48}{2,48} = 0,6.
\]

Подставляя эти значения в формулу (6.36), получаем:

\[
\lg \left(\frac{w^2 \cdot 204 \cdot 1,03 \cdot 0,5 \cdot 16}{9,81 \cdot 0,74^3 \cdot 840} \right) = -0,125 - 1,75 \cdot 0,6 \cdot 0,25 \left(\frac{1,03}{840} \right)^{0,125};
\]

\[
\lg (0,0585w^2) = -0,788,
\]

откуда \(w = 1,7 \text{ м/с} \). 342
Эквивалентную высоту насадки h_0 рассчитываем по уравнению (7.23):

$$h_0 = 5,2d_3 R_{ев}^{0.35} (\frac{G}{L})^{0.35} \left(\frac{\rho_{\text{ж}}}{\rho_{\text{в}}} \right)^{0.12} \frac{\lg \frac{L}{mG}}{1 - \frac{mG}{L}} =$$

$$= 5,2 \frac{4V_{ев}}{\sigma} \left(\frac{4\nu \rho_{\text{в}}}{\sigma \mu_{\text{в}}} \right)^{0.35} \left(\frac{R + 1}{R} \right)^{0.35} \left(\frac{\rho_{\text{ж}}}{\rho_{\text{в}}} \right)^{0.12} \frac{\lg \frac{R}{m (R + 1)}}{1 - \frac{m (R + 1)}{R}} =$$

$$= \frac{5,2 \cdot 0,74}{204} \left(\frac{204 \cdot 1,11 \cdot 10^{-3}}{2,48 \cdot 1,48} \right) \left(\frac{2,48}{1,48} \right)^{0.35} \left(\frac{840}{1,03} \right)^{0.12} \frac{\lg \frac{1,48}{0,45 \cdot 2,48}}{1 - \frac{0,45}{0,6}} =$$

$$= 0,86 \text{ м.}$$

Как следует из рис. 7.9, $m = 0,45$, число ступеней изменения концентрации в пределах от $x_D = 0,975$ до $x_F = 0,4$ составляет $6,4$. Следовательно, требуемая высота насадки по уравнению (6.44):

$$H_\mu = h_0 n_\tau = 0,86 \cdot 6,4 = 5,5 \text{ м.}$$

Для определения диаметра колонны найдем предварительно расход дистиллята. Мольный расход питания:

$$G_F = \frac{G_F}{x_F M_{ев} (1 - x_F) M_B} = \frac{1500}{0,4 \cdot 32 + 0,6 \cdot 18} = 63,6 \text{ кмоль/ч.}$$

Из уравнений материального баланса колонны

$$G_D + G_W = 63,6; \quad 0,975 G_D + 0,02 G_W = 0,4 \cdot 63,6$$

находим расход дистиллята $G_D = 25,3$ кмоль/ч.

Объемный расход пара в верхней части колонны:

$$V = \frac{G_D (R + 1) 22,4 T}{T_0 \cdot 3600} = \frac{25,3 (1,48 + 1) 22,4 \cdot 345}{273 \cdot 3600} = 0,493 \text{ м}^3/\text{с.}$$

Требуемый диаметр колонны:

$$D = \sqrt{\frac{V}{m \cdot 0,785}} = \sqrt{\frac{0,493}{1,7 \cdot 0,785}} = 0,61 \text{ м.}$$

Принимаем колонну стандартного диаметра $D_K = 0,6 \text{ м.}$

Пример 7.16. В ректификационной колонне непрерывного действия разделяется под атмосферным давлением смесь этилового спирта—вода, содержащая 25% (мол.) этилового спирта. Требуемая концентрация дистиллята 80% (мол.), допускаемое содержание спирта в кубовом остатке не выше 0,1% (мол.). В куб колонны по-

* При более точном построении в большом масштабе число ступеней изменения концентрации получается немного больше 7.
Рис. 7.14 (к примеру 7.16).

dается острый пар. Определить рабочее число флегмы и относительные мольные расходы питания, подаваемого острового пара и кубового остатка на 1 кмоль дистилята. Нанести рабочие линии на диаграмму $y = x$.

Решение. На рис. 7.14 дана схема материальных потоков (относительных мольных расходов) в ректификационной колонне, в куб которой подается острый пар. Из уравнений материального баланса колонны $F + V = 1 + W$; $F_x_F = x_D + W_x_W$; $V = R + 1$ при $W = F + R$ получаем:

$$F = \frac{x_D + R_x_W}{x_F - x_W}; \quad W = \frac{x_D + R_x_F}{x_F - x_W}.$$

Уравнения рабочих линий:

верхней части колонны

$$y = \frac{R}{R + 1} x + \frac{x_D}{R + 1};$$

нижней части колонны

$$y = \frac{R + F}{R + 1} x - \frac{R + F}{R + 1} x_W.$$

В этих уравнениях: $F = G_F/G_D$; $W = G_W/G_D$; $V = G_V/G_D$; G_F, G_D, G_W; G_V — мольные расходы питания, дистилята, кубового остатка, подаваемого пара, кмоль/с.

Рабочая линия верхней части колонны такая же, как и при обогреве колонны глухим паром — см. уравнение (7.6), она пересекает диагональ диаграммы $y = x$ при $x = x_D$ и ось ординат при $y = \frac{x_D}{R + 1}$.

Рабочая линия нижней части колонны пересекает ось абсцисс при $x = x_W$. Обе рабочие линии пересекаются при $x = x_F$.

Кривая равновесия, построенная по данным [7.5], имеет впадину (рис. 7.15). Для определения $R_{\text{мин}}$ из точки A проводим касательную AB к кривой равновесия. Касательная AB отсекает на оси ординат отрезок, равный 37,5. Отсюда

$$\frac{x_D}{R_{\text{мин}} + 1} = 0,375 \quad \text{и} \quad R_{\text{мин}} = \frac{0,8 - 0,375}{0,375} = 1,13.$$

Рабочее число флегмы (по уравнению (7.12)):

$$R = 1,3R_{\text{мин}} + 0,3 = 1,3 \cdot 1,13 + 0,3 = 1,77.$$
Отрезок, отсекаемый рабочей линией верхней части колонны на оси ординат при \(R = 1,77 \):
\[
\frac{x_D}{R+1} = \frac{0,8}{1,77 + 1} = 0,289.
\]

Наносим рабочие линии на диаграмму — рис. 7.15 (на рисунке точка \(x_W \) на оси абсцисс нанесена в масштабе). Находим относительные мольные расходы:
\[
F = \frac{x_D + Rx_W}{x_F - x_W} = \frac{80 + 1,77 \cdot 0,1}{25 - 0,1} = 3,21;
\]
\[
W = \frac{x_D + Rx_F}{x_F - x_W} = \frac{80 + 1,77 \cdot 25}{24,9} = 4,98;
\]

\[
V = R + 1 = 1,77 + 1 = 2,77.
\]

Проверка материального баланса:
\[
F + V = 1 + W;
\]
\[
3,21 + 2,77 = 1 + 4,98.
\]

Расход подаваемого в колонну острого пара следует проверить по уравнению теплового баланса колонны, которое имеет следующий вид:
\[
G_V t_n + G_P c_P t_F = Q_d + G_D c_D t_D + G_W c_W t_W + Q_{пот}.
\]

Здесь \(G_V, G_P, G_D, G_W \) — массовые расходы пара, исходной смеси, дистиллята, кубового остатка, кг/с; \(G'_W = G_V + G_P - G_D; c_F, c_D, c_W \) — соответственно удельные теплоемкости, Дж/(кг·К); \(t_F, t_D, t_W \) — температуры, °С; \(t_n \) — удельная энтальпия пара, Дж/кг; \(Q_d \) — расход теплоты, отдаваемой охлаждающей водой в дефлегматоре, Вт [уравнение (7.15)], \(Q_{пот} \) — тепловые потери в окружающую среду, Вт.

Пример 7.17. Определить число тарелок ректификационной колонны, необходимое для разделения смеси метиловый спирт — вода под атмосферным давлением. Содержание метилового спирта в питании \(x_F = 0,3 \), в дистилляте \(x_D = 0,9 \), в кубовом остатке \(x_W = 0,05 \) (мольные доли). Флегмовое число \(R = 2 \). Зависимость коэффициента обогащения \(\eta \) от состава жидкости приведена в табл. 7.6.

Решение. Для определения числа тарелок используем метод кинетической кривой, позволяющей учесть зависимость коэффициента обогащения от состава [1].

По данным табл. XLVII строим для смеси метиловый спирт — вода кривую равновесия в координатах \(y — x \) (рис. 7.16). Наносим на диаграмму рабочие линии (порядок их определения — см. пример 7.10): \(y = 0,67x + 0,3 \) и \(y = 1,8x - 0,04 \).

Для построения кинетической кривой — линии, координаты точек которой \((y, x) \) представляют собой составы пара и жидкости, покидающих тарелки, необходимо:

345
а) наметить на рабочих линиях ряд точек A_1, A_2, ..., A_i, отвечающих нескольким сечениям колонны;

б) определить в выбранных сечениях предельное изменение состава пара $y^* - y$, изображаемое отрезками A_iB_i;

в) определить по соотношению (7.21) действительное изменение состава пара Δy в выбранных сечениях колонны, т. е. найти отрезки A_iC_i:

$$A_iC_i = \eta A_iB_i$$

г) нанести на диаграмму отрезки A_iC_i и соединить точки C_i плавной линией — кинетической кривой.

Этапы построения кинетической кривой следует отразить в таблице 7.6.

<table>
<thead>
<tr>
<th>x</th>
<th>0,05</th>
<th>0,10</th>
<th>0,20</th>
<th>0,30</th>
<th>0,40</th>
<th>0,50</th>
<th>0,60</th>
<th>0,70</th>
<th>0,80</th>
<th>0,90</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0,40</td>
<td>0,43</td>
<td>0,48</td>
<td>0,53</td>
<td>0,55</td>
<td>0,53</td>
<td>0,52</td>
<td>0,51</td>
<td>0,49</td>
<td>0,47</td>
</tr>
<tr>
<td>$y^* - y$</td>
<td>0,25</td>
<td>0,28</td>
<td>0,25</td>
<td>0,17</td>
<td>0,16</td>
<td>0,15</td>
<td>0,12</td>
<td>0,10</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Δy или $\eta(y^* - y)$</td>
<td>0,10</td>
<td>0,12</td>
<td>0,12</td>
<td>0,09</td>
<td>0,09</td>
<td>0,08</td>
<td>0,06</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Таблица 7.6

Примечание. Вместо значений $y^* - y$ и $\eta(y^* - y)$ в таблицу можно ввести непосредственно пропорциональные им длины отрезков A_iB_i, A_iC_i в мм; $\eta = A_iC_i/A_iB_i$.

Построив ступень между кинетической кривой и рабочей линией, определите число ступеней раздельно для верхней и нижней части колонны. Число ступеней дает число рабочих тарелок. Получаем: число тарелок нижней части колонны $n_n = 4$ шт., верхней — $n_B = 7$ шт. Тарелка питания — четвертая (при счете снизу).
7.1. Крезол \((\text{CH}_3\text{C}_6\text{H}_4\text{OH})\) перегоняется с водяным паром а) под атмосферным давлением, б) под давлением 300 мм рт. ст. Определить: температуру перегонки; массовый состав получаемой смеси; объемный процент крезола в паре и его парциальное давление. Принять \(\varphi = 0,8\). Давление насыщенного пара крезола — см. рис. XIV (н-крезол).

7.2. Глицерин очищается перегонкой с перегретым водяным паром при 230 °С под вакуумом 590 мм рт. ст. Степень насыщения водяного пара глицерином 0,75. Определить расход пара, уходящего с 1 т глицерина. Сырой глицерин подается при температуре перегонки. Аппарат имеет внешний обогрев. Как изменится состав паровой смеси, если повысить вакуум до 620 мм рт. ст.? Температура кипения чистого глицерина под давлением 760 мм рт. ст. равняется 290 °С, а под давлением 50 мм рт. ст. 205 °С. Воспользоваться правилом линейности, взяв в качестве стандартной жидкости воду (табл. XXXVIII).

7.3. Смесь бензола и толуола кипит при 95 °С под давлением 760 мм рт. ст. При 95 °С давление насыщенного пара бензола \(P_b = 1167\) мм рт. ст.; давление насыщенного пара толуола \(P_t = 480\) мм рт. ст. Найти состав кипящей жидкости, считая, что смесь характеризуется законом Рауля.

Если жидкость будет содержать в два раза меньше толуола, то под каким давлением она будет кипеть при той же температуре?

7.4. Определить равновесные составы жидкости и пара для смеси метиловый спирт — вода при температуре 50 °С: а) под давлением 300 мм рт. ст., б) под давлением 500 мм рт. ст., считая, что смесь характеризуется законом Рауля.

Объяснить полученный для случая б) результат.

7.5. Постройте кривую равновесия \(x—y^*\) при общем давлении 2 кгс/см² для смеси гексан — гептан, считая приложимым закон Рауля. Давления насыщенных паров чистых компонентов взять по номограмме (рис. XIV).

7.6. Определить состав равновесного пара над жидкой смесью, состоящей из 10% (мол.) воды, 50% (мол.) уксусной кислоты и 40% (мол.) ацетона при \(t = 80\) °С, считая, что компоненты смеси следуют закону Рауля.

7.7. 1000 кг бинарной смеси бензол — толуол, содержащей 30% (масс.) бензола, подвергают простой перегонке под атмосферным давлением. Определить количество и состав дистиллята, если содержание бензола в кубовом остатке равно 18% (масс.) Воспользоваться данными табл. 7.1.

7.8. 2600 кг смеси уксусной кислоты и воды подвергают простой перегонке под атмосферным давлением. Исходная смесь содержит 10% (м.п.) уксусной кислоты, остаток — 50% (м.п.) уксусной кислоты. Определить массу остатка и дистиллята и состав дистиллята. Данные о равновесных составах см. в табл. XLVII.
7.9. В ректификационную колонну непрерывного действия поступает жидкость с 24% (мол.) легколетучего компонента. Концентрация дистилята 95% (мол.), концентрация кубового остатка 3% (мол.) легколетучего компонента. В дефлегматор поступает 850 кмоль/ч пара, в колону из дефлегматора поступает 670 кмоль/ч флегмы. Сколько получается кубового остатка?

7.10. Определить аналитически абсциссы точек пересечения рабочих линий ректификационной колонны с диагональю диаграммы $y=x$ и друг с другом.

7.11. В ректификационной колонне непрерывного действия разгоняется смесь этилового спирта и воды. Уравнение рабочей линии нижней части колонны: $y = 1,28x - 0,0143$. Определить массовый процент спирта в кубовом остатке. Колонна обогревается глюхим паром.

7.12. Колонна непрерывного действия перерабатывает смесь бензола и хлороформа. При ректификации получается дистилят, содержащий 95% (масс.) легколетучего компонента. Питающая жидкость содержит 40% этого компонента. Найти тангенс угла наклона рабочей линии верхней части колонны, если известно, что рабочее число флегмы в 2 раза больше минимального. Данные о равновесных составах см. в табл. XLVII.

7.13. В ректификационной колонне непрерывного действия разгоняется под атмосферным давлением 340 кмоль/ч смеси вода—уксусная кислота. Ордината точки пересечения рабочих линий 0,48. Уравнение рабочей линии верхней части колонны $y = 0,84x + 0,15$. Количество пара, поступающего в дефлегматор, 550 кмоль/ч. Определить количество кубового остатка (в кг/ч) и массовую концентрацию уксусной кислоты в нем.

7.14. В ректификационную колонну непрерывного действия подается 1000 кмоль/ч смеси, содержащей 30% (мол.) пентана и 70% (мол.) гексана. Верхний продукт содержит 95% (масс.) пентана, нижний — 90% (масс.) гексана. Определить количество верхнего и нижнего продуктов (в кг/ч), а также количество пара, конденсирующегося в дефлегматоре, если известно, что тангенс угла наклона рабочей линии верхней (укрепляющей) части колонны равняется 0,75.

7.15. Из ректификационной колонны выходит 1100 кг/ч дистилята с содержанием 98,5% (масс.) легколетучего компонента и 3650 кг/ч кубового остатка с содержанием 96,6% (масс.) второго компонента. Число флегмы 2,94. Определить: а) массовый процент легколетучего компонента в питании колонны; б) количество пара (в кг/ч), поступающего из колонны в дефлегматор.

7.16. На одной из тарелок ректификационной колонны в верхней (укрепляющей) ее части кипит смесь азота и кислорода. Концентрация азота в жидкости, стекающей с тарелки, 50% (мол.). Найти состав жидкости, стекающей сверху на данную тарелку, если одна ступень изменения концентрации соответствует одной тарелке. Число флегмы 2,3. Верхний продукт при-
нять за чистый азот. Данные о равновесных составах см. в табл. XLVII.

7.17. На одной из тарелок верхней части ректификационной колонны находится жидкость, содержащая 65% (моль.) легколетучего компонента. Колонна работает при флегмовом числе \(R = 2,5 \). Дистилят содержит 98% легколетучего компонента.

Определить составы пара, приходящего на указанную тарелку и уходящего с нее, если коэффициент обогащения тарелки \(\eta_0 = 0,75 \), смесь следует закону Рауля, коэффициент относительной летучести \(\alpha = 2,5 \). Жидкость на тарелке полностью перемешивается.

7.18. В ректификационной колонне непрерывного действия \(x_0 = 90\% \) (моль.), \(x_p = 30\% \) (моль.), \(x_W = 3\% \) (моль.), \(R = 8 \). Определить состав пара, приходящего на тарелку, где жидкость содержит: а) 75 и б) 15% (моль.) легколетучего компонента.

7.19. В ректификационной колонне непрерывного действия получается 200 кг/ч уксусной кислоты с концентрацией 70% (моль.) Перерабатывается смесь уксусной кислоты с водой, смесь поступает в колонну при температуре кипения. Содержание уксусной кислоты в исходной смеси 31% (моль.). С верха колонны отгоняется вода, содержащая 8% (моль.) уксусной кислоты. Давление в колонне атмосферное. Определить число ступеней изменения концентрации при числе флегмы 4. Определить также расход в кубе колонны греющего пара \(\rho_{abc} = 4 \) кгс/см², имеющего влажность 5%. Тепловые потери составляют 4% от полезно затрачиваемой теплоты. Данные о равновесных составах см. в табл. XLVII.

7.20. В ректификационную колонну поступает 5000 кг/ч смеси, состоящей из 29% (масс.) метилового спирта и 71% (масс.) воды. Уравнение рабочей линии верхней (укрепляющей) части колонны: \(y = 0,73x + 0,264 \). Кубового остатка получается 3800 кг/ч. Определить: а) массовый процент метилового спирта в кубовом остатке; б) количество пара (в кг/ч), поступающего из колонны в дефлегматор; в) расход воды в дефлегматоре, если она нагревается в нем на 12 К.

7.21. Уравнения рабочих линий ректификационной колонны для разделения смеси бензола и толуола под атмосферным давлением: \(y = 0,723x + 0,263; \ y = 1,25x - 0,0188 \). В колонну по-дается 75 кмоль/ч смеси при температуре кипения. Греющий пар в кубе колонны имеет избыточное давление 3 кгс/см². Определить требуемую поверхность нагрева в кубе колонны и расход греющего пара, имеющего влажность 5%. Коэффициент теплопередачи \(K = 580 \) Вт/(м²·К). Тепловыми потерями пренебречь. Температуру кипения жидкости в кубе принять как для чистого толуола.

7.22. В ректификационную колонну непрерывного действия подается смесь вода—этиловый спирт, содержащая 10% (масс.) спирта. Определить расход теплоты в кубе колонны и количество отводимой теплоты в дефлегматоре на 1 кг дистилята, содержащего 94% (масс.) спирта, если кубовый остаток практически не
содержит спирта. Исходная смесь вводится в колонну при температуре 70 °C. Укрепляющая часть колонны работает с числом флегмы 4. Тепловыми потерями пренебречь. Обогрев глухим парам.

7.23. Производительность ректификационной колонны для разделения смеси метиловый спирт — вода составляет 1500 кг/ч дистилята. Колонна работает под атмосферным давлением. Поверхность теплообмена дефлегматора 60 м², коэффициент теплообмена в нём 810 Вт/(м²·K). Определить число флегмы и расход охлаждающей воды в дефлегматоре, если она нагревается от 15 до 35 °C.

7.24. Определить требуемую поверхность и расход воды в дефлегматоре ректификационной колонны для разделения бензольно-толуольной смеси при следующих условиях: количество верхнего продукта 600 кг/ч; число флегмы 3,75; начальная и конечная температуры охлаждающей воды 20 и 45 °C; коэффициент теплообмена 700 Вт/(м²·K). Считать верхний продукт за чистый бензол. Давление в колонне атмосферное.

7.25. Определить необходимое число тарелок в ректификационной колонне периодического действия для разгонки смеси хлороформа — бензол под атмосферным давлением. Исходная смесь содержит 38% (моль.) хлороформа, дистилят должен содержать 97% (моль.), кубовой остаток после перегонки — 10% (моль.). Коэффициент избытка флегмы 2. Данные о равновесных составах см. в табл. XI. На одну ступень изменения концентрации приходится 1,4 тарелки.

7.26. В ректификационной колонне непрерывного действия разгоняется 5000 кг/ч смеси метиловый спирт — вода. Массовая концентрация метилового спирта в питании 20%, в верхнем продукте 50%. Коэффициент избытка флегмы 1,8. Расход воды на дефлегматор 40 м³/ч, вода в нём нагревается от 20 до 40 °C. Определить количество метиолового спирта, уходящего с кубовым остатком.

7.27. Для обогрева куба ректификационной колонны, в котором идет на разделение 6 т/ч бензольно-толуольной смеси, имеется в распоряжении пар с абсолютным давлением 0,1 МПа. Концентрация исходной смеси 92% бензола. Требуемая концентрация дистилята 97% бензола, кубового остатка — 95% толуола. Проценты массовые.

Определить: а) массовые расходы получаемого дистилята и кубового остатка; б) давление в колонне; в) требуемое количество тарелок при числе флегмы 3,1 и при среднем к. п. д. тарелок η = 0,71; г) расход греющего пара и расход воды в дефлегматоре при нагреве воды в нём на 15 К. Влажность греющего пара 5%.

Смесь характеризуется законом Рауля. Тепловые потери принимаются в размере 3% от полезно затрачиваемой теплоты. Питание подается в колонну при температуре кипения. Принять разность температур в кубе колонны 10 К.
7.28. Определить диаметр и высоту тарельчатой колонны для разделения смеси метиловый спирт—вода под атмосферным давлением. Расход исходной смеси 3 т/ч (0,84 кг/с). Содержание метилового спирта в питании 40% (мол.), в дистилляте 95% (мол.), в кубовом остатке 5% (мол.). Скорость пара в колонне 0,8 м/с, расстояние между тарелками \(H = 300 \text{ мм} \). Зависимость коэффициента обогащения \(\eta \) от состава жидкости:

<table>
<thead>
<tr>
<th>(x)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>0,45</td>
<td>0,55</td>
<td>0,63</td>
<td>0,69</td>
<td>0,75</td>
<td>0,78</td>
<td>0,80</td>
<td>0,80</td>
<td></td>
</tr>
</tbody>
</table>

ПРИМЕР РАСЧЕТА ТАРЕЛЬЧАТОЙ РЕКТИФИКАЦИОННОЙ КОЛОННЫ

Рассчитать ректификационную колонну непрерывного действия с ситчатыми тарелками для разделения под атмосферным давлением 10 т/ч жидкости, содержащей 50 % (масс.) бензола и 50 % (масс.) толуола. Требуемое содержание бензола в дистилляте 96 % (масс.), требуемое содержание толуола в кубовом остатке 98 % (масс.). Исходная смесь перед подачей в колонну подогревается до температуры кипения. Греющий пар имеет давление \(p_{	ext{раб}} = 3 \text{ кгс/см}^2 (0,3 \text{ МПа}) \). В расчет входят определение расходов дистиллята, кубового остатка, флегмового числа, греющего пара, охлаждающей воды и определение основных размеров колонны — \(D \) и \(H \). Определение числа тарелок выполнить: а) графически — методом теоретической тарелки; б) аналитически — методом от тарелки к тарелке — с помощью ЭВМ. Составы пара и жидкости на тарелках колонны вывести на печать.

Схема ректификационной установки дана на рис. 7.17.

1. **Материалный баланс.**

Обозначим массовый расход дистиллята через \(G_D \) кг/ч, кубового остатка через \(G_W \) кг/ч.

Из уравнений материального баланса (7.4) и (7.5)

\[
G_D - G_W = 10 000;
\]

\[
G_D \cdot 0,96 + G_W \cdot 0,02 = 10 000 \cdot 0,5
\]

находим \(G_D = 5110 \text{ кг/ч}, \ G_W = \approx 4890 \text{ кг/ч}. \)

Для дальнейших расчетов выразим концентрации питания, дистиллята и кубового остатка в мольных долях (в соответствии с табл. 6.2).

Питание

\[
x_F = \frac{x_F / M_6}{x_F / M_6 + 100 - x_F} = \frac{50 / 78}{50 / 78 + 50 / 92} = 0,542.
\]

Рис. 7.17. Схема ректификационной установки.
Дистиллят:

\[x_D = \frac{\dot{x}_D/M_0}{\frac{\dot{x}_D}{M_0} + \frac{100 - \dot{x}_D}{M_T}} = \frac{96/78}{\frac{96}{78} + \frac{4}{92}} = 0,965. \]

Кубовый остаток:

\[x_W = \frac{\dot{x}_W/M_0}{\frac{\dot{x}_W}{M_0} + \frac{100 - \dot{x}_W}{M_T}} = \frac{2/78}{\frac{2}{78} + \frac{98}{92}} = 0,023. \]

Относительный мольный расход питания:

\[F = \frac{x_D - x_W}{x_F - x_W} = \frac{0,965 - 0,023}{0,542 - 0,023} = 1,82. \]

Кривая равновесия (рис. 7.7) * точек перегиба не имеет.
Определяем минимальное число флегм по уравнению (7.10):

\[R_{\text{мин}} = \frac{x_D - y_F^*}{y_F^* - x_F} = \frac{0,965 - 0,74}{0,74 - 0,542} = 1,135, \]

где \(y_F^* = 0,74 \) — мольную долю бензола в паре, равновесном с жидкостью питания, определяем по диаграмме \(y^* - x \).
Рабочее число флегм по уравнению (7.12):

\[R = 1,3R_{\text{мин}} + 0,3 = 1,3 \cdot 1,135 + 0,3 = 1,78. \]

Уравнения рабочих линий:

а) верхней (укрепляющей) части колонны

\[y = \frac{R}{R + 1} x + \frac{x_D}{R + 1} = \frac{1,78}{2,78} x + \frac{0,965}{2,78} ; \]

\[y = 0,64x + 0,347; \]

б) нижней (исчерпывающей) части колонны

\[y = \frac{R + F}{R + 1} x - \frac{F - 1}{R + 1} x_W = \frac{1,78 + 1,82}{2,78} x - \frac{1,82 - 1}{2,78} 0,023; \]

\[y = 1,3x - 0,0068. \]

II. Определение скорости пара и диаметра колонны.

Средние концентрации жидкости:

а) в верхней части колонны

\[x_{cp}^* = (x_F + x_D)/2 = (0,542 + 0,965)/2 = 0,754; \]

б) в нижней части колонны

\[x_{cp}^* = (x_F + x_W)/2 = (0,542 + 0,023)/2 = 0,283. \]

Средние концентрации пара находим по уравнениям рабочих линий:

а) в верхней части колонны

\[y_{cp}^* = 0,64x_{cp}^* + 0,347 = 0,64 \cdot 0,754 + 0,347 = 0,829; \]

* В технических расчетах используют обычно экспериментальные данные о фазовом равновесии [6.7]. В этом примере использованы равновесные зависимости, полученные расчетным путем на основании закона Раша, которые для системы бензол—толуол близки к experimentalным данным.
б) в нижней части колонны

\[y'_{cp} = 1,3x_{cp} = 0,0068 = 1,3 \cdot 0,283 - 0,0068 = 0,361. \]

Средние температуры пара определяем по диагrameм \(t - x, y \) (рис. 7.6):

а) при \(y'_{cp} = 0,829 \quad t_{cp} = 88 \, ^\circ C, \)

б) при \(y'_{cp} = 0,361 \quad t_{cp} = 103 \, ^\circ C. \)

Средние мольные массы и плотности пара:

а) \(M_{cp} = 0,829 \cdot 78 + 0,171 \cdot 92 = 80,3 \, \text{кг/кмоль}; \)

\[\rho_{cp} = \frac{M_{cp}T_{0}}{22,4T_{cp}} = \frac{80,3 \cdot 273}{22,4 \cdot 361} = 2,71 \, \text{кг/м}^3; \]

б) \(M_{cp} = 0,361 \cdot 78 + 0,639 \cdot 92 = 87 \, \text{кг/кмоль}; \)

\[\rho_{cp} = \frac{M_{cp}T_{0}}{22,4T_{cp}} = \frac{87 \cdot 273}{22,4 \cdot 376} = 2,82 \, \text{кг/м}^3. \]

Средняя плотность пара в колонне:

\[\rho_n = (\rho_{cp} + \rho_{cp}')/2 = (2,71 + 2,82)/2 = 2,77 \, \text{кг/м}^3. \]

Плотности жидкого бензола и толуола близки. Температура в верху колонны при \(y_D = 0,965 \) равняется 82 \(^\circ C\), а в кубе-испарителе при \(x_W = 0,023 \) она равна 109 \(^\circ C\) (рис. 7.6).

Плотность жидкого бензола при 82 \(^\circ C\) \(\rho_b = 813 \, \text{кг/м}^3 \), а жидкого толуола при 109 \(^\circ C\) \(\rho_t = 783 \, \text{кг/м}^3 \) [4.15].

Принимаем среднюю плотность жидкости в колонне

\[\rho_n = (813 + 783)/2 \approx 800 \, \text{кг/м}^3. \]

Определяем скорость пара в колонне по уравнению (7.17). По данным каталога-справочника «Колонные аппараты» принимаем расстояние между тарелками \(h = 300 \) мм. Для сечатых тарелок по графику (рис. 7.2) находим \(C = 0,032 \).

Скорость пара в колонне по уравнению (7.17а):

\[w = C \sqrt{\rho_{cp}/\rho_n} = 0,032 \sqrt{800/2,77} = 0,54 \, \text{м/с.} \]

Объемный расход проходящего через колонну пара при средней температуре в колонне \(t_{cp} = (88 + 103)/2 \approx 96 \, ^\circ C \)

\[V = \frac{G_D (R + 1) 22,4 T_{cp} \rho_0}{M_D T_{0} \cdot 3600 \rho} = \frac{5110 (1,78 + 1) 22,4 \cdot 369 \cdot 1,033}{78,5 \cdot 273 \cdot 3600 \cdot 1} = 1,52 \, \text{м}^3/\text{s}, \]

где \(M_D \) — мольная масса дистиллята, равная

\[M_D = 0,965 \cdot 78 + 0,035 \cdot 92 = 78,5 \, \text{кг/кмоль.} \]

Диаметр колонны:

\[D = \sqrt{\frac{V}{0,785 w}} = \sqrt{\frac{1,52}{0,785 \cdot 0,54}} = 1,89 \, \text{м.} \]

По каталогу-справочнику «Колонные аппараты» берем \(D = 1800 \) мм. Тогда скорость пара в колонне будет:

\[w = \frac{V}{0,785 D^2} = \frac{1,52}{0,785 \cdot 1,8^2} = 0,6 \, \text{м/с.} \]

12 Павлов К. Ф. и др. 353
Рис. 7.18. Схема ситчатой тарелки.

III. Гидравлический расчет тарелок.

Принимаем следующие размеры ситчатой тарелки: диаметр отверстий $d_0 = 4$ мм, высота слойной перегородки $h_p = 40$ мм. Свободное сечение тарелки (суммарная площадь отверстий) 8% от общей площади тарелки. Площадь, занимаемая двумя сегментными переливными стаканами, составляет 20% от общей площади тарелки.

Рассчитаем гидравлическое сопротивление тарелки в верхней и в нижней части колонны по уравнению (1.60):

$$\Delta p = \Delta p_{сух} + \Delta p_0 + \Delta p_{пжг}.$$

а) Верхняя часть колонны.

Гидравлическое сопротивление сухой тарелки:

$$\Delta p_{сух} = \zeta w_0^2 \rho_p / 2 = 1.82 \cdot 7.5 \cdot 2.71 / 2 = 138$$ Па,

где $\zeta = 1.82$ — коэффициент сопротивления непрощаемых ситчатых тарелок со свободным сечением $7 - 10$%; $\omega_0 = 0.6 / 0.08 = 7.5$ м/с — скорость пара в отверстиях тарелки.

Сопротивление, обусловленное силами поверхностного натяжения:

$$\Delta p_0 = 40 / d_0 = 4 \cdot 20.5 \cdot 10^{-3} / 0.004 = 20.5$$ Па,

где $\sigma = 20.5 \cdot 10^{-3}$ Н/м — поверхностное натяжение жидкости при средней температуре в верхней части колонны 88°C [4.16] (у бензола и толуола практически одинаковое поверхностное натяжение); $d_0 = 0.004$ м — диаметр отверстий тарелки.

Сопротивление парожидкостного слоя на тарелке:

$$\Delta p_{пжг} = 1.3 h_{пжг} \rho_{пжг} g.$$

Высота парожидкостного слоя (рис. 7.18):

$$h_{пжг} = h_p + \Delta h.$$

Величину Δh — высоту слоя над слойной перегородкой рассчитываем по формуле:

$$\Delta h = \left(\frac{V_{ж}}{1.851k} \right)^{1/2},$$

где $V_{ж}$ — объемный расход жидкости, m^3/с; $П$ — периметр слойной перегородки, м; $k = \rho_{пж} / \rho_{ж}$ — отношение плотности парожидкостного слоя (пены) к плотности жидкости, принимаемое приближенно равным 0,5.

Объемный расход жидкости в верхней части колонны:

$$V_{ж} = \frac{G_{ДР} M_{ср}}{M_{Dж} P_{ж}} = \frac{5110 \cdot 1.78 \cdot 81.4}{3600 \cdot 78.5 \cdot 800} = 0.00328 \ m^3/c,$$

где $M_{ср} = 0.754 \cdot 78 + 0.246 \cdot 92 = 81.4$ — средняя мольная масса жидкости, кг/моль.

Периметр слойной перегородки $П$ (рис. 7.18) находим, решая систему уравнений:

$$\left(\frac{П}{2} \right)^2 + (R - b)^2 = R^2;$$

$$0.1ПR^2 = \frac{1}{2}Пb.$$

354
где $R = 0,9$ м — радиус тарелки; $\pi/3\Pi b$ — приближенное значение площади сегмента.

Решение дает: $\Pi = 1,32$ м; $b = 0,289$ м. Находим Δh:

$$\Delta h = \left(\frac{0,00328}{1,85 \cdot 1,32 \cdot 0,5} \right)^{1/2} = 0,0193 \text{ м.}$$

Высота парожидкостного слоя на тарелке:

$$h_{пк} = h_{\Pi} + \Delta h = 0,04 + 0,0193 = 0,0593 \text{ м.}$$

Сопротивление парожидкостного слоя:

$$\Delta \rho_{пк} = 1,3h_{нк} \cdot \rho_{жк}g = 1,3 \cdot 0,0593 \cdot 0,5 \cdot 800 \cdot 9,81 = 302 \text{ Па.}$$

Общее гидравлическое сопротивление тарелки в верхней части колонны:

$$\Delta p' = \Delta \rho_{сух} + \Delta \rho_o + \Delta \rho_{пк} = 138 + 20,5 + 302 = 461 \text{ Па.}$$

б) Нижняя часть колонны:

$$\Delta \rho_{сух} = \frac{1,82 \cdot 7,5^2 \cdot 2,82}{2} = 144 \text{ Па}; \quad \Delta \rho_o = \frac{4 \cdot 18,8 \cdot 10^{-3}}{0,004} = 18,8 \text{ Па}$$

($18,8 \cdot 10^{-3}$ Н/м — поверхностное натяжение жидкости при $t_{ср} = 103$°С);

$$\frac{Q_q R}{M_D} + \frac{Q_f}{M_f} \cdot \frac{M_{ср}}{\rho_{жк}} = \left(\frac{5110 \cdot 1,78}{78,5} + \frac{10000}{84,4} \right) \frac{88}{3600 \cdot 800} = 0,00717 \text{ м3/ч.}$$

($M_f = 0,542 \cdot 78 + 0,458 \cdot 92 = 84,4$ кг/кмоль; $M_{ср} = 0,283 \cdot 78 + 0,717 \cdot 92 = 88$ кг/кмоль);

$$\Delta h = \left(\frac{0,00717}{1,85 \cdot 1,32 \cdot 0,5} \right)^{1/2} = 0,0325 \text{ м.;}$$

$$h_{нк} = 0,04 + 0,0325 = 0,0725 \text{ м.}$$

$$\Delta \rho_{пк} = 1,3 \cdot 0,0725 \cdot 0,5 \cdot 800 \cdot 9,81 = 369 \text{ Па.}$$

Общее гидравлическое сопротивление тарелки в нижней части колонны:

$$\Delta p'' = 144 + 18,8 + 369 = 532 \text{ Па.}$$

Проверим, соблюдается ли при расстоянии между тарелками $h = 0,3$ м необходимое для нормальной работы тарелок условие

$$h > 1,8 \frac{\Delta p}{\rho_{жк}}.$$

Для тарелок нижней части колонны, у которых гидравлическое сопротивление Δp больше, чем у тарелок верхней части:

$$\frac{1,8 \Delta p}{\rho_{жк}} = 1,8 \cdot 532 \cdot 800 \cdot 9,81 = 0,122 \text{ м.}$$

Следовательно, вышеуказанное условие соблюдается.

Проверим равномерность работы тарелок — рассчитаем минимальную скорость пара в отверстиях $w_{о, мин}$, достаточную для того, чтобы срабатывала тарелка работала всеми отверстиями:

$$w_{о, мин} = 0,67 \sqrt[3]{\frac{\rho_{жк}h_{пк}}{\zeta \rho_{пк}}} = 0,67 \sqrt[3]{\frac{9,81 \cdot 800 \cdot 0,0725}{1,82 \cdot 2,82}} = 7,05 \text{ м/с.}$$

Рассчитанная скорость $w_{о, мин} = 7,5$ м/с; следовательно, тарелки будут работать всеми отверстиями.
IV. Определение числа тарелок и высоты колонны.

а) Наносим на диаграмму $y = x$ рабочие линии верхней и нижней частей колонны (рис. 7.19) и находим число ступеней изменения концентрации n_t. В верхней части колонны $n^* = 7$, в нижней части $n_t^* = 8$, всего 15 ступеней.

Число тарелок рассчитываем по уравнению (7.19):

$$n = n_t^*/\eta.$$

Для определения среднего к. п. д. тарелок η находим коэффициент относительной летучести разделяемых компонентов $\alpha = P_g/P_t$ и динамический коэффициент вязкости исходной смеси μ при средней температуре в колонне, равной 96 °С.

При этой температуре давление насыщенного пара бензола $P_b = 1204$ мм рт. ст.; толуола $P_T = 492,5$ мм рт. ст. (табл. 7.1), откуда $\alpha = 1204/492,5 = 2,45$.

Динамический коэффициент вязкости бензола при 96 °С равен 0,27 сП, толуола 0,29 сП. Принимаем динамический коэффициент вязкости исходной смеси $\mu = 0,28$ сП $= 0,28 \cdot 10^{-3}$ Па·с.

Тогда

$$\alpha \mu = 2,45 \cdot 0,28 = 0,685.$$

По графику (рис. 7.4) находим $\eta = 0,53$. Длина пути жидкости на тарелке (рис. 7.18)

$$l = D - 2b = 1,8 - 2 \cdot 0,289 = 1,22 \text{ м.}$$

По графику (рис. 7.5) находим значение поправки на длину пути $\Delta = 0,105$. Средний к. п. д. тарелок по уравнению (7.20):

$$\eta_l = \eta (1 + \Delta) = 0,53 (1 + 0,105) = 0,59.$$

Для сравнения рассчитаем средний к. п. д. тарелки η_0 по критериальной формуле, полученной путем статистической обработки многочисленных опытных данных для колпачковых и синтетических тарелок:

$$\eta_0 = 0,068K_1^{0,11} \cdot K_2^{0,115}.$$

В этой формуле безразмерные комплексы:

$$K_1 = \frac{Re_p}{Sc} \cdot \frac{Pr_{жк}}{Pr} \cdot \frac{\mu_p}{\mu_{жк}} = \frac{\mu_{жк}}{Sc \cdot h_{жк}} \cdot \frac{\mu_p}{\mu_{жк}} = \frac{\mu_{жк}}{Sc \cdot h_{жк} \cdot D_{жк}};$$

$$K_2 = \frac{Re_p}{We} \cdot \frac{Pr_{жк}}{Pr} \cdot \frac{v_p}{v_{жк}} = \frac{\sqrt{\rho_p \cdot g}}{h_{жк} \cdot \rho_{жк} \cdot \rho_{жк} \cdot \rho_{жк}} \cdot \frac{v_{жк}}{\sqrt{\rho_p \cdot g}} = \frac{\sigma}{\rho_{жк} \cdot D_{жк}},$$

356
Рис. 7.20. К потарелочному расчету колонны:

\(i, i + 1 \) — номера сечений, между которыми находится тарелка с номером \(i \).

где \(w \) — скорость пара в колонне, м/с; \(S_{св} \) — относительная площадь свободного сечения тарелки; \(h_\text{в} \) — высота слоя перегородки, м; \(\rho_\text{п} \) и \(\rho_\text{ж} \) — плотности пара и жидкости, кг/м\(^3\);
\(D_\text{ж} \) — коэффициент диффузии легкокетчего компонента в исходной смеси, определяемый по формуле (6.25), м\(^2\)/с; \(\sigma \) — поверхностное натяжение жидкости питания, Н/м.

Физико-химические константы отнесены к средней температуре в колонне. Предварительно рассчитаем коэффициент диффузии \(D_\text{ж} \):

\[
D_\text{ж} = 7,4 \cdot 10^{-12} \frac{(\beta \mu)^{0,5} T}{\mu_\text{ж} \sigma}.
\]

В нашем случае: \(\beta = 1; \mu_\text{ж} = 0,28 \text{ сП} = 0,28 \cdot 10^{-3} \text{ Па} \cdot \text{с}; M = M_P = 84,4 \text{ кг/кмоль}; \nu = 6,14,8 + 6,3,7 = 15 = 96; T = 96 + 273 = 369 \text{ К.}

Коэффициент диффузии:

\[
D_\text{ж} = \frac{7,4 \cdot 10^{-12} \cdot 84,4^{0,5} \cdot 369}{0,28 \cdot 96^{0,8}} = 5,8 \cdot 10^{-9} \text{ м}^2/\text{с}.
\]

Безразмерные комплексы:

\[
K_1 = \frac{w \rho_\text{н} \rho_\text{ж} D_\text{ж}}{S_{св} \rho_\text{ж} D_\text{ж}} = \frac{0,6 \cdot 0,04 \cdot 2,77}{0,08 \cdot 800 \cdot 5,8 \cdot 10^{-9}} = 1,79 \cdot 10^4;
\]

\[
K_2 = \frac{\sigma}{w \rho_\text{ж} D_\text{ж}} = \frac{19,7 \cdot 10^{-3}}{0,6 \cdot 800 \cdot 5,8 \cdot 10^{-9}} = 0,71 \cdot 10^4.
\]

Средний к. п. д. тарелки:

\[
\eta_0 = 0,068 K_1^{1 \ast} K_2^{115} = 0,068 (1,79 \cdot 10^5)^{0,1} (0,71 \cdot 10^4)^{0,115} = 0,63.
\]

что близко к найденному значению \(\eta_t \).

Число тарелок:

в верхней части колонны

\[n' = n_t / \eta_t = 7/0,59 = 12; \]

в нижней части колонны

\[n'' = n_t / \eta_t = 8/0,59 = 14. \]

Общее число тарелок \(n = 26 \), с запасом \(n = 30 \), из них в верхней части колонны 16 и в нижней части 16 тарелок.

Высота тарельчатой части колонны:

\[H_T = (n - 1) h = (30 - 1) 0,3 = 8,7 \text{ м.} \]

Общее гидравлическое сопротивление тарелок:

\[\Delta P = \Delta P_n + \Delta P_n = 461 \cdot 14 + 532 \cdot 16 = 14 950 \text{ Па} \approx 0,15 \text{ кгс/см}^2. \]

6) Система уравнений, позволяющая аналитически определить число тарелок, а также составы пара и жидкости разделяемой смеси бензол — толуол, покидающих каждую из тарелок, включает в себя уравнение равновесия (6.9), уравнение рабочих линий частей колонны (7.6) и (7.8), выражение для коэффициента обогащения (7.21).

Расчет состоит в последовательном определении в сечениях колонны между тарелками составов пара и жидкости \((y_i, x_i)\).

Нижние индексы у составов пара и жидкости отвечают номеру сечения. Номер тарелки совпадает с номером расположенного под нею сечения (рис. 7.20).
Принимаем, что 1) коэффициент относительной летучести постоянен; 2) коэффициент обогащения \(\eta \) постоянен; 3) куб-испаритель не обладает разделяющим действием, т. е. выходящий из него пар имеет тот же состав, что и кубовый остаток \(y_1 = x_w \).

Блок схема расчета:

Идентификаторы к примеру расчета колонны по парелочным методом:

<table>
<thead>
<tr>
<th>Исходные данные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина</td>
</tr>
<tr>
<td>Идентификатор</td>
</tr>
</tbody>
</table>

358
Величина

<table>
<thead>
<tr>
<th>Идентификатор</th>
<th>F</th>
<th>(y_F)</th>
<th>(x_i)</th>
<th>(y_i^*)</th>
<th>(y_{i+1})</th>
<th>n</th>
</tr>
</thead>
</table>

Программа расчета:

```
PROGRAM
COMMENT ПОТОПАРЕННАЯ РАСЧЕТ КОЛОННЫ
REAL KPD
DIMENSION X(200), Y(200), YR(200)
READ (5) XF, XD, XW, R, ALFA, KPD
F=(XD-XW)/(XF-XW)
YF=R/(R+1.)*XF+XD/(R+1.)
I=0
X(I)=XW
Y(I)=XW
WRITE (6,1)
1 FORMAT (6X, 'I', 5X, 'X(I)', 5X, 'Y(I+1)')
2 I=I+1
N=1
YR(I)=ALFA*X(I)/(X(I)+(ALFA-1.))
Y(I+1)=Y(I)+KPD*(YR(I)-Y(I))
WRITE (6, 3) I, X(I), Y(I+1)
3 FORMAT (5X, I3, 2X, F8.5, 2X, F8.5)
IF(Y(I+1)>=YF) GO TO 4
X(I+1)=(Y(I+1)+(R+1.))(F-1.)XW/F
GO TO 2
4 IF (Y(I+1)>=XD) GO TO 5
X(I+1)=(Y(I+1)+(R+1.))XD/R
GO TO 2
5 WRITE (6, 6) N
6 FORMAT (5X, 'ЧИСЛО ТАРЕЛК N=', I3)
STOP
END
```

Результаты расчета даны в табл. 7.7.

Таблица 7.7

Составы жидкости и пара, покидающих тарелки колонны

\(x_F = 54.2\); \(x_D = 96.5\); \(x_{W} = 2.3\); \(y_F = 69.42\); \(R = 1.78\); \(F = 1.82\); \(a = 2.45\);
\(\eta = 0.59\).

<table>
<thead>
<tr>
<th>Номер тарелки</th>
<th>(x, %)</th>
<th>(y, %)</th>
<th>Номер тарелки</th>
<th>(x, %)</th>
<th>(y, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.30</td>
<td>4.1604</td>
<td>13</td>
<td>52.638</td>
<td>70.821</td>
</tr>
<tr>
<td>2</td>
<td>3.7366</td>
<td>6.8294</td>
<td>14</td>
<td>56.395</td>
<td>73.883</td>
</tr>
<tr>
<td>3</td>
<td>5.7977</td>
<td>10.531</td>
<td>15</td>
<td>61.177</td>
<td>77.154</td>
</tr>
<tr>
<td>4</td>
<td>8.6559</td>
<td>15.434</td>
<td>16</td>
<td>66.286</td>
<td>80.490</td>
</tr>
<tr>
<td>5</td>
<td>12.443</td>
<td>21.565</td>
<td>17</td>
<td>71.496</td>
<td>83.744</td>
</tr>
<tr>
<td>6</td>
<td>17.177</td>
<td>28.720</td>
<td>18</td>
<td>76.577</td>
<td>86.787</td>
</tr>
<tr>
<td>7</td>
<td>22.702</td>
<td>36.464</td>
<td>19</td>
<td>81.330</td>
<td>89.528</td>
</tr>
<tr>
<td>8</td>
<td>28.682</td>
<td>44.232</td>
<td>20</td>
<td>85.611</td>
<td>91.919</td>
</tr>
<tr>
<td>9</td>
<td>34.683</td>
<td>51.492</td>
<td>21</td>
<td>89.345</td>
<td>93.948</td>
</tr>
<tr>
<td>10</td>
<td>40.287</td>
<td>57.873</td>
<td>22</td>
<td>92.514</td>
<td>95.562</td>
</tr>
<tr>
<td>11</td>
<td>45.214</td>
<td>63.204</td>
<td>23</td>
<td>95.145</td>
<td>97.006</td>
</tr>
<tr>
<td>12</td>
<td>49.331</td>
<td>67.486</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. Тепловой расчет установки.
Расход теплоты, отдаваемой охлаждающей воде в дефлегматоре-конденсаторе, находим по уравнению (7.15):

\[Q_D = G_D (1 + R) \frac{5110}{3600} (1 + 1,78) 392 \cdot 10^3 = 1550000 \text{ Вт.} \]

Здесь
\[r_D = \frac{1}{5110} (1 + \frac{1}{5110}) \frac{392 \cdot 10^3}{0,963924 \cdot 10^3 + 0,043778 \cdot 10^3} = 392 \cdot 10^3 \text{ Дж/кг.} \]
где \(r_D \) и \(r_T \) — удельные теплоты конденсации бензола и толуола при 82 °C.
Расход теплоты, получаемой в кубе-испарителе от греющего пара, находим по уравнению (7.14):

\[Q_K = Q_D + G_D c_D t_D + G_w c_w t_D - G_F c_F t_F + Q_{\text{пот}} = \]

\[= 1,03 \left(1550000 + \frac{5110}{3600} 0,464190 \cdot 82 + \frac{4890}{3600} 0,454190 \cdot 109 - \right. \]

\[\left. - \frac{10000}{3600} 0,4554190 \cdot 91,5 \right) = 1615000 \text{ Вт.} \]

Здесь тепловые потери \(Q_{\text{пот}} \) приняты в размере 3% от полезно затрачиваемой теплоты; удельные теплоемкости взяты соответственно при \(t_D = 82 \text{ °C} \), \(t_F = 91,5 \text{ °C} \); температура кипения исходной смеси \(t_F = 91,5 \text{ °C} \) определена по рис. 7.6.
Расход теплоты в паровом подогревателе исходной смеси:

\[Q = 1,05 G_F c_F (t_F - t_{\text{наг}}) = 1,05 \frac{10000}{3600} 0,4254190 (91,5 - 18) = 382000 \text{ Вт.} \]

Здесь тепловые потери приняты в размере 5%, удельная теплоемкость исходной смеси \(c_F = (0,5 \cdot 0,43 + 0,5 \cdot 0,42) 4190 \text{ Дж/(кг·К)} \) взята при средней температуре \((91,5 + 18)/2 \approx 55 \text{ °C.} \)
Расход теплоты, отдаваемой охлаждающей воде в водяном холодильнике дистиллята:

\[Q = G_D c_D (t_D - t_{\text{кон}}) = \frac{5110}{3600} 0,434190 (82 - 25) = 145500 \text{ Вт,} \]

где удельная теплоемкость дистиллята \(c_D = 0,434190 \text{ Дж/(кг·К)} \) взята при средней температуре \((82 + 25)/2 \approx 54 \text{ °C.} \)
Расход теплоты, отдаваемой охлаждающей воде в водяном холодильнике кубового остатка:

\[Q = G_w c_w (t_D - t_{\text{кон}}) = \frac{4890}{3600} 0,4254190 (109 - 25) = 203000 \text{ Вт,} \]

где удельная теплоемкость кубового остатка \(c_w = 0,4254190 \text{ Дж/(кг·К)} \) взята при средней температуре \((109 + 25)/2 = 67 \text{ °C.} \)
Расход греющего пара, имеющего давление \(\rho_{\text{абс.}} = 4 \text{ кгс/см}^2 \) и влажность 5%:
а) в кубе-испарителе

\[G_r \text{, м} = \frac{Q_K}{r_r \cdot n} = \frac{1615000}{2141 \cdot 10^3 \cdot 0,95} = 0,8 \text{ кг/с,} \]

где \(r_r = 2141 \cdot 10^3 \text{ Дж/кг — удельная теплота конденсации греющего пара;} \)
б) в подогревателе исходной смеси

\[G_r \text{, м} = \frac{382000}{2141 \cdot 10^3 \cdot 0,95} = 0,19 \text{ кг/с.} \]

Всего: 0,8 + 0,19 = 0,9 кг/с или 3,6 т/ч.
Расход охлаждающей воды при нагреве ее на 20 °C:
a) в дефлегматоре

\[V_b = \frac{Q_d}{c_v (t_{кон} - t_{нач}) \rho_v} = \frac{1 550 000}{4190 \cdot 20 \cdot 1000} = 0,0185 \text{ м³/с}; \]

б) в водяном холодильнике дистиллята

\[V_b = \frac{145 500}{4190 \cdot 20 \cdot 1000} = 0,00174 \text{ м³/с}; \]

в) в водяном холодильнике кубового остатка

\[V_b = \frac{203 000}{4190 \cdot 20 \cdot 1000} = 0,00242 \text{ м³/ч}. \]

Всего 0,0227 м³/с, или 82 м³/ч.

Глава 8

ЭКСТРАГИРОВАНИЕ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

Экстрагированием называется процесс извлечения одного или нескольких компонентов из смеси, находящейся в твердом или жидким состоянии, путем обработки растворителем (экстрагентом), избирательным по отношению к отдельным компонентам. Для последующего выделения целевого компонента из смеси с экстрагентом применяют выпаривание или ректификацию.

Целесообразность применения жидкостной экстракции определяется: 1) невозможностью разделения смеси ректификацией вследствие образования азеотропных смесей, нелетучести или недостаточной термической стойкости компонентов; 2) экономией теплоты, если затраты на ректификацию исходной смеси вследствие близости температур кипения составляющих компонентов, малых концентраций или других причин больше, чем расходы на экстракцию и отгонку растворителя из продуктов разделения.

Задачи по статике экстрагирования решаются преимущественно графическим путем — с помощью треугольной или прямоугольных диаграмм.

1. Особенности треугольной диаграммы:

а) вершины треугольника (рис. 8.1) соответствуют чистым компонентам A, B и C, стороны треугольника AB, BC и AC — двухкомпонентным смесям A и B, B и C, A и C, точки внутри треугольника — трехкомпонентным системам [например, точка g является фигуративной, т. е. характеризующей следующий состав смеси: 70% (масс.) A, 20% (масс.) B и 10% (масс.) C];
б) лучи Aa, Bb, Cc, проведенные из вершин треугольника, являются геометрическим местом фигуративных точек смесей с постоянным отношением содержаний двух других компонентов x_b/x_c, x_a/x_c, x_a/x_b соответственно;
в) линии dd, ee, ff, параллельные сторонам треугольника AC, BC, AB, являются геометрическим местом фигуративных точек смесей с постоянным содержанием компонентов B, A, C соответственно.

2. Правило рычага (частый случай правила центра тяжести): при смешении двух растворов, составы которых характеризуются на диаграмме любыми точками a и b, общий состав смеси выражается точкой c, лежащей на прямой ab, соединяющей эти точки; отрезки ac и bc обратно пропорциональны количествам взятых растворов (рис. 8.2)

$$G_a + G_b = G_c,$$

причем $x_a \neq x_b \neq x_c$.

Тогда

$$
\begin{align*}
G_a \overline{ac} &= G_b \overline{bc}; \\
G_a \overline{bc} &= G_b \overline{ac}; \\
G_c \overline{ac} &= G_b \overline{ab}; \\
G_c \overline{bc} &= G_a \overline{ab}; \\
G_c \overline{ab} &= G_a \overline{ac} = G_a \overline{bc}.
\end{align*}
\tag{8.1}
$$

Здесь G_a, G_b, G_c — масса компонентов смеси a, b и c, кг; x_a, x_b, x_c — содержание любого компонента (A, B и C) в смеси a, b и c, % (масс.).

Эти же соотношения действительны при расслаивании смеси a на две сосуществующих фазы x и b.

3. Типовые тройные системы, имеющие наибольшее значение, представлены на рис. 8.3 и 8.4. Здесь вершина треугольника A соответствует первичному растворителю (твердое тело или жидкость), вершина B — экстрагируемому компоненту (твердое тело
или жидкость), вершина C — вторичному растворителю или экстрагенту (жидкость).

На рис. 8.3: линия abcdKd'c'b'a — пограничная (биподальная) кривая; поле внутри этой кривой — область смесей, расслаивающихся на две сосуществующие фазы, состав которых выражается точками на кривой; поле вне пограничной кривой — область нерасслаивающихся (гомогенных) растворов; точка K — критическая точка; левая часть пограничной кривой — ветвь рафинаторов (остатка первичного растворителя после извлечения из него экстрагируемого вещества); правая часть пограничной кривой — ветвь экстрактов; отрезки bb', cc', dd', соединяющие фигуративные точки сосуществующих фаз, — хорды равновесия (конноды) *.

На рис. 8.4: линия abcde — пограничная кривая; поле слева — область трехкомпонентных гетерогенных смесей; поле справа — область расслаивания; сторона треугольника BC характеризует составы верхнего потока (раствор экстрагируемого вещества в растворителе); пограничная кривая характеризует составы нижнего потока (гетерогенная смесь твердого и растворимого вещества экстрагируемого компонента и растворителя, удерживаемого в порах твердого вещества); хорды равновесия bb', cc', dd' при своем продолжении проходят через вершину треугольника A.

* Описание графической интерполяции хорд равновесия на треугольной диаграмме см. в примере 8.1.

Рис. 8.4. Система твердое тело—жидкость (при t = const).
4. Коэффициент распределения экстрагируемого компонента В между фазами экстракта и рафината выражается соотношением:

\[k = \frac{y_B}{x_B}; \quad k \leq 1, \]

где \(y_B \) — содержание экстрагируемого компонента В в фазе экстракта, \% (масс.); \(x_B \) — равновесное содержание экстрагируемого компонента В в фазе рафината, \% (масс.).

Обычно коэффициент распределения зависит от концентраций, поэтому аналитические расчеты [8.1] дают только приближенный результат.

5. Прямоугольные диаграммы.

Если взаимной растворимостью первичного (A) и вторичного (C) растворителей можно пренебречь, для графического расчета используют более удобную прямоугольную диаграмму в координатах \(x_B' \) — \(y_B' \) (массовые относительные доли). При этом

\[
\begin{align*}
 x_B' &= \frac{x_B}{100 - x_B} \cdot \frac{\text{кг экстрагируемого компонента} \quad \text{в фазе рафината;}}{\text{кг первичного растворителя}} \\
 y_B' &= \frac{y_B}{100 - y_B} \cdot \frac{\text{кг экстрагируемого компонента} \quad \text{в фазе экстракта.}}{\text{кг вторичного растворителя}}
\end{align*}
\]

(8.3)

6. Прямоугольные диаграммы используют также в тех случаях, когда из-за скученности линий треугольная диаграмма не дает достаточной точности.

По оси ординат откладывают отношение содержания одного из компонентов тройной системы к сумме содержаний двух других компонентов, а по оси абсцисс — отношение содержания другого компонента к этой же сумме. Часто используются, например, следующие координаты:

а) Координаты \(X, Y, Z \) и \(X = Y \) * для системы жидкость — жидкость (рис. 8.5; обозначения те же, что на рис. 8.3):

\[
\begin{align*}
 X &= \frac{x_B}{x_A + x_B} = \frac{x_B}{100 - x_C} \cdot \frac{\text{кг В}}{\text{кг (A + В)}} \quad \text{в фазе рафината;}
 \\
 Y &= \frac{y_B}{y_A + y_B} = \frac{y_B}{100 - y_C} \cdot \frac{\text{кг В}}{\text{кг (A + В)}} \quad \text{в фазе экстракта;}
 \\
 z &= \frac{x_C}{x_A + x_B} = \frac{x_C}{100 - x_C} \cdot \frac{\text{кг С}}{\text{кг (A + В)}} \quad \text{в фазе рафината;}
 \\
 Z &= \frac{y_C}{y_A + y_B} = \frac{y_C}{100 - y_C} \cdot \frac{\text{кг С}}{\text{кг (A + В)}} \quad \text{в фазе экстракта.}
\end{align*}
\]

(8.4)

* Вспомогательная диаграмма для нахождения хорд равновесия.
Формулы для обратного пересчета:

\[x_A = \frac{1 - X}{1 + z}; \quad y_A = \frac{1 - Y}{1 + Z}; \quad x_B = \frac{X}{1 + z}; \quad y_B = \frac{Y}{1 + Z}; \]

\[x_C = \frac{z}{1 + z}; \quad y_C = \frac{Z}{1 + Z}. \]

(8.4а)

б) Координаты \(X', Y' - z', Z' \) для системы твердое тело — жидкость (рис. 8.6; обозначения те же, что на рис. 8.4):

\[X' = \frac{x_B}{x_B + x_C} = \frac{x_B}{100 - x_A} \frac{kg B}{kg (B + C)} \quad \text{в нижнем потоке;} \]

\[Y' = \frac{y_B}{y_B + y_C} = \frac{y_B}{100 - y_A} \frac{kg B}{kg (B + C)} \quad \text{в верхнем потоке;} \]

\[z' = \frac{x_A}{x_B + x_C} = \frac{x_A}{100 - x_A} \frac{kg A}{kg (B + C)} \quad \text{в нижнем потоке;} \]

\[Z' = \frac{y_A}{y_B + y_C} = \frac{y_A}{100 - y_A} \frac{kg A}{kg (B + C)} \quad \text{в верхнем потоке.} \]

(8.5)
В этих формулах: \(x_A, x_B, x_C \) — содержание компонентов А, В, С в фазе рафината (в нижнем потоке), % (масс.); \(y_A, y_B, y_C \) — равновесное содержание компонентов А, В, С в фазе экстракта (в верхнем потоке), % (масс.).

7. Жидкостная экстракция в перекрестном токе.

Уравнение общего материального баланса \(n \)-й ступени экстрагирования * (рис. 8.7, а):

\[
G_{R, n-1} + G_{S, n} = G_{R, n} + G_{E, n}.
\] (8.6)

Уравнение материального баланса \(n \)-й ступени по экстрагируемому компоненту:

\[
G_{R, n-1} x_{n-1} + G_{S, n} y_S = G_{R, n} x_n + G_{E, n} y_n.
\] (8.7)

В случае, когда взаимной растворимостью первичного раствораителя и экстрагента можно пренебречь, для расчета применяют прямоугольную диаграмму в координатах \(x' - y' \).

Количество первичного растворителя \(A \) (в кг или кг/с) в исходной смеси:

\[
G_A = G_F \frac{100 - x_F}{100}.
\] (8.8)

* Значения индексов: \(F \) — исходная смесь; \(S \) — вторичный растворитель или экстрагент; \(R \) — рафинат; \(E \) — экстракт.

Рис. 8.7. Жидкостная экстракция в перекрестном токе.
Количество вторичного растворителя \(C_n \) (в кг или кг/с) в экстракте:

\[G_{e_n} = G_s \frac{100 - y_s}{100}. \]
(8.9)

Уравнение рабочей линии \(n \)-й ступени:

\[y'_n = - \frac{G_A}{G_{e_n}} (x'_n - x'_{n-1}) + y'_s. \]
(8.10)

Угол наклона рабочей линии \(\alpha \) характеризуется соотношением:

\[\tan \alpha = \frac{G_A}{G_{e_n}}. \]
(8.11)

Число ступеней изменения концентрации (число ступеней экстрагирования) определяется числом рабочих линий на диаграмме (рис. 8.7, б).

В случае частичной взаимной растворимости первичного растворителя и экстрагента для расчетов пользуются треугольной диаграммой (рис. 8.7, в).

Положение точки \(M_n \), характеризующей общий состав смеси на \(n \)-й ступени, определяется по правилу рычага из соотношения потоков \(G_{R,n-1}/G_{S,n-1} \).

Составы рафината \(x_n \) и экстракта \(y_n \), выходящих с \(n \)-й ступени, определяются концами хорд равновесия \(R_n \) и \(E_n \), проведенной через точку \(M_n \). Количество рафината и экстракта определяются также по правилу рычага.

Необходимое число теоретических ступеней экстрагирования определяется числом хорд равновесия \(E_n R_n \), вмещающихся при построении на диаграмме до достижения заданного состава рафината \(x_R \).

Состав и количество экстрактов или рафината после отгонки растворителя определяются точкой пересечения луча, проведенного через вершину треугольника \(C \) и фигуративную точку сырого экстракта или рафината, со стороной \(AB \).

Порядок расчетов и графических построений см. в примерах 8.2 и 8.3.

8. Противоточная жидкостная экстракция.

Уравнение общего материального баланса \(n \)-ступенчатой экстракционной установки (рис. 8.8, а):

\[G_F + G_S = G_R + G_E. \]
(8.12)

Уравнение материального баланса по экстрагируемому компоненту:

\[G_F x_F + G_S y_S = G_R x_R + G_E y_E. \]
(8.13)

В случае, когда взаимной растворимостью первичного растворителя и экстрагента можно пренебречь, количество чистых растворителей первичного \(G_A \) и вторичного \(G_C \) по всем ступеням уста-
Рис. 3.3. Противоточная жидкостная экстракция.
новки будут одинаковыми. Тогда уравнение материального баланса по экстрагируемому компоненту:
\[G_A (x'_F - x'_R) = G_C (y'_E - y'_S). \] (8.14)

Уравнение рабочей линии:
\[y'_{n+1} = \frac{G_A}{G_g} (x'_n - x'_F) + y'_E. \] (8.15)

Угол наклона рабочей линии \(\alpha \) (рис. 8.8, б) определяется из соотношения:
\[\tan \alpha = \frac{G_A}{G_g} = \frac{y'_F - y'_S}{x'_F - x'_R}. \] (8.16)

Необходимое число теоретических ступеней экстрагирования определяется графически так же, как при абсорбции и ректификации.

В случае расчета процесса с помощью треугольной диаграммы (рис. 8.8, в) количества потоков выражаются положением точки \(M \), характеризующей фиктивный (условный) общий состав смеси в экстракционной установке, и определяются по правилу рычага из соотношений
\[G_F + G_S = G_R + G_E = G_M; \]
\[G_F/G_S = MC/FM; \quad G_E/G_R = MR/ME. \] (8.17)

Необходимое число теоретических ступеней экстрагирования определяется числом хорд равновесия \(E_n R_n \), вмещающихих при построении на диаграмме до достижения заданного состава рафината \(x_R \).

Точка \(P \), называемая полюсом экстрагирования, является точкой пересечения прямых, проведенных через точки \(F \) и \(E \), \(R \) и \(C \), \(R_n \) и \(E_n \), и служит для отыскания фигуративных точек экстрактов на экстрактной ветви пограничной кривой *. Порядок расчетов и графических построений см. в примере 8.4.

9. Противоточная жидкостная экстракция с возвратом **.

Общий материальный баланс экстракционной установки (рис. 8.9, а):
\[G_F = G'_E + G'_R \] (8.18)
(здесь и в дальнейшем принято, что потоки \(G_{S,0} \), \(G_{S-1} \) и \(G_{S,n+1} \) представляют собой чистый растворитель \(C \), а потоки \(G'_E \), \(G'_R \) не содержат растворителя).

Материальный баланс по экстрагируемому компоненту В:
\[G_F x_F = G'_E Y_E + G'_R x_R. \] (8.19)

* Полюс экстрагирования может находиться как справа, так и слева от треугольника.
** В зависимости от условий может примениться возврат как одного, так и обоих продуктов.
Минимальные коэффициенты возврата экстракта $R_{E_{мн}}$ и рафината $R_{R_{мн}}$ определяются (рис. 8.9, б) точками пересечения $P_{E_{мн}}$ и $P_{R_{мн}}$ (полосы экстрактной, или укрепляющей, и рафинатной, или исчерпывающей, частей колонны) хорды равновесия ab, проходящей при своем продолжении через точку F, с ординатами, проведенными через фигуративные точки E' и R':

$$
\begin{align*}
R_{E_{мн}} &= G_{R, 0} / G_{E} = \frac{P_{E_{мн}}}{P_{E_{мн}} E^{1} / E^{1} E}; \\
R_{R_{мн}} &= G_{R, n+1} / G_{R} = \frac{P_{R_{мн}} R}{P_{R_{мн}} R E_{n+1}}.
\end{align*}
$$

(8.20)

Минимальным возвратам соответствует бесконечно большое необходимо число ступеней экстрагирования. Рабочие коэффициенты возврата:

$$
\begin{align*}
R_{E} &= \beta R_{E_{мн}} = \frac{P_{E_{мн}}}{P_{E_{мн}} E^{1} / E^{1} E}; \\
R_{R} &= \beta R_{R_{мн}} = \frac{P_{R_{мн}} R}{P_{R_{мн}} R E_{n+1}},
\end{align*}
$$

(8.21)

где β — коэффициент возврата, всегда большший единицы.

Количество потоков и расход раствораителя рассчитываются путем последовательных вычислений:

$$
G_{S_{-1}} = G_{E} E^{1};
$$

(8.22)

$$
G_{E} = G_{E} + G_{S_{-1}} = G_{E} (1 + z_{E});
$$

$$
G_{R, 0} = R_{E} G_{E};
$$

$$
G_{R, 0} + G_{E} = G_{E} (1 + R_{E}) = G_{E} (1 + z_{E}) (1 + R_{E});
$$

$$
G_{S, 0} = \frac{G_{R, 0} + G_{F}}{1 + z_{E}} (z_{E} - z_{E}) = G_{E} (1 + R_{E}) (z_{E} - z_{E});
$$

(8.23)

$$
G_{E, 1} = G_{S, 0} + (G_{R, 0} + G_{E}) \text{ и т. д.;}
$$

(8.24)

$$
G_{S, n+1} = G_{R} z_{R};
$$

$$
G_{R} = G_{R} + G_{S, n+1} = G_{R} (1 + z_{R});
$$

$$
G_{R, n+1} = R_{E} G_{R} = R_{E} G_{R} (1 + z_{R});
$$

$$
G_{C, n+1} = R_{R} G_{R} z_{R} \text{ и т. д.}
$$

(8.25)

Здесь $G_{C, n+1}$ — количество растворителя С в рафинате $G_{R, n+1}$, направляемом в смеситель.

Общее количество циркулирующего растворителя:

$$
G_{S_{обш}} = G_{E} [(1 + R_{E}) (z_{E} - z_{E}) + z_{E}] + G_{R} (1 - R_{E}) z_{R}.
$$

(8.26)

Необходимое число теоретических ступеней экстрагирования определяется графически с помощью диаграмм $X, Y - z, Z$ и $X - Y$ (рис. 8.9, б). Методика построения описана в примерах 8.10 и 8.11.
Рис. 8.9. Противоточная жидкостная экстракция с возвратом:
1 — экстрактор; 2, 2* — аппараты для отгонки растворителя; 3 — смеситель.

10. Экстрагирование из твердого тела (выщелачивание) с периодической сменой растворителя*.
Уравнения материальных балансов n-й ступени те же, что и для жидкостной экстракции в перекрестном токе [рис. 8.10, а и уравнения (8.6) и (8.7)].

* Схема процесса аналогична жидкостной экстракции в перекрестном токе
В случае если обработка производится чистым растворителем C, степень «недоизвлечения» экстрагируемого вещества (отношение количества экстрагируемого вещества в остатке к количеству его в исходном материале) можно вычислить по формуле:

\[
\varphi = \frac{G_{R,n} n x_R}{G_{F} x_F} = \frac{1}{(1 + a_1)(1 + a_2)(1 + a_3)\ldots(1 + a_4)\ldots(1 + a_n)}, \quad (8.27)
\]

где \(a_i = \frac{G_E}{G_R, i} \), \(i \) — отношение потоков: массы тделяемого раствора к массе раствора, удерживаемого твёрдым веществом (можно использовать и отношение объемов растворов); \(G_{R, i} = G_R, i (1 - x_A) \) — масса компонента В и С.

Если отношение потоков постоянно, т. е. \(a_1 = a_2 = a_3 = \ldots = a_n = \text{const} \), то формула упрощается:

\[
\varphi = \frac{1}{(1 + a)^{n_c}}, \quad (8.28)
\]

где \(n_c \) — число ступеней экстрагирования.

Расчет с помощью треугольной диаграммы аналогичен расчету для жидкостной экстракции в перекрестном токе (рис. 8.10, б).

11. Противоточное экстрагирование из твёрдого тела.

Уравнения материальных балансов те же, что и для противоточной жидкостной экстракции [рис. 8.11, а и уравнения (8.12) и (8.13)].

В случае, если отношение потоков для всех ступеней, кроме первой, постоянно, т. е. \(a_2 = a_3 = \ldots = a = \text{const} \), ступень недоизвлечения экстрагируемого компонента можно определить по формуле:

\[
\varphi = \frac{1}{1 + a_1 (1 + a + a^2 + \ldots + a^{n-1}) - \frac{G_{F} y_s}{G_{R, n} x_n} \frac{1 + a_1 (1 + a + a^2 + \ldots + a^{n-2})}{1 + a_1 (1 + a + \ldots + a^{n-1})}}, \quad (8.29)
\]

872
При применении чистого растворителя \((y_S = 0)\) это выражение упрощается:

\[
\varphi = \frac{1}{1 + a_1 (1 + a + a^2 + \ldots + a^{n-1})}. \tag{8.30}
\]

Если, кроме того, поступающий твердый материал уже содержит такое же количество раствора, как и между ступенями, т. е.
\[a_1 = a,\]
получим:

\[
\varphi = \frac{1}{1 + a + a^2 + \ldots + a^n}. \tag{8.31}
\]

Необходимое число теоретических ступеней экстрагирования \(n_o\) при постоянном отношении потоков \(a_2 = a_3 = \ldots = a = \text{const}\) можно определить по формуле:

\[
n_o - 1 = \log \frac{x_R - y_S}{x_1 - y_2} / \log \frac{y_2 - y_S}{x_1 - x_R} = \log \frac{x_1 - y_2}{x_R - y_S} / \log \frac{x_1 - x_R}{y_2 - y_S}. \tag{8.32}
\]

Это число можно определить графически, так же как для бинарной системы, на прямоугольной диаграмме в координатах \(y' - x'\), где \(x' = \frac{x_B}{1 - x_A}\), т. е. масса твердого нерастворимого вещества в расчете не учитывается. Уравнение линии равновесия в этом случае \(y^* = x'\); уравнения рабочих линий легко выводятся из уравнений материальных балансов.

В общем случае расчет можно проводить с помощью треугольной диаграммы (рис. 8.11, б) или прямоугольной диаграммы в координатах \(X', Y' - z', Z'\) (рис. 8.11, в). Методика расчета аналитична расчету для противоточной жидкостной экстракции.

![Diagram](image)

Рис. 8.11. Противоточное экстрагирование из твердого тела.
Пример 8.1. Построить треугольную диаграмму фазового равновесия для системы вода—ацетон—хлорбензол. Необходимые данные взять из табл. 8.1. Определить по диаграмме: а) содержание воды и хлорбензола в водном слое с концентрацией ацетона 45% (масс.); б) состав равновесного с ним слоя хлорбензола; в) количество ацетона, при добавлении которого перестанет расслаиваться смесь 0,11 кг хлорбензола и 0,09 кг воды.

Решение. Вычерчиваем равносторонний треугольник (рис. 8.12). Находим на стороне \(AC \) точки \(I \) и \(I' \), соответствующие первой строке табл. 8.1. Внутри треугольника находим точки \(2 \) и \(2' \), соответствующие второй строке таблицы, и соединяем их отрезком прямой \(2-2' \). При отыскинии точек внутри треугольника сначала откладываем на стороне \(AB \) содержание ацетона в растворе, а затем параллельно стороне \(AC \) — содержание хлорбензола. После нахождения всех точек соединяем их плавной кривой.

а) Через точку \(a \) на стороне \(AB \) проводим прямую \(ab \) параллельно стороне \(AC \). Отрезок \(ab \) является геометрическим местом точек, характеризующих смеси с содержанием ацетона 45% (масс.). На пересечении отрезка \(ab \) с левой ветвью бинодальной кривой находим точку \(c \), характеризующую состав водного слоя: 52,8% (масс.) воды, 2,2% (масс.) хлорбензола.

б) Для определения состава сосуществующей фазы через точки \(2, 2', 3, 3', ..., 7, 7' \) проводим прямые, параллельные боковым сторонам треугольника, и точки их пересечения \(2'', 3'', ..., 7'' \) соединяем плавной кривой. Затем через точку \(c \) проводим прямую, параллельную стороне \(BC \), до пересечения с соединительной кривой в точке \(c'' \), а из точки \(c'' \) — прямую, параллельную стороне \(AB \), до пересечения с бинодальной кривой. Точка \(c' \) является искомой. Состав слоя: 54,9% (масс.) ацетона, 4,3% (масс.) воды, 40,8% (масс.) хлорбензола.

Таблица 8.1

Равновесные составы сосуществующих фаз [в % (масс.)]

<table>
<thead>
<tr>
<th>Водный слой</th>
<th>Слой хлорбензол</th>
<th>Слой хлорбензол</th>
</tr>
</thead>
<tbody>
<tr>
<td>вода</td>
<td>ацетон</td>
<td>хлорбензол</td>
</tr>
<tr>
<td>99,89</td>
<td>0</td>
<td>0,11</td>
</tr>
<tr>
<td>89,79</td>
<td>10</td>
<td>0,21</td>
</tr>
<tr>
<td>79,69</td>
<td>20</td>
<td>0,31</td>
</tr>
<tr>
<td>69,42</td>
<td>30</td>
<td>0,58</td>
</tr>
<tr>
<td>58,64</td>
<td>40</td>
<td>1,36</td>
</tr>
<tr>
<td>46,28</td>
<td>50</td>
<td>3,72</td>
</tr>
<tr>
<td>27,41</td>
<td>60</td>
<td>12,59</td>
</tr>
<tr>
<td>23,66</td>
<td>60,58</td>
<td>13,76</td>
</tr>
</tbody>
</table>
в) Находим на стороне AC точку d, характеризующую общий состав заданной смеси $\frac{0,09}{0,09 + 0,11} \times 100 = 45\%$ (масс.) воды и 55\% (масс.) хлорбензола. При добавлении к этой смеси ацетона общий состав ее будет изменяться по линии dB, на пересечении которой с бинодальной кривой найдем искомую точку e. Необходимое количество ацетона найдем из соотношения отрезков Be и ed:

$$G_d/G_B = Be/ed; \quad G_B = (0,09 + 0,11) 53,5/33 = 0,325 \text{ кг}.$$

Пример 8.2. Ацетон экстрагируется хлорбензолом из 50\% водного раствора. Остаток должен содержать не более 2\% (масс.) ацетона. Пользуясь диаграммой, построенной в предыдущем при-
мере, определить количество растворителя, необходимое для обработки 100 кг исходной смеси, если экстрагирование производится в одну ступень. Определить также выход рафината, выход и состав экстракта после удаления из него растворителя.

Решение. Через точку R (рис. 8.13), характеризующую состав остатка, проводим хорду равновесия RE. Точку F, характеризующую состав исходной смеси, соединяем с вершиной треугольника C. Точка пересечения M линий FC и RE определяет состав смеси исходного раствора с растворителем, необходимый для получения рафината заданного состава. Требуемое количество растворителя находим из соотношения

$$G_S/G_F = FM/MC; \quad G_S = 100 \cdot 81,5/5 = 1630 \text{ кг.}$$

Масса полученной смеси:

$$G_M = 1630 + 100 = 1730 \text{ кг.}$$

Количество экстракта находим из соотношения

$$G_E/G_M = RM/RE; \quad G_E = 1730 \cdot 94,4/97 = 1682 \text{ кг.}$$

Масса рафината:

$$G_R = G_M - G_E = 1730 - 1682 = 48 \text{ кг.}$$

Количество экстракта после удаления из него растворителя

$$G'_E \approx G_E - G_S = 1682 - 1630 = 52 \text{ кг.}$$

так как растворимостью хлорбензола в остатке в данном случае можно пренебречь.

Состав экстракта после удаления из него растворителя определяется точкой пересечения E' стороны AB с лучом, проведенным из вершины C через точку E: содержание ацетона 95,5% (масс.), воды 4,5% (масс.).

Пример 8.3. В условиях предыдущего примера определить необходимое количество растворителя, состав и выход продуктов и число ступеней экстрагирования, если на каждой ступени экстрагирование производится свежим растворителем в количестве, равном массе обрабатываемой смеси.

Решение. При смешении равных количеств исходного раствора и хлорбензола положение точки M_1 (рис. 8.14), характеризующей общий состав смеси, определяется из соотношения

$$FM_1/M_1C = 100/100 = 1; \quad FM_1 = M_1C.$$

Через точку M_1 проводим хорду равновесия R_1E_1. Точки R_1 и E_1 характеризуют составы и количества рафината и экстракта первой ступени. Рафинат первой ступени отделяется и вновь смешивается с равным ему по массе количеством растворителя. Положение точки M_2, определяющей состав смеси во второй ступени, находится из соотношения

$$G_{R_1}/G_S = M_2C/R_1M_2 = 1; \quad R_1M_2 = M_2C.$$
Рис. 8.13 (к примеру 8.2).

Рис. 8.14 (к примеру 8.3)
Через точку \(M_2 \) вновь проводим хорду равновесия и т. д. По-строение продолжаем до тех пор, пока не будет достигнут требуемый состав рафината. В настоящем примере для этого необходимы четыре ступени экстрагирования. Определяем количества рафината и растворителя по ступеням:

\[
G_{S_i} = G_{R_i} \cdot t_1; \quad G_{R_1} = 2 \cdot 63,5 \cdot 37,5/86,5 = 55,1 \text{ кг;}
\]

\[
G_{R_i} = 2G_{R_{i-1}}M_iE_i/(R_iE_i);
\]

\[
G_{S_1} = 55,1 \text{ кг;}
\]

\[
G_{S_1} = G_{R_1} = G_F = 100 \text{ кг; \quad G}_{R_3} = 2 \cdot 55,1 \cdot 44/93 = 52,1 \text{ кг;}
\]

\[
G_{R_1} = 2 \cdot 100 \cdot 23,5/74 = 63,5 \text{ кг; \quad G}_{S_2} = 52,1 \text{ кг;}
\]

\[
G_{S_2} = 63,5 \text{ кг; \quad G}_{R_4} = 2 \cdot 52,1 \cdot 45/96 = 49,0 \text{ кг.}
\]

Общее количество растворителя:

\[
G_S = \sum G_{S_i} = 100 + 63,5 + 55,1 + 52,1 = 270,8 \text{ кг.}
\]

Общее количество экстракта:

\[
G_E = G_F + G_S - G_{R_4} = 100 + 270,8 - 49,0 = 321,8 \text{ кг.}
\]

После удаления растворителя останется:

\[
G_E = G_E - G_S = 321,8 - 270,8 = 51 \text{ кг.}
\]

Средний состав экстракта \(\sim 96\% \) (масс.) ацетона.

П р и м е р 8.4. В условиях примера 8.2 определить состав и выход продуктов, а также число теоретических ступеней экстрагирования, если экстракция производится противотоком при соотношении потоков 1 : 1.

Р е ш е н и е. Через точку \(R \) (рис. 8.15), характеризующую состав рафината, и точку \(M \), определяющую общий фиктивный состав смеси исходного раствора со всем растворителем (так как \(G_F : G_S = 1, FM = MC \)), проводим прямую до пересечения с правой ветвью бинодальной кривой в точке \(E \), соответствующей составу экстракта. При продолжении отрезков \(FE \) и \(RC \) они пересекаются в точке \(P \) (полюсе). Полюс является общей точкой пересечения всех лучей, проходящих через точки, характеризующие состав рафината на любой ступени и состав экстракта на последующей ступени. Линии 1—1', 2—2', ..., 4—4' являются хордами равновесия; число их определяет число теоретических ступеней экстракции. Таким образом, число ступеней определяется графически, путем последовательного проведения линий: \(FC, RME \) (1'), \(FEP, RCP, 1'—1, 1—P, 2—2', 2—P, 3—3, 3—P, 4—4' (R)). В данном случае \(n_0 = 4 \).

Количество экстракта находим из соотношения:

\[
G_E/G_M = G_E/(G_F + G_S) = RM/RE;
\]

\[
G_E = (100 + 100) \times 64/85 = 150,5 \text{ кг.}
\]

378
Рис. 8.15 (из примера 8.4).
Таблица 8.2

<table>
<thead>
<tr>
<th>Характеристика процесса</th>
<th>Перекрестный ток</th>
<th>Производит.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число ступеней</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Расход растворителя, кг</td>
<td>1630</td>
<td>270,8</td>
</tr>
<tr>
<td>Выход рафината, кг</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Выход экстракта, кг</td>
<td>1682</td>
<td>321,8</td>
</tr>
<tr>
<td>Выход экстракта после удаления растворителя, кг</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Содержание ацетона в экстракте после удаления растворителя, % (масс.)</td>
<td>95,5</td>
<td>96</td>
</tr>
</tbody>
</table>

После удаления из экстракта растворителя масса его составляет:

$$G_E' = 150,5 - 100 = 50,5 \text{ кг.}$$

Состав конечного экстракта характеризуется точкой E': ацетона 97,5% (масс.); воды 2,5% (масс.).

Количество рафината:

$$G_R' \approx G_R = G_M - G_E = 200 - 150,5 = 49,5 \text{ кг.}$$

Результаты примеров 8.2, 8.3 и 8.4 сведены для сравнения в табл. 8.2.

Исходные данные: смесь состоит из воды (A), ацетона (B) и хлорбензола (C); $x_F = 50\%$ (масс.); $x_R = 2\%$ (масс.); $y_S = 0$; $G_F = 100$ кг.

Из таблицы следует, что противоточная экстракция имеет в данном случае большие преимущества (меньший расход растворителя, большая чистота экстракта и др.).

Пример 8.5. Оценить приблизительно целесообразность использования экстракции в примере 8.4, если удаление растворителя из экстракта производится непрерывной ректификацией; допустимое содержание хлорбензола в дистилляте 10% (масс.), ацетона в кубовом остатке 1% (масс.). Коэффициент избытка флегмы принять в обоих случаях равным 2.

Решение. Экстракт, поступающий на перегонку, считаем для упрощения бинарной смесью. Минимальное число флегмы и число теоретических тарелок определяем по равновесным данным обычными методами (расчет не приводится). Полученные данные сводим в табл. 8.3.

Из сопоставления результатов делаем вывод, что экстракцию в данном случае использовать целесообразно, но экономия, если учесть стоимость оборудования и эксплуатационные расходы, будет незначительной. Для окончательного решения вопроса необходим более подробный анализ.
Пример 8.6. Бинарная смесь 1,4-диоксана с водой не может быть разделена ректификацией при атмосферном давлении вследствие образования неразделимого кипящей смеси. Для извлечения диоксана используется экстракция его из водного раствора бензолом с последующей ректификацией смеси диоксана — бензола. Определить конечное содержание диоксана в воде, если 150 кг 20% раствора диоксана обрабатываются последовательно пятью порциями бензола по 100 кг каждая. В свежем растворителе содержится 2% (масс.) диоксана. На каждой ступени экстрагирования достигается равновесие. Взаимной растворимостью воды и бензола пренебречь.

Данные по растворимости диоксана в воде и бензоле при 25 °C:
Содержание диоксана в воде, % (масс.)

<table>
<thead>
<tr>
<th></th>
<th>5,1</th>
<th>18,9</th>
<th>25,2</th>
</tr>
</thead>
</table>

Равновесное содержание диоксана в бензоле, % (масс.)

<table>
<thead>
<tr>
<th></th>
<th>5,2</th>
<th>22,5</th>
<th>32,0</th>
</tr>
</thead>
</table>

Решение. Переводим массовые проценты в массовые относительные доли.

Содержание диоксана в воде:

\[
\frac{x'}{100 - x} = \frac{x \text{ кг диоксана}}{\text{кг воды}}.
\]

Равновесное содержание диоксана в бензоле:

\[
\frac{y'}{100 - y} = \frac{y \text{ кг диоксана}}{\text{кг бензола}}.
\]

При этом получаем:

<table>
<thead>
<tr>
<th>(x', \text{ кг диоксана/кг воды})</th>
<th>0,0537</th>
<th>0,233</th>
<th>0,337</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y', \text{ кг диоксана/кг бензола})</td>
<td>0,0548</td>
<td>0,291</td>
<td>0,471</td>
</tr>
</tbody>
</table>

Таблица 8.3

<table>
<thead>
<tr>
<th>Характеристика процесса</th>
<th>Ректификация смеси ацетон-вода</th>
<th>Экстракция ацетона и последующая ректификация смеси ацетон-хлорбензол</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание ацетона в исходной смеси, %:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>масс.</td>
<td>50</td>
<td>32,5</td>
</tr>
<tr>
<td>мол.</td>
<td>23,7</td>
<td>47,8</td>
</tr>
<tr>
<td>Содержание ацетона в дистилляте, %:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>масс.</td>
<td>97,5</td>
<td>90</td>
</tr>
<tr>
<td>мол.</td>
<td>92,4</td>
<td>94,5</td>
</tr>
<tr>
<td>Содержание ацетона в кубовом остатке, %:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>масс.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>мол.</td>
<td>0,63</td>
<td>1,9</td>
</tr>
<tr>
<td>Число флегм:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{\text{мин}})</td>
<td>0,38</td>
<td>0,16</td>
</tr>
<tr>
<td>(R)</td>
<td>0,76</td>
<td>0,32</td>
</tr>
<tr>
<td>Число теоретических тарелок</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Отношение расходов теплоты на ректификацию</td>
<td>(\frac{q_1}{q_2} = \frac{r (R_1 - 1)}{r (R_2 + 1)})</td>
<td>(\frac{0,76 + 1}{0,32 + 1} = 1,33)</td>
</tr>
</tbody>
</table>
Содержание диоксаны в исходной смеси:
\[x' = \frac{20}{100 - 20} = 0,25 \text{ кг диоксана} \div \text{кг воды}. \]

Содержание диоксаны в свежем растворителе:
\[y'_S = \frac{2}{100 - 20} = 0,022 \text{ кг диоксана} \div \text{кг бензола}. \]

Количество воды \(G_A \) в исходной смеси \(G_F \) можно определить по формуле:
\[G_A = G_F \frac{100 - x'}{100} = \frac{150 (100 - 20)}{100} = 120 \text{ кг}. \]

Количество бензола \(G_C \), приходящееся на \(G_S = 100 \text{ кг свежего растворителя} \), можно найти так:
\[G_B = G_S \frac{100 - y'_S}{100} = \frac{100 (100 - 2)}{100} = 98 \text{ кг}. \]

Тангенс угла наклона рабочих линий [формула (8.16)]
\[\tan \alpha = \frac{G_A}{G_C} = \frac{120}{98} = 1,225. \]

На рис. 8.16 через точку 1 с координатами \(x'_F \) и \(y'_S \) проводим с наклоном 1,225 : 1 прямую до пересечения с линией равновесия. Координаты точки пересечения характеризуют составы экстракта \(y_1 \) и рафината \(x_1 \) первой ступени. Через точку 2 с координатами \(x_1 \) и \(y'_S \) вновь проводим прямую с наклоном 1,225 : 1 до пересечения с равновесной кривой и т. д. Содержание рафината на последней ступени:
\[x'_R = x'_5 = 0,022 \text{ кг диоксана} \div \text{кг воды} \]
или
\[x'_R = x_3 = \frac{0,022 \cdot 100}{1 + 0,022} = 2,15 \% \text{ (масс.) диоксана}. \]

Пример 8.7. В противоточном экстракторе непрерывного действия обрабатываются чистым бензолом сточные фенольные воды с целью очистки воды и извлечения фенола. Определить необходимое количество растворителя и число теоретических ступеней экстрагирования, если в 1 ч обрабатывается 10 м³ воды. Содержание фенола в воде: начальное 8 кг/м³, конечное 0,5 кг/м³, конечное содержание фенола в бензоле 25 кг/м³, температура жидкостей 25 °C.

Решение. Данные по равновесию берем из «Справочника химика» [13]:

| Содержание фенола в воде \(c_1 \), г-экв/л | 0,0272 | 0,1013 | 0,3660 |
| Равновесное содержание фенола в бензоле \(c_2 \), г-экв/л | 0,062 | 0,279 | 2,978 |

Пересчитываем концентрации в кг/м³: \(x' \approx 15,686c_1; y' \approx 15,686c_2 \). При этом получаем:

| Содержание фенола в воде \(x' \), кг/м³ | 0,426 | 1,59 | 5,74 |
| Равновесное содержание фенола в бензоле \(y' \), кг/м³ | 0,974 | 4,37 | 46,7 |

382
Необходимое количество бензола найдем из уравнения материального баланса:

\[V_F (x'_n - x'_k) = V_S (y'_k - y'_n); \]

\[V_S = \frac{10}{3600} \frac{8 - 0,5}{25 - 0} = 0,00083 \text{ м}^3/\text{с}; \]

\[G_S = 0,00083 \cdot 879 = 0,73 \text{ кг/с}. \]

Число теоретических ступеней находим графически: наносим на диаграмму равновесия, построенную по приведенным данным (рис. 8.17), рабочую линию, проходящую через точки с координатами \(x'_n, y'_k \) и \(x'_n, y'_n \), и вписываем между рабочей линией и равновесной кривой ступени изменения концентрации. В данном случае требуется семь ступеней.

Пример 8.8. По равновесным составам сосуществующих фаз [в % (масс.)], приведенным в табл. 8.4, построить фазовые диаграммы равновесия для системы вода (A) — уксусная кислота (B) — диэтиловый эфир (C) при 25 °C в координатах: а) \(X, Y = z, Z \); б) \(X — Y \).
Ре ш е н и е. Проведем пересчет концентраций (формулы (8.4)):

\[X = \frac{x_B}{x_A + x_B} \quad \text{кг уксусной кислоты} \]

\[Y = \frac{y_B}{y_A + y_B} \quad \text{кг уксусной кислоты} \]

\[Z = \frac{x_C}{x_A + x_B} \quad \text{кг диэтилового эфира} \]

\[Z = \frac{y_C}{y_A + y_B} \quad \text{кг диэтилового эфира} \]

Полученные данные сводим в табл. 8.5.

Таблица 8.4

<table>
<thead>
<tr>
<th>Водный слой</th>
<th>Эфирный слой</th>
</tr>
</thead>
<tbody>
<tr>
<td>вода</td>
<td>уксусная кислота</td>
</tr>
<tr>
<td>вода</td>
<td>уксусная кислота</td>
</tr>
<tr>
<td>93,3</td>
<td>0</td>
</tr>
<tr>
<td>88,0</td>
<td>5,1</td>
</tr>
<tr>
<td>84,0</td>
<td>8,8</td>
</tr>
<tr>
<td>78,2</td>
<td>13,8</td>
</tr>
<tr>
<td>72,1</td>
<td>18,4</td>
</tr>
<tr>
<td>65,0</td>
<td>23,1</td>
</tr>
<tr>
<td>55,7</td>
<td>27,9</td>
</tr>
<tr>
<td>2,3</td>
<td>0</td>
</tr>
<tr>
<td>3,6</td>
<td>3,8</td>
</tr>
<tr>
<td>5,0</td>
<td>7,3</td>
</tr>
<tr>
<td>7,2</td>
<td>12,5</td>
</tr>
<tr>
<td>10,4</td>
<td>18,1</td>
</tr>
<tr>
<td>15,1</td>
<td>23,6</td>
</tr>
<tr>
<td>23,6</td>
<td>28,7</td>
</tr>
<tr>
<td>Водный слой</td>
<td>Эфирный слой</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>0,072</td>
</tr>
<tr>
<td>0,055</td>
<td>0,074</td>
</tr>
<tr>
<td>0,095</td>
<td>0,078</td>
</tr>
<tr>
<td>0,150</td>
<td>0,087</td>
</tr>
<tr>
<td>0,204</td>
<td>0,105</td>
</tr>
<tr>
<td>0,263</td>
<td>0,135</td>
</tr>
<tr>
<td>0,333</td>
<td>0,196</td>
</tr>
</tbody>
</table>

Построение диаграмм ведем обычным порядком (рис. 8.18). На диаграмму X, Y, Z хорды равновесия не наносим — для отыскания их при расчетах служит вспомогательная диаграмма X — Y.

Пример 8.9. Определить наилбольшую достижимую концентрацию экстракта для системы вода — уксусная кислота — диэтиловый эфир при $25\,^\circ C$, если экстракция ведется в противотоке: а) для 15%-ной исходной смеси; б) для 5%-ной исходной смеси (по кислоте)*.

Решение. По диаграмме X — Y (рис. 8.18) находим, что с исходной смесью $X = 0,15$ находится в равновесии экстракт с содержением уксусной кислоты $Y = 0,635$; с исходной смесью $X = 0,05$ равновесен экстракт с $Y = 0,46$. Таким образом, в первом случае максимальная концентрация уксусной кислоты в экстракте (после отгонки растворителя) составит 63,5% (масс.), во втором случае — 46% (масс.); в реальных условиях наибольшие достижимые концентрации будут несколько меньше.

Пример 8.10. Рассчитать необходимое число ступеней и количество растворителя для экстрагирования уксусной кислоты из водного раствора диэтиловым эфиром ($t = 25\,^\circ C$), если концентрация исходной смеси 5% (масс.), а концентрация экстракта после отгонки растворителя 60% (масс.). В 1 ч перерабатывается 1000 кг исходного раствора; эфир из рафината и экстракта отгоняется полностью; содержание кислоты в остатке не более 1% (масс.).

Решение. Так как заданной концентрации экстракта обычным противоточным экстрагированием достичь невозможно (см. пример 8.9), применяем процесс с возвратом части экстракта (рис. 8.19).

Определяем минимальный коэффициент возврата экстракта. Проводим хорду равновесия через точку F (рис. 8.18), характери-
удаления растворителя). Полученная исчерпывающая часть установки
исчерпывающей части установки.
Далее определяем число ступеней экстрагирования, последовательно проводя хорды равновесия и лучи и подсчитывая число

Рис. 8.18 (к примерам 8.8, 8.9 и 8.10).

зующую исходную смесь

\(X_F = 5/100 = 0,05; \ z_F = 0 \), до пересечения с вертикалью, проведенной через точку \(E (X_E = 60/100 = 0,6; \ z_E = 0) \), соответствующую конечному экстракту.

Так как в нашем случае растворитель удаляется полностью, имеем формула (8.20):

\[
R_{E_{	ext{мин}}} = \frac{G_{R,0}}{G_E} = \frac{P_{F_{	ext{мин}}}E_1}{E_1E} = \frac{z_{R,0} - z_E}{z_E - z_{R,0}} = \frac{19 - 6,7}{6,7 - 0} = 1,835.
\]

Принимаем коэффициент избытки возврата \(\beta = 3 \):

\[
R_E = 1,835 \cdot 3 = 5,51.
\]

Определяем координату полюса укрепляющей части установки \(Z_{P,E} \):

\[
5,51 = \frac{Z_{P,E} - 6,7}{6,7 - 0};
\]

\[
Z_{P,E} = 43,6.
\]

Через точки \(P_E \) и \(F \) проводим прямую до пересечения с вертикалью, проведенной через точку \(R (X_R = 1/93,3 \approx 0,01; \ z_R = 6,7/93,3 = 0,072) \), характеризующую состав конечного рафината (до точки является полюсом
хорд. Порядок построения: \(E_1 R_1, R_1 P_1, E_2 R_2, P_1 R_2 E_3 \) и т. д. до получения заданной концентрации рафината.

Для построения хорд равновесия пользуются вспомогательной диаграммой \(X-Y \), позволяющей по заданному значению \(X \) определять равновесную концентрацию \(Y \) (или наоборот). В данном случае требуется шесть ступеней экстрактирования. Питание по-дается на вторую ступень. На рис. 8.18 показано, как определять число ступеней по диаграмме \(X-Y \) (следует учитывать, что рабочие линии в этом случае не являются прямыми).

Величины потоков рассчитываем из уравнений материальных балансов.

Баланс компонентов А и В:

\[
G'_F = G'_R + G'_E.
\]

Баланс компонента В:

\[
X_F G_F = X_R G'_R + X_E G'_E.
\]

Решаем систему уравнений:

\[
1000 = G'_R + G'_E;
0.05 \cdot 1000 = 0.01 G'_R + 0.6 G'_E.
\]

Масса экстракта: \(G'_E = G_E = 68 \) кг. Масса рафината: \(G_R = 932 \) кг. Отсюда

\[
G_R = G'_R \left(1 + z_R\right) = 932 \left(1 + 0.072\right) = 1000 \text{ кг.}
\]

Масса эфира в рафинате: \(1000 - 932 = 68 \) кг. Масса возвращаемого экстракта: \(G_{R_0} = G_E R_E = 68 \cdot 5,51 = 375 \) кг. Масса удаляемого в отделителе растворителя: \(G_{S_0} = (G_E + G_{R_0}) Z_E, 1 = (68 + 375) 6,7 = 2970 \) кг.
Общий баланс установки:

\[G_F + G_S = G_E + G_{S,0} + G_{R}; \]

\[1000 + G_S = 68 + 2970 + 1000, \]

откуда необходимое количество растворителя: \(G_S = 3038 \) кг.

Пример 8.11. В противоточном экстракторе непрерывного действия экстрагируется стирол из 38% раствора его в этилбензоле диэтиленгликолем. Производительность экстрактора по исходной смеси 100 кг/ч. Так как обычное противоточное экстрагирование требуемой чистоты разделения дать не может, применяется экстрагирование с возвратом части экстракта и рафината. Экстракт и рафинат содержат соответственно 95 и 3% (масс.) стирола после отгонки от растворителя. Определить необходимое количество растворителя, состав и количество экстракта, рафината и возвратов, а также необходимое число теоретических ступеней экстрагирования, приняв, что возврат экстракта в 1,5 раза больше минимального.

<table>
<thead>
<tr>
<th>Продукт</th>
<th>Обозначение фигурационной точки</th>
<th>Обозначение потока</th>
<th>Состав (координаты)</th>
<th>Расход, кг/ч</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(X (Y))</td>
<td>(z (Z))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{кг} \ (A + B))</td>
<td>(\text{кг} \ (A + B))</td>
</tr>
<tr>
<td>Исходная смесь</td>
<td>(F)</td>
<td>(G_F)</td>
<td>0,38</td>
<td>0</td>
</tr>
<tr>
<td>Растворитель, направляемый в смеситель</td>
<td>(S^*)</td>
<td>(G_S)</td>
<td>—</td>
<td>∞</td>
</tr>
<tr>
<td>Сырой экстракт</td>
<td>(E_1)</td>
<td>(G_{E,1})</td>
<td>0,95</td>
<td>2,95</td>
</tr>
<tr>
<td>Экстракт-продукт</td>
<td>(E)</td>
<td>(G_E)</td>
<td>0,95</td>
<td>0 **</td>
</tr>
<tr>
<td>Экстракт-возврат</td>
<td>(R_0)</td>
<td>(G_{R,0})</td>
<td>0,95</td>
<td>0 **</td>
</tr>
<tr>
<td>Рафинат-продукт</td>
<td>(R)</td>
<td>(G_R)</td>
<td>0,03</td>
<td>0,007 3**</td>
</tr>
<tr>
<td>Рафинат-возврат</td>
<td>(R_{n+1})</td>
<td>(G_{R,n+1})</td>
<td>0,03</td>
<td>0,007 3**</td>
</tr>
<tr>
<td>Раствор из смесителя</td>
<td>(E_{n+1})</td>
<td>(G_{E,n+1})</td>
<td>0,03</td>
<td>8,65</td>
</tr>
<tr>
<td>Добавляемый растворитель</td>
<td></td>
<td>(G_{S})</td>
<td>—</td>
<td>∞</td>
</tr>
<tr>
<td>Растворитель после отгонки экстракта</td>
<td>(S_{0}^*)</td>
<td>(G_{S,0})</td>
<td>—</td>
<td>∞</td>
</tr>
<tr>
<td>Полос укрупняющей части:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>минимальный</td>
<td>(P_{E,мин})</td>
<td>—</td>
<td>0,95</td>
<td>3,3</td>
</tr>
<tr>
<td>рабочий</td>
<td>(P_E)</td>
<td>—</td>
<td>0,95</td>
<td>43,5</td>
</tr>
<tr>
<td>Полос нечерпывающей части:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>минимальный</td>
<td>(P_{C,мин})</td>
<td>—</td>
<td>0,03</td>
<td>—20</td>
</tr>
<tr>
<td>рабочий</td>
<td>(P_R)</td>
<td>—</td>
<td>0,03</td>
<td>—26,2</td>
</tr>
</tbody>
</table>

* На диаграмме фигуративная точка отсутствует.
** Очистка производится полностью в одной колонне.
*** Очистка нецелесообразна.
**** Имеет место унос растворителя с рафинатом-продуктом.
Решение. После составления схемы процесса * и построения фазовых диаграмм, \(X, Y \rightarrow z, Z \) и \(X \rightarrow Y \) (равновесные данные здесь не приводятся) определяем состав продуктов и наносим на диаграмму (рис. 8.20) соответствующие им точки. Данные по мере их нахождения сводим в табл. 8.6. Так как рафинат на любом участке рафинатной кривой содержит весьма малые количества растворителя, установка рафинатной и второй экстрактной отгонной колонны в данном случае нецелесообразна.

Координаты полюсов укрепляющей и исчерпывающей частей экстракционной колонны, соответствующие минимальным возвратам, определяем, проводя через точку \(F \) прямую, совпадающую с конной, до пересечения с вертикалями, проходящими через точки \(E \) и \(R \). Число ступеней экстрагирования будет при этом бесконечно большим.

Минимальный возврат:

\[
\frac{G_{R, 0}}{G_E} = \frac{z_P, E_{\min} - z_{E, 1}}{z_{E, 1} - z_{E, 1}} = \frac{33 - 2,95}{2,95 - 0} = 10,35;
\]

\[
\frac{G_{R, n+1}}{G_R} = \frac{z_R - z_{P, R_{\min}}}{z_{E, n+2} - z_R} = \frac{0,007 + 20}{8,65 - 0,007} = 2,31.
\]

При полном возврате экстракта и рафината в экстрактор:

\[
\frac{G_{R, 0}}{G_E} = \infty; \quad \frac{G_{R, n+1}}{G_R} = \infty;
\]

\[
z_P, E_{\max} = \infty; \quad z_P, R_{\max} = \infty.
\]

* См. рис. 8.9, a. Аппарат для отгонки растворителя, отмеченный на схеме звездочкой, в данную установку не входит.
т. е. лучи превращаются в параллельные вертикальные прямые. Этому соответствует минимальное число ступеней экстрагирования.

Находим координаты полюсов при $\beta = 1,5$:

$$\frac{Z_{P,E} - 2,95}{2,95 - 0} = 10,35 \cdot 1,5; \ Z_{P,E} = 43,53.$$

Количество экстракта по правилу рычага:

$$G_E = \frac{G_F \ (X_F - X_R)}{X_E - X_R} = \frac{100 \ (0,38 - 0,03)}{0,95 - 0,03} = 38,0 \text{ кг/ч.}$$

Возврат экстракта:

$$G_{R,0} = 10,35 \cdot 2 \cdot 38,0 = 575 \text{ кг/ч.}$$

Количество рафината (с уносимым растворителем):

$$\Delta G_S + G_R = (G_F - G_E) \ (1 + z_R) = (100 - 38,0) \ (1 + 0,007) = 62,5 \text{ кг/ч.}$$

Возврат рафината:

$$G_{R,n+1} = G_R \frac{Z_{P,E_{\text{мин}}}}{Z_{E,n+2} - z_R} = 62,5 \frac{33 + 26,2}{8,65 - 0,007} \approx 190 \text{ кг/ч.}$$

Количество циркулирующего в течение 1 ч растворителя:

$$G_{S,0} = (G_E + G_{R,0}) z_{E,1} = (38,0 + 575) \ 2,95 = 1805 \text{ кг/ч.}$$

Количество добавляемого при этом растворителя (равное потерям с рафинатом-продуктом):

$$\Delta G_S = G_R z_R = 62 - 0,007 \approx 0,5 \text{ кг/ч.}$$

Производительность по сыруму экстракту (перерабатываемому отгонной колонной):

$$G_{E,1} = G_{R,0} + G_E + G_{S,0} = 575 + 38 + 1805 = 2418 \text{ кг/ч.}$$

Расход раствора, выходящего из смесителя:

$$G_{E,n+1} = G_S + G_{R,n+1} = 1805,5 + 190 = 1995,5 \text{ кг/ч.}$$

Расход раствораителя, подаваемого в смеситель:

$$G_S = G_{S,0} + \Delta G_S \approx 1805,5 \text{ кг/ч.}$$

Необходимое число ступеней экстрагирования ввиду слияния лучей и концентрационной дробности определяют по диаграмме $X - Y$ Проводим из рабочих полюсов ряд лучей до пересечения с пограничными кривыми (точки $E_n, R_n, ..., E_m, R_m, ...$), а на диаграмме $X - Y$ находим точки с координатами $X^n_{R}, Y^n_{E}, ..., X^n_{E}, Y^n_{R}, ...$
После проведения через эти точки плавной кривой (являющейся рабочей линией) вписываем между рабочей и равновесной линиями ступени и подсчитываем их число. В данном случае необходимы 23 ступени экстрагирования; исходная смесь подается на 12-ю сверху ступень.

Пример 8.12. В вертикальном отстойнике с коническим дном находятся осадок и 7 м³ раствора, содержащего 2 т NaOH. После отстаивания сливается прозрачная часть в количестве 6 м³, отстойник доливается чистой водой, и суспензия перемешивается. После повторного отстаивания снова сливается 6 м³ чистого раствора. Три слитых с осадком раствора смешиваются и направляются на выпарку. Определить: а) количество NaOH, остающееся в осадке (шламе); б) процент извлечения NaOH; в) процентное содержание NaOH в растворе, поступающем на выпарку.

Решение. а) В отстойнике происходит трехкратное промывание осадка с отношением объемов удаляемого и удерживаемого растворов \(a = 6 : 1 = 6 \). Согласно формуле (8.28), в шламе после трехкратного промывания остается:

\[
\frac{1}{(1 + a)^3} = \frac{1}{7^3} = \frac{1}{343}
\]

от первоначального количества NaOH, или

\[
G_{NaOH} = 2000 \times \frac{1}{343} = 5.8 \text{ кг.}
\]

б) Извлекается NaOH:

\[
\frac{2000 - 5.8}{2000} \times 100 = 99.7 \%
\]

По данным табл. LIV экстрагированное вещество при трехкратном промывании шестикратным количеством растворителя составляет 99.71%.

в) Количество раствора:

\[
V_p = 6.3 \times 18 \text{ м³.}
\]

Содержание в нем NaOH:

\[
G_{NaOH} = 2000 - 5.8 = 1994.2 \text{ кг,}
\]

или

\[
\frac{1994.2}{18000 + 1994.2} \times 100 \approx 10 \%
\]

Пример 8.13. С целью извлечения меди колчеданные огарки подвергаются хлорирующему обжигу с поваренной солью. В обожженной массе медь содержится в виде CuCl₂. Содержание хлорида меди составляет 11%. Обожженный продукт подвергается выщелачиванию в противоточном батарее подкисленной водой, получающейся от промывки отходящих газов. Инертная твердая
масса удерживает 2 кг воды на 1 кг твердого вещества. На каж-
dой ступени достигается равновесие. Сколько ступеней необходимо
иметь в батарее для получения раствора, содержащего 12%
(масс.) CuCl₂, и извлечения 98% Cu из обожженного продукта?
Решение. Поскольку твердая фаза при движении со ступе-
нии на ступень удерживает постоянное количество воды (кроме
первой ступени, так как в эту ступень поступает сухой обожженный
продукт, который уходит из нее, удерживая 2 кг воды на 1 кг
твердой фазы), для определения числа ступеней в установке можно
воспользоваться формулой (8.32).
Примем за основу расчета 100 кг сухого твердого остатка, сво-
obодного от меди, и вычислим количества продуктов и концентра-
cии.
С обожженной массой поступает CuCl₂:
100 \cdot \frac{11}{89} = 12,36 \text{ кг.}
С остатком уходит: 12,36 (100 — 98)/100 = 0,25 \text{ кг. С экстрак-
tом уходит: 12,36 - 98/100 = 12,11 \text{ кг.}}
Определим количество поступающей в установку подкислен-
ной воды G_s, учитывая, что 200 кг воды уносит твердый остаток,
а остальное уходит с экстрактом:
(G_s — 200) \cdot \frac{12}{88} = 12,11,
откуда G_s = 288,8 \text{ кг.}
Содержание CuCl₂ в экстракте (в кг на 100 кг воды):
y_E = \frac{12}{88} \cdot 100 = 13,64.
Такое же содержание будет иметь раствор, удерживаемый
твердым веществом при переходе из первой ступени во вторую:
x_1 = y_E = 13,64.
Содержание CuCl₂ в растворе, уходящем с твердым остатком:
x_R = \frac{0,25}{200} \cdot 100 = 0,125.
Поступающая в батарею подкисленная вода не содержит со-
лей меди и y_s = 0.
Содержание хлорида меди y_2 в верхнем потоке, переходящем
из второй ступени в первую, определим по балансу CuCl₂ в пер-
вой ступени. Количество растворителя в верхнем потоке состав-
ляет 288,8 кг. В первую ступень поступает на 100 кг нерного сухой
массы 12,36 кг CuCl₂ и A кг с 288,8 кг растворителя из вто-
рой ступени; всего (12,36 + A) кг. Уходит из первой ступени
с экстрактом 12,11 кг, с раствором нижнего потока \frac{13,64}{100} \cdot 200 =
= 27,28 \text{ кг; всего 12,11 + 27,28 = 39,39 \text{ кг.}}
Баланс первой ступени по CuCl₂:

\[12,36 + A = 39,39 \text{ кг}, \]

откуда

\[A = 39,39 - 12,36 = 27,03 \text{ кг}. \]

Содержание CuCl₂ в верхнем потоке (в кг на 100 кг воды):

\[y₂ = \frac{27,03}{288,8} 100 = 9,36. \]

Число ступеней (без первой):

\[n_c - 1 = \frac{\lg \frac{x₁ - y₂}{x_R - y_S}}{\lg \frac{x₁ - x_R}{y₂ - y_S}} = \frac{\lg \frac{13,64 - 9,36}{0,125 - 0}}{\lg \frac{13,64 - 0,125}{9,36 - 0}} = 10 \text{ ступеней,} \]

а всего \(n_c = 10 + 1 = 11 \text{ ступеней.} \)

Пример 8.14. Едкий натр получается по реакции

\[\text{Na₂CO₃} + \text{CaO} + \text{H₂O} = \text{CaCO₃} + 2\text{NaOH}. \]

Продукты реакции поступают в первую ступень непрерывной противоточной трехступенчатой батареи с содержанием воды 50% от массы шлама (CaCO₃). В дальнейшем, при переходе со ступени на ступень и выходе из батареи, шлам удерживает воды в 1,5 раза больше собственной массы. Желательно добиться 98%-го извлечения NaOH. Определить расход воды (на 100 кг сухого шлама) и концентрации растворов на каждой ступени.

Решение. Для составления материальных балансов по каждой ступени нет достаточного количества данных.

По табл. LV для достижения 97,5%-го извлечения продукта при трехступенчатом непрерывном экстрагировании отношение количеств растворителя и удерживаемого раствора составляет 3. Остановимся на этих цифрах и составим последовательно балансы, начиная с третьей ступени. Расчет будем вести на 100 кг сухого CaCO₃.

На 100 кг CaCO₃ в первую ступень вводится 80 кг NaOH. Из этого количества переходит в экстракт 97,5%, или 80·97,5/100 = 78 кг.

Теряется с остаточным раствором: \[80 - 78 = 2 \text{ кг.} \]

100 кг шлама удерживают воды: \[100·1,5 = 150 \text{ кг.} \]

Содержание NaOH в остаточном растворе (в кг на 1 кг чистого раствора):

\[x_R' = 2/150 = 0,0133. \]

В систему через третью ступень вводится воды в качестве растворителя: \(150·3 = 450 \text{ кг.} \)

Таким образом, в верхнем потоке по установке идет 450 кг воды, в нижнем вместе с твердой фазой 150 кг.
Содержание NaOH в растворителе: \(y_s = 0 \). Содержание NaOH в верхнем потоке, переходящем из третьей ступени во вторую:
\[y_3 = x'_R = 0,0133 \text{ кг/кг}. \]

Неизвестно содержание NaOH в нижнем потоке \(x'_2 \). Определяем его по балансу NaOH в третьей ступени:
\[450y_s + 150x'_2 = 150x'_R + 450y_3; \]
\[450 \cdot 0 + 150x'_2 = 150 \cdot 0,0133 + 450 \cdot 0,0133; \]
\[150x'_2 = 8; \quad x'_2 = 8/150 = 0,0533 \text{ кг/кг}. \]

Содержание NaOH в верхнем потоке, поступающем из второй ступени в первую: \(y_2 = x'_2 = 0,0533 \text{ кг/кг}. \)

Неизвестно лишь содержание NaOH в нижнем потоке, поступающем из первой ступени. Это содержание \(x'_1 \) определяется из баланса второй ступени:
\[450y_3 + 150x'_1 = 450y_2 + 150x'_2; \]
\[450 \cdot 0,0133 + 150x'_1 = 450 \cdot 0,0533 + 150 \cdot 0,0533; \]
\[150x'_1 + 6 = 24 + 8; \]
\[x'_1 = (32 - 6)/150 = 26/150 = 0,1733 \text{ кг/кг}. \]

Для определения содержания NaOH в экстракте в первой ступени необходимо составить водный баланс этой ступени, обозначив через \(A \) количество воды, уходящее с экстрактом:
\[A + 150 = 450 + 50; \quad A = 350 \text{ кг}. \]

Экстракт содержит 78 кг NaOH. Следовательно, содержание NaOH в экстракте:
\[y_E = \frac{78}{350 + 78} \times 100 = 18,2 \% \text{ (масс.)}. \]

Пример 8.15. Маслоэкстракционная установка перерабатывает 1 т/ч «лепестка» (раздавленные и частично обезжиренные семена подсолнуха) с содержанием масла 28% и бензина 2,5%. Поступающий в установку в качестве растворителя регенерированный бензин содержит 1,5% масла. Количество растворителя, поступающего в установку, составляет 50% от массы «лепестка». По опытным данным количество раствора, удерживаемого твердой фазой, зависит от содержания в нем масла (табл. 8.7).

Твердый остаток после экстрагирования содержит 5% масла.

Определить: 1) количество экстракта и содержание в нем масла; 2) количество остаточного раствора, удерживаемого твердой фазой (шротом) и содержание в нем масла; 3) число ступеней экстрагирования.

Решение. Задача решается графическим методом в прямоугольной системе координат \(X' - z' \) (рис. 8.21).
<table>
<thead>
<tr>
<th>Содержание масла, кг/кг раствора</th>
<th>Количество удерживаемого раствора, кг/кг твердого вещества</th>
<th>Содержание масла, кг/кг раствора</th>
<th>Количество удерживаемого раствора, кг/кг твердого вещества</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,500</td>
<td>0,4</td>
<td>0,550</td>
</tr>
<tr>
<td>0,1</td>
<td>0,505</td>
<td>0,5</td>
<td>0,571</td>
</tr>
<tr>
<td>0,2</td>
<td>0,515</td>
<td>0,6</td>
<td>0,595</td>
</tr>
<tr>
<td>0,3</td>
<td>0,530</td>
<td>0,7</td>
<td>0,620</td>
</tr>
</tbody>
</table>

Данные первой графы табл. 8.7 равны отношению \(X' = \frac{x_B}{x_B + x_C} \).

Данные второй графы — массовые количества раствора на единицу массы твердого вещества — надо пересчитать на обратные величины; тогда они будут выражать отношения \(z' = \frac{x_A}{x_B + x_C} \), т. е. количества твердой фазы на единицу массы раствора (см. табл. 8.8).

Данные табл. 8.8 представляют собой координаты точек кривой нижнего потока (рис. 8.21). В верхнем потоке твердого вещества нет (\(z' = 0 \)), поэтому линия верхнего потока сливается с осью абсцисс. После нанесения кривой вычертим на диаграмме линии материального баланса.

Определим координаты точки \(F \), отвечающей составу «лепестка», поступающего на экстрагирование. По условию задачи:

\[
X_F' = \frac{28}{28 + 2,5} = 0,92; \quad z_F' = \frac{100 - 28 - 2,5}{28 + 2,5} = 2,12.
\]

Координаты точки \(S \), соответствующей составу растворителя:

\[
x_S = 1,5/100 = 0,015; \quad z_S = 0.
\]

Точки \(F \) и \(S \) наносятся на диаграмму, соединяются прямой, которая делится по правилу рычага точкой \(M \) на части, пропорциональные количествам поступающих продуктов, исключая нерасторимое твердое вещество (иначе правило рычага на таких диаграммах применять нельзя). Растворитель постепает в установку

<table>
<thead>
<tr>
<th>(X' = \frac{x_B}{x_B + x_C})</th>
<th>(z' = \frac{x_A}{x_B + x_C})</th>
<th>(X' = \frac{x_B}{x_B + x_C})</th>
<th>(z' = \frac{x_A}{x_B + x_C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>2,0</td>
<td>0,4</td>
<td>1,818</td>
</tr>
<tr>
<td>0,1</td>
<td>1,980</td>
<td>0,5</td>
<td>1,751</td>
</tr>
<tr>
<td>0,2</td>
<td>1,942</td>
<td>0,6</td>
<td>1,681</td>
</tr>
<tr>
<td>0,3</td>
<td>1,887</td>
<td>0,7</td>
<td>1,613</td>
</tr>
</tbody>
</table>
в количестве 50% от массы «лепестка». Если принять эту массу за единицу, то жидкую часть в ней составит \(0,28 + 0,025 = 0,305\) единицы массы, а растворитель 0,5 единицы массы. Точка \(M\) лежит на расстоянии \(0,305/(0,5 + 0,305) = 0,38\) отрезка \(SF\), считая от \(S\).

Числовых данных для построения линии расхода \(RE\) нет. Известно лишь, что линия \(RE\) пересекается с \(SF\) в точке \(M\) и что точка \(R\) лежит на кривой, а точка \(E\) — на оси абсцисс, так как ее ордината \(z_E = 0\). Не располагая координатами точки \(R\), мы все же можем определить их отношение, так как из условия задачи известно, что твердый остаток после экстрагирования содержит 5% масла:

\[
\frac{z^*_R}{x_R} = \frac{x_{AR}}{x_{BR} + x_{CR}} \quad \frac{x_{BR}}{x_{BR} + x_{CR}} = \frac{x_{AR}}{x_{BR}} = \frac{95}{5} = 19.
\]
Прямая, проходящая через начало координат и имеющая тангенс угла наклона 19, пересечет кривую в точке R. Проведя такую прямую, засечем точку R на кривой. Соединим точку R с точкой M и, продолжив прямую до оси абсцисс, найдем точку E.

Определим по диаграмме абсциссы точек R, M и E:

$$X'_R = 0,03; \quad X'_M = 0,36; \quad X'_E = 0,58.$$

В установку поступает жидкой фазы с «лепестком» и растворителем:

$$1000 \cdot 0,305 + 1000 \cdot 0,5 = 805 \text{ кг/ч}.$$

Это количество делится между остатком и экстрактом пропорционально отрезкам EM и MR. Для расчета можно воспользоваться абсциссами концов отрезков:

$$g_{R} = \frac{X'_E - X'_M}{X'_E - X'_R} \cdot 805 = \frac{0,58 - 0,36}{0,58 - 0,03} \cdot 805 = 322 \text{ кг/ч}.$$

Количество остаточного раствора составляет 322 кг/ч, а состав его определяется из предположения, что масло, теряемое в остатке, содержится в этом растворе. Содержание масла в остаточном растворе:

$$\frac{1000 \cdot 0,695 \cdot 5}{95 \cdot 322} \cdot 100 = 11,7 \%.$$

Количество экстракта:

$$g_{E} = 805 - 322 = 483 \text{ кг/ч}.$$

Содержание масла в экстракте:

$$\frac{100 \cdot 0,28 - (1000 \cdot 0,695 \cdot 5/95)}{483} \cdot 100 = 50,4 \%.$$

Для определения числа ступеней через точки F, E и R, S проводим два луча до пересечения их в полюсе P. Так как при экстрагировании твердых тел в каждой ступени установки имеется только один раствор с одной концентрацией, то все хорды равновесия будут вертикальными линиями. Восстанавливаем перпендикуляр из точки E — хорду первой ступени — до пересечения с пограничной кривой. Точку пересечения хорды с пограничной кривой соединяем лучом с точкой P. Из точки пересечения этого луча с осью абсцисс снова восстанавливаем перпендикуляр до пересечения с пограничной кривой и т. д., пока не попадем в точку R или не окажемся в непосредственном соседстве с ней.

Число хорд равновесия указывает число ступеней. В данном случае необходимо семь ступеней экстрагирования.

Пример 8.16. В непрерывнодействующей противоточной установке производительностью 4,4 т/сутки из руды извлекается
озокерит (горный воск) с помощью керосина (или бензина). В экстракте, выходящем из каскада экстракторов, содержится 5 кг озокерита в 100 кг чистого растворителя. В исходной руде ~ 25% озокерита и 75% породы. В рафинате 0,2 кг озокерита на 100 кг пустой породы. Растворитель содержит 0,05 кг озокерита на 100 кг керосина. Необходимо определить число теоретических ступеней для осуществления процесса экстрагирования.

Решение. 1. Составим уравнение материального баланса по потокам:

\[G_S + G_R, n a_n = G_{E, n-1} + G_{R_1} a'_1 \]

или по извлекаемому компоненту:

\[G_{sys} + G_{R, n} x_n = G_{E, n-1} y_{n-1} + G_{R_1} x_1 a'_1, \]

где \(a' \) — соотношение потоков Ж : Т (количество жидкости, удерживаемое твердой фазой); \(G_S \) — расход свежего растворителя, кг/ч; \(G_R \) — расход твердой фазы в рафинате, кг/ч; \(x \) — содержание извлекаемого компонента (озокерита) в рафинате, кг А/кг С; \(y \) — содержание озокерита в экстракте, кг А/кг С; \(n \) — любая ступень в каскаде; \(m \) — конечная ступень, в которую поступает исходный твердый материал; \(A \) — озокерит; \(B \) — пустая порода; \(C \) — керосин.

Исключив \(G_{E, n-1} \) из балансовых уравнений, получим уравнение рабочей линии процесса:

\[y_{n-1} = \frac{G_R, m x_n a'_n}{G_S - G_{R, 1} a'_1 + G_{R, n} a'_n} + \frac{G_{sys} - G_{R, 1} x_1 a'_1}{G_S - G_{R, 1} a'_1 - G_{R, n} a'_n}. \]

При отсутствии взаимодействия между экстрагентом и пустой породой, а также при постоянстве потока твердой фазы из одной ступени в другую уравнение рабочей линии преобразуется к виду:

\[\left(\frac{G_S}{G_{R, n}} + 1 - \frac{a'_1}{a'_n} \right) y_{n-1} = x_n + \frac{G_{sys} - G_{R, 1} x_1 a'_1}{G_{R, n} a'_n}. \]

При постоянном соотношении потоков Ж : Т = \(a' = \) const можно упростить уравнение рабочей линии:

\[A' y_{n-1} = A' y_S + x_n - x_1, \]

где \(A' = G_S / G_{R, 1} \).

При условии равновесия концентрации озокерита в экстракте с концентрацией в рафинате \(y^*_n = x_n \).

Тогда

\[x_n - A' (x_{n-1} - y_S) - x_1 = 0. \]

Решение этого уравнения:

\[x_n = C A' n + \frac{x_1 - A' y_0}{1 - A'}, \]

где \(C \) — константа, которую можно найти из граничного условия: при \(n = 0 \) \(x_0 = y_0 \).

398
После упрощения получим уравнение

\[
\frac{A' \cdot m - 1}{A' - 1} = \frac{x_m - x_0}{x_1 - x_0},
\]

которое является вариантом уравнения (8.32) для расчета числа теоретических ступеней в виде:

\[
m = \lg \left[1 + (A' - 1) \left(\frac{x_m - x_0}{x_1 - x_0} \right) \right] / \lg A'.
\]

В условиях примера \(x_m = 0,05\) кг/кг; \(x_0 = 0,0005\) кг/кг; \(x_1 = 0,001\) кг/кг (по опытным данным); \(G_R = 100\) кг/ч; \(G_S = 871\) кг/ч; \(a' = 2\).

Тогда

\[
A' = \frac{G_S}{(G_R a')} = \frac{871}{(100 \cdot 2)} = 4,35.
\]

По уравнению (a)

\[
\frac{4,35m - 1}{4,35 - 1} = \frac{0,05 - 0,0005}{0,001 - 0,0005}.
\]

Отсюда \(m = 3,96 \approx 4\) ступени.

Если количество жидкости, удерживаемое твердой фазой при переходе из ступени в ступень изменяется, то для расчета числа теоретических ступеней следует использовать графические методы (с помощью треугольной или прямоугольных диаграмм).

2. При расчете комплекса \(A'\) расход растворителя определялся из балансовых соотношений озокерита в потоках:

1) количество озокерита в руде: \(100 \cdot \frac{25}{75} = 33,33\) кг/ч;
2) количество озокерита в растворителе: \(0,0005G_S\) кг/ч;
3) количество озокерита в рафинате: \(100 - 0,002 = 0,200\) кг/ч;
4) количество озокерита в экстракте: \((G_S - 200) 0,05 = 0,05G_S - 10\);
5) полный выход озокерита: \(0,05G_S = 9,80\) кг/ч. Отсюда: \(33,33 + 0,0005G_S = 0,05G_S = 9,80\) кг/ч.

Расход керосина (растворителя): \(G_S = 871\) кг/ч.

С учетом того, что в отработанной твердой фазе (рафинате) остается 200 кг/ч керосина, в концентрированном экстракте содержится \(871 - 200 = 671\) кг/ч. Озокерита в этом экстракте содержится \(671 \cdot 0,05 = 33,55\) кг/ч.

Концентрация озокерита в потоке экстракта, поступающем во 2-ю ступень, равна его концентрации в сливе из первой ступени — 0,05 кг озокерита/кг керосина. Следовательно, содержание озокерита в экстракте, поступающем во вторую ступень: \(200 \cdot 0,05 = 10\) кг/ч. Содержание озокерита в потоке, идущем из 2-й ступени в 1-ю (из баланса 1-й ступени): \(10 + 33,55 = 33,33 = 10,22\) кг/ч.

Отсию концентрация: \(y_2 = 10,22/871 = 0,0117\) кг/кг; \(y_S = 0,0005\) кг/кг; \(x_1 = 0,05\) кг/кг; \(x_R = y_R' = 0,2/200 = 0,001\) кг/кг.
По уравнению (8.32):

\[n_c - 1 = \log \frac{y_R - y_S}{x_R - y_S} = \log \frac{y_R - y_S}{x_1 - x_2} =
\]
\[= \log \frac{0,001 - 0,0005}{0,05 - 0,0117} = 3. \]

Полное число теоретических ступеней:

\[n_c = 3 + 1 = 4. \]

Контрольные задачи

8.1. Построить треугольную диаграмму равновесия для системы вода — уксусная кислота — этиловый эфир при 25 °C, пользуясь данными табл. 8.4. Сравнить полученную диаграмму с диаграммой X, Y — z, Z (см. пример 8.8).

8.2. Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении какого количества этилового эфира эта смесь перестанет расслаиваться?

8.3. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15% (масс.) при 25 °C. Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция производится чистым эфиром в перекрестном токе. Процесс ведется в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.

8.4. Уксусная кислота экстрагируется в противотоке этиловым эфиром из водного раствора, содержащего 20% (масс.) кислоты. Определить необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрактирования, если экстракт должен содержать 60% (масс.), а рафинат — не более 2% (масс.) кислоты (после отгонки растворителя).

8.5. Бензойная кислота экстрагируется из водного раствора с содержанием ее 1,5 кг на 1 м³ воды, последовательной промывкой бензолом, содержащим 0,2 кг бензойной кислоты на 1 м³ бензола, при отношении объемов воды и бензола \(V_W/V_S = 4 \). Определить, сколько понадобится промывок, если конечное содержание бензола в воде 0,2 кг/м³. Определить также составы получающихся экстрактов. Равновесные данные при рабочей температуре:

Концентрация бензойной кислоты в воде, кг/м³: 0,104 0,456 0,707 1,32 1,56
Концентрация бензойной кислоты в бензоле, кг/м³: 0,182 2,45 6,12 18,2 24,5

8.6. В противоточном экстракторе экстрагируется 1,4-диоксан из 25% водного раствора бензолом, содержащим 0,5% (масс.) диок-

* Для решения воспользоваться треугольной диаграммой, построенной в контрольной задаче 8.1.
<table>
<thead>
<tr>
<th>Водный слой</th>
<th>Эфирный слой</th>
</tr>
</thead>
<tbody>
<tr>
<td>вода</td>
<td>уксусная кислота</td>
</tr>
<tr>
<td>98,1</td>
<td>0,69</td>
</tr>
<tr>
<td>97,1</td>
<td>1,41</td>
</tr>
<tr>
<td>95,5</td>
<td>2,89</td>
</tr>
<tr>
<td>91,7</td>
<td>6,42</td>
</tr>
<tr>
<td>84,4</td>
<td>13,30</td>
</tr>
<tr>
<td>71,1</td>
<td>25,50</td>
</tr>
<tr>
<td>58,9</td>
<td>36,70</td>
</tr>
<tr>
<td>45,1</td>
<td>44,50</td>
</tr>
<tr>
<td>37,1</td>
<td>46,40</td>
</tr>
</tbody>
</table>

Сана. Конечное содержание диоксана в воде 2% (масс.). Определить: 1) минимальное количество растворителя на 100 кг исходной смеси; б) необходимое число теоретических ступеней экстрагирования; в) состав экстракта, приняв количество растворителя в 1,5 раза больше минимального. Равновесные данные см. в примере 8.6.

8.7. Построить фазовые диаграммы равновесия в координатах X, Y — z, Z и X — Y для системы вода — уксусная кислота — изопропиленовый эфир при 20 °C, пользуясь данными о равновесных составах сосуществующих фаз [в % (масс.)], приведенными в табл. 8.9. Соединительные линии на диаграмме X, Y — z, Z проводить не следует. Определить максимальные концентрации экстракта при работе противотоком для составов исходных смесей 5 и 10% (масс).

8.8. Определить минимальное количество возврата экстракта и соответствующее ему минимальное количество растворителя на 100 кг исходной смеси вода — уксусная кислота с содержанием последней 10% (масс.), если экстракция производится дистилявым эфиром при 25 °C. Экстракт после отгонки растворителя должен содержать 75% (масс.) уксусной кислоты, а рафинат 1% (масс.); растворитель отгоняется полностью *.

8.9. Решить задачу 8.8 приняв количество возврата двойным против минимального. Определить также число теоретических ступеней экстрагирования *.

8.10. Построить фазовые диаграммы равновесия в координатах X, Y — z, Z для системы гептан — метилциклогексан — анилин при 25 °C. Данные о равновесных составах сосуществующих фаз [в % (масс.)] взять из табл. 8.10. Определить, какой концентрации продукты можно получить, обрабатывая 40% раствор метилциклогексана в гептане чистым анилином при обычной

* При решении задачи использовать диаграмму равновесия, построенную по данным примера 8.8 (рис. 8.18),
<table>
<thead>
<tr>
<th>Рафинатный слой</th>
<th>Экстрактный слой</th>
<th>Рафинатный слой</th>
<th>Экстрактный слой</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0,064</td>
<td>0</td>
<td>0,064</td>
</tr>
<tr>
<td>0,085</td>
<td>0,064</td>
<td>0,150</td>
<td>0,087</td>
</tr>
<tr>
<td>0,216</td>
<td>0,070</td>
<td>0,365</td>
<td>0,810</td>
</tr>
<tr>
<td>0,445</td>
<td>0,078</td>
<td>0,623</td>
<td>0,885</td>
</tr>
<tr>
<td>0,525</td>
<td>0,079</td>
<td>0,700</td>
<td>1,0</td>
</tr>
</tbody>
</table>

противоточной экстракции. Определить также минимальное число ступеней экстрагирования (при полном возврате экстракта и рафината), если экстракт содержит 98% (масс.), а рафинат 1% (масс.) метилципиклогексана (после отгонки от растворителя).

8.11. Метилципиклогексан экстрагируется анилином из 40% раствора его в гептане при 25 °C в экстракционной установке с возвратом части экстракта и рафината. Экстракт содержит 98% (масс.), а рафинат 1% (масс.) метилципиклогексана (исключая растворитель). Отношение количеств возврата экстракта и экстракта-продукта принять в 1,615 раз больше минимального. Определить число ступеней экстрагирования, состав и количество рафината, экстракта, возвратов и растворителя на 100 кг/ч исходной смеси.

8.12. В батарее из трех отстойников противоточного действия, объемом по 7 м³ каждый, поступают 2 т раствора NaOH в 1 м³ воды вместе с осадком CaCO₃ и отбираются 6 м³ прозрачного концентрированного раствора на выпарку. С другой стороны, в батарее подается в качестве растворителя 6 м³ чистой воды на 2000 кг NaOH. Осадок CaCO₃ при переходе со ступени на ступень и при удалении из батареи удерживает 1 м³ раствора. Определить: а) количество NaOH в шламе; б) степень извлечения NaOH; в) процентное содержание NaOH в растворе, поступающем на выпарку.

8.13. Определить число ступеней экстрагирования в условиях примера 8.12, если степень извлечения NaOH равна 0,98.

8.14. Определить число ступеней экстрагирования в условиях примера 8.13, если содержание CuCl₂ в экстракте будет равно 9% (масс.), а степень извлечения меди 92%.

8.15. Завод перерабатывает в сутки 10 т сульфида бария с соответствующим количеством соды и 35 т воды с целью получения карбоната бария и раствора сульфида натрия. Переработка ведется в пятиступенчатой противоточной батарее. Осадок карбоната бария во время процесса удерживает двойное (по массе) количество воды. В результате переработки получается 10% раствор сульфида натрия. Желательно добиться 98%-го извлечения сульфида натрия. Определить: а) потерю сульфида натрия в остатке; б) количество воды, которое необходимо добавить в качестве растворителя; в) концентрации в каждом сгустителе.
8.16. В противоточной экстракционной батарее экстрагируются едкий натр из продуктов реакции

\[
\text{Na}_2\text{CO}_3 + \text{CaO} + \text{H}_2\text{O} = \text{CaCO}_3 + 2\text{NaOH.}
\]

Поступающая в батарею смесь содержит воды 50% от массы осадка (CaCO₃). Из этой смеси в батарее извлекается 95% NaOH, причем получается 15% раствор. Сколько воды в качестве растворителя должно поступать в батарею и сколько ступеней должно быть в батарее, если из опытных данных известно, что осадок удерживает раствор в следующих количествах, зависящих от содержания в нем NaOH:

<table>
<thead>
<tr>
<th>Содержание NaOH (масс.)</th>
<th>Удерживается раствора на 1 кг осадка, кг</th>
<th>Содержание NaOH (масс.)</th>
<th>Удерживается раствора на 1 кг осадка, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,39</td>
<td>15</td>
<td>2,70</td>
</tr>
<tr>
<td>5</td>
<td>1,72</td>
<td>20</td>
<td>3,85</td>
</tr>
<tr>
<td>10</td>
<td>2,04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Глава 9

АДСОРБЦИЯ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. В процессе адсорбции предельным состоянием для каждого поглощаемого вещества является состояние равновесия между содержанием в адсорбенте (так называемой статической активностью) \(a_0^* \) и парциальным давлением \(p \) (или концентрацией \(\bar{C}_y \)) адсорбируемого вещества в парогазовой или жидкой смеси.

Кривая равновесия при постоянной температуре \(a_0^* = f(p) \) носит название изотермы адсорбции и служит основной характеристикой статики процесса. При относительно высоких парциальных давлениях \(p \) содержание адсорбируемого вещества \(a_0^* \) приближается к постоянной величине \(a_\infty \), характеризующей состояние максимально возможного насыщения адсорбента при данной температуре.

Между концентрацией \(\bar{C}_y \) (в кг/м³) адсорбируемого вещества в газовой смеси и его парциальным давлением \(p \), согласно уравнению Клапейрона, существует прямая пропорциональность:

\[
\bar{C}_y = \frac{p}{RT},
\]

где \(R \) — газовая постоянная, Дж/(кг·К).
2. Наиболее полными уравнениями изотерм адсорбции, не имеющих в координатах a^*_0 — p точек перегиба, учитывающими к тому же структурные особенности сорбентов, являются уравнения Дубинина, полученные на основе теории объемного заполнения микропор.

Для микропористых сорбентов, обладающих однородной микропористой структурой (синтетические цеолиты), это уравнение имеет вид:

$$ a^*_0 = \frac{W_0}{V} e^{-\frac{B}{T}} \left(\frac{1}{\ln p} \right)^2. \tag{9.2} $$

Для адсорбентов со сложными микропористыми структурами (мелкопористые силикагели, активные угли):

$$ a^*_0 = \frac{W_{01}}{V} e^{-\frac{B_1}{T}} \left(\frac{1}{\ln p} \right)^2 + \frac{W_{02}}{V} e^{-\frac{B_2}{T}} \left(\frac{1}{\ln p} \right)^2. \tag{9.3} $$

Здесь a^*_0 — величина адсорбции, ммоль/г; W_0 и B, W_{01} и B_1, W_{02} и B_2 — константы, характеризующие адсорбент; T — температура, К; β — коэффициент аффинности пара адсорбтива по отношению к стандартному веществу; p_s/p — отношение давления насыщенного пара поглощаемого компонента к его парциональному давлению.

3. Согласно теории Эйкена и Поляни, располагая изотермой адсорбции пара стандартного вещества для температуры T_1, можно вычислить изотерму адсорбции другого пара при температуре T_2.

Для вычисления величин адсорбции служит формула:

$$ a^*_2 = a^*_1 V_1 / V_2, \tag{9.4} $$

где a^*_1 — ордината изотермы стандартного вещества (обычно бензола), кг/кг или ммоль/г; a^*_2 — ордината определяемой изотермы, кг/кг или ммоль/г; V_1 и V_2 — мольные объемы стандартного и исследуемого веществ (в жидком состоянии), м3/кмоль.

Мольные объемы определяются по формуле:

$$ V = M/\rho. \tag{9.5} $$

Здесь M — мольная масса, кг/кмоль; ρ — плотность жидкости, кг/м3.

Давления вычисляются по формуле:

$$ \lg p_2 = \lg p_{2,1} - \beta \frac{T_1}{T_2} \lg \frac{p_{s,2}}{p_1}, \tag{9.6} $$

где p_1 и p_2 — парциальные давления стандартного и исследуемого веществ, мм рт. ст.; $p_{s,1}$ — давление насыщенного пара стандартного вещества при температуре T_1 (выраженной в К), мм рт. ст.; $p_{s,2}$ — давление насыщенного пара исследуемого вещества при температуре T_2 (выраженной в К), мм рт. ст.; β — коэффициент аффинности, равный отношению мольных объемов

$$ \beta = V_2/V_1. \tag{9.7} $$
В табл. 9.1 приведены коэффициенты аффинности β для ряда веществ. В качестве стандартного вещества принят бензол.

При расчете точек изотермы исследуемого пара координаты a_i и p_1 берутся по кривой стандартного вещества, значения $p_{s,1}$, $p_{s,2}$ — из табл. давления насыщенного пара, p_2 — вычисляется по формуле (9.6).

4. Теплота адсорбции складывается из теплоты конденсации и теплоты смещивания. Практически можно принять, что величина теплоты адсорбции органических веществ не зависит от температуры. Зависимость удельной теплоты адсорбции q (в Дж/кг угля) от количества поглощенного пара (для веществ, отмеченных звездочкой в табл. LIII) определяется формулой [9.3]:

$$q = ma^n.$$ (9.8)

где a — количество адсорбированного пара, дм3/кг угля; m и n — константы, значения которых представлены в табл. 9.2.

Таблица 9.1

<table>
<thead>
<tr>
<th>Вещество</th>
<th>β</th>
<th>Вещество</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Метиловый спирт</td>
<td>0,40</td>
<td>Уксусная кислота</td>
<td>0,97</td>
</tr>
<tr>
<td>Бромистый метил</td>
<td>0,57</td>
<td>Бензол</td>
<td>1,00</td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>0,61</td>
<td>Циклогексан</td>
<td>1,03</td>
</tr>
<tr>
<td>Муравьиная кислота</td>
<td>0,61</td>
<td>Четыреххлористый углерод</td>
<td>1,05</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>0,70</td>
<td>Диэтиловый эфир</td>
<td>1,09</td>
</tr>
<tr>
<td>Хлористый этил</td>
<td>0,76</td>
<td>Пентан</td>
<td>1,12</td>
</tr>
<tr>
<td>Пропан</td>
<td>0,78</td>
<td>Толуол</td>
<td>1,25</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>0,86</td>
<td>Хлорпикрин</td>
<td>1,28</td>
</tr>
<tr>
<td>Ацетон</td>
<td>0,88</td>
<td>Гексан</td>
<td>1,35</td>
</tr>
<tr>
<td>Бутан</td>
<td>0,90</td>
<td>Гептан</td>
<td>1,59</td>
</tr>
</tbody>
</table>

Таблица 9.2

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Формула</th>
<th>n</th>
<th>$m \cdot 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бензол</td>
<td>C$_6$H$_6$</td>
<td>0,959</td>
<td>3,24</td>
</tr>
<tr>
<td>Бромистый этил</td>
<td>C$_2$H$_5$Br</td>
<td>0,900</td>
<td>3,77</td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>(C$_2$H$_5$)$_2$O</td>
<td>0,9215</td>
<td>3,84</td>
</tr>
<tr>
<td>Иодистый этил</td>
<td>C$_2$H$_5$I</td>
<td>0,956</td>
<td>3,10</td>
</tr>
<tr>
<td>Метиловый спирт</td>
<td>CH$_3$OH</td>
<td>0,938</td>
<td>3,11</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>CS$_2$</td>
<td>0,9205</td>
<td>3,15</td>
</tr>
<tr>
<td>Хлористый этил</td>
<td>C$_2$H$_5$Cl</td>
<td>0,915</td>
<td>3,06</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>CHCl$_3$</td>
<td>0,935</td>
<td>3,47</td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>CCl$_4$</td>
<td>0,930</td>
<td>3,74</td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>C$_2$H$_5$OH</td>
<td>0,928</td>
<td>3,05</td>
</tr>
<tr>
<td>Этилформат</td>
<td>HCOOC$_2$H$_5$</td>
<td>0,9075</td>
<td>3,96</td>
</tr>
</tbody>
</table>
При адсорбции водяного пара углем теплота адсорбции зависит от температуры следующим образом:

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>-15</th>
<th>10</th>
<th>40</th>
<th>80</th>
<th>128</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Теплота адсорбции $q \cdot 10^{-3}$, Дж/кмоль</td>
<td>46 500</td>
<td>41 900</td>
<td>39 000</td>
<td>34 800</td>
<td>30 900</td>
<td>21 800</td>
</tr>
</tbody>
</table>

При отсутствии опытных данных величина теплоты адсорбции (отнесенной к 1 кмоль газа) определяется по приближенной формуле, аналогичной правилу Трутона:

$$q/T_{kip} = \text{const},$$

(9.9)

где q — теплота адсорбции, Дж/кмоль газа; T_{kip} — температура кипения адсорбтива при атмосферном давлении, К.

Величина константы зависит от природы адсорбента; например, для активного угля она равна 2180.

Теплоту адсорбции (в Дж/кмоль) можно также вычислить по формуле:

$$q = 44 \cdot 10^3 \lg \left(\frac{p_2}{p_1} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right).$$

(9.10)

Здесь p_1, p_2 — равновесные давления адсорбтива над адсорбентом при температурах T_1 и T_2, выраженных в К.

5. На практике поглощение газов и паров, как правило, производится в динамических условиях — из потока газа-носителя. В этом случае слой сорбента характеризуется величиной динамической адсорбционной емкости (активности) a_d — количеством поглощенного вещества (сорбтива) слоем сорбента до момента появления за слоем проскока сорбтива:

$$a_d = \frac{C}{\omega},$$

(9.11)

где a_d — динамическая; C — адсорбционная емкость слоя сорбента, кг/м3; ω — исходная концентрация сорбтива в газовом потоке, кг/м3; ω — скорость парогазовой смеси, отнесенная к полному сечению аппарата, м/с; τ — время защитного действия, с.

Степень использования равновесной адсорбционной емкости

$$\eta = a_d/a_s$$

(a_s — равновесная статическая адсорбционная емкость слоя сорбента, кг/м3) микропористых сорбентов в процессе динамического опыта при высоте слоя 30—50 см, скоростях паровоздушного потока от 0.3 до 0.5 м/с и исходных концентрациях сорбтива 10—20 г/м3 составляет обычно 0.8—0.9.

6. Процесс адсорбции в динамических условиях можно охарактеризовать кинетическим уравнением, согласно которому скорость адсорбции (или количество вещества, адсорбируемого в единицу времени единицей объема адсорбента) прямо пропорциональна коэффициенту массоотдачи и движущей силе процесса:

$$\frac{da}{d\tau} = \beta_y (\bar{C} - \bar{C}^*),$$

(9.12)
где \bar{C} — концентрация адсорбируемого вещества в парогазовой смеси, кг/м³ инертного газа; \bar{C}^* — концентрация адсорбируемого вещества в парогазовой смеси, равновесная поглощению единицей объема адсорбента количеству вещества, кг/м³ инертного газа; β_y — кинетический коэффициент (коэффициент массоотдачи) c⁻¹.

Для ориентировочных расчетов коэффициента массоотдачи β_y при асборбции на активном угле ($d = 1,7 \div 2,2$ мм, w потока $0,3 \div 2$ м/с) пользуются уравнением (при условии, что изотерма асборбции описывается уравнением Лэнгмюра):

$$Nu' = 1,6 Re^{0,54}.$$ (9.13)

Здесь $Nu' = \beta_y d^2/D$; $Re = w d/\nu$; d — средний диаметр частиц адсорбента, м; D — коэффициент диффузии адсорбтива в газе при температуре процесса, м²/с; w — скорость потока парогазовой смеси, рассчитанная на свободное сечение аппарата, м/с; ν — кинематический коэффициент вязкости парогазовой смеси, м²/с.

7. Процесс асборбции в динамических условиях можно также охарактеризовать временем, прошедшим от начала пропускания парогазовой смеси через слой адсорбента до момента появления прыска (индииируемой концентрации) сорбтива за слоем асборбента. Этот промежуток времени τ называется временем защитного действия слоя поглотителя и определяется из уравнения Шилова:

$$\tau = K (H - h),$$ (9.14)

в котором $Kh = \tau_0$.

Следовательно,

$$\tau = KH - \tau_0,$$ (9.15)

где K — коэффициент защитного действия слоя сорбента, c/м; H — высота слоя сорбента, м; h — высота неиспользованного слоя сорбента в условиях динамического опыта, м; τ_0 — кинетический коэффициент, или потеря времени защитного действия слоя сорбента, с.

Коэффициент защитного действия слоя можно вычислить по формуле:

$$K = a_0^*/(w\bar{C}_0),$$ (9.16)

где a_0^* — равновесная адсорбционная емкость, кг/м³; w — скорость парогазовой смеси, отнесенная к полному сечению аппарата, м/с; \bar{C}_0 — начальная концентрация адсорбируемого вещества в парогазовой смеси, кг/м³.

8. Для одних и тех же адсорбента и поглощаемого вещества при постоянных концентрациях и температуре парогазового потока, имеют место следующие соотношения, называемые динамическими характеристиками B_1 и B_2:

$$B_1 = K_1 w_1 = K_2 w_2 = a_0^*/\bar{C}_0 = const;$$ (9.17)

$$B_2 = \tau_0; V\bar{w_1}/d_3 = \tau_0 V\bar{w_2}/d_3 = const.$$ (9.18)

Здесь K — коэффициент защитного действия слоя, с/м; w — скорость парогазового потока, м/с; τ_0 — потеря времени защитного действия слоя, с; d_3 — средний диаметр зерен сорбента, м.
<table>
<thead>
<tr>
<th>$\frac{\bar{c}/\bar{c}_o}{b}$</th>
<th>$\frac{\bar{c}/\bar{c}_o}{b}$</th>
<th>$\frac{\bar{c}/\bar{c}_o}{b}$</th>
<th>$\frac{\bar{c}/\bar{c}_o}{b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,005</td>
<td>1,84</td>
<td>0,2</td>
<td>0,63</td>
</tr>
<tr>
<td>0,01</td>
<td>1,67</td>
<td>0,3</td>
<td>0,42</td>
</tr>
<tr>
<td>0,03</td>
<td>1,35</td>
<td>0,4</td>
<td>0,23</td>
</tr>
<tr>
<td>0,05</td>
<td>1,19</td>
<td>0,5</td>
<td>0,09</td>
</tr>
<tr>
<td>0,1</td>
<td>0,94</td>
<td>0,6</td>
<td>-0,10</td>
</tr>
</tbody>
</table>

9. Продолжительность адсорбции при периодическом процессе определяется путем решения системы уравнений, состоящей из уравнения баланса поглощенного вещества, уравнения кинетики адсорбции и уравнения изотермы адсорбции.

Изотерма адсорбции делится на три области: первая характеризуется отношением $p/p_s < 0,17$ (по бензолу), для второй $p/p_s \approx 0,17 \div 0,5$, а для третьей $p/p_s > 0,5$.

При определении продолжительности процесса по изотерме адсорбции и заданной концентрации исходной паро-воздушной смеси \bar{c}_0 находят a^*_0 и устанавливают, к какой области изотермы относится величина \bar{c}_0. Затем вычисляют коэффициент массоотдачи β_y по формуле (9.13).

В зависимости от положения величины \bar{c}_0 на изотерме применяют один из следующих трех методов определения продолжительности адсорбции [9.3].

а) Для первой области, где изотерма адсорбции считается прямолинейной и приближенно отвечает закону Генри, пользуются формулой:

$$\gamma / \tau = \sqrt{a^*_0/(\omega \bar{c}_0)} \sqrt{H} - b \sqrt{a^*_0/(\beta_y \bar{c}_0)}, \quad (9.19)$$

где τ — продолжительность адсорбции, с; ω — скорость парогазового потока, отнесенная к полному сечению аппарата, м/с; H — высота слоя активного угля, м; \bar{c}_0 — начальная концентрация адсорбируемого вещества в парогазовом потоке, кг/м3; a^*_0 — количество адсорбированного вещества, равновесное с концентрацией потока \bar{c}_0, кг/м3 (берется по изотерме адсорбции в кг/кг и умножается на насыпную плотность угля в кг/м3); β_y — коэффициент массоотдачи, с$^{-1}$.

Величина коэффициента b берется для ряда значений \bar{c}/\bar{c}_0 из табл. 9.3 (\bar{c} — содержание адсорбируемого вещества в газовом потоке, выходящем из адсорбера, кг/м3).

б) Для второй области изотермы адсорбции пользуются уравнением:

$$\tau = \frac{a^*_0}{\omega \bar{c}_0} \left(\frac{1}{P} \ln \left(\frac{\bar{c}_0}{\bar{c}} - 1 \right) + \ln \frac{\bar{c}_0}{\bar{c}} - 1 \right). \quad (9.20)$$

Здесь $P = \bar{c}/\bar{c}^*$; \bar{c}^* — содержание вещества в газовом потоке, равновесное с половинным количеством от максимально адсорбируемого данным адсорбентом, т. е. равновесное с $a_\infty/2$, кг/м3.

408
в) Для третьей области изотермы адсорбции:

$$\tau = \frac{a^*}{wC_0} \left[H - \frac{\omega}{\beta \nu} \ln \left(\frac{\bar{C}_n}{\bar{C}} - 1 \right) \right].$$ \hspace{1cm} (9.21)

10. Весьма важной кинетической характеристикой процесса адсорбции является высота зоны массопередачи (высота работающего слоя) h_0, которая рассчитывается на основании выходных кривых (кривых отклика) по уравнению:

$$h_0 = H \frac{\tau_{\text{нас}} - \tau_{\text{пр}}}{\tau_{\text{нас}} - (1 - \bar{f}) (\tau_{\text{нас}} - \tau_{\text{пр}})},$$ \hspace{1cm} (9.22)

где H — высота слоя сорбента; $\tau_{\text{нас}}$ — время до равновесного насыщения; $\tau_{\text{пр}}$ — время защитного действия при минимальной индицируемой просоковой концентрации; \bar{f} — неиспользованная равновесная адсорбционная емкость сорбента в условиях динамического опыта в зоне массопередачи (для микропористых сорбентов в зоне массопередачи $\bar{f} \approx 0,5$).

11. Непрерывные адсорбционные процессы осуществляются в адсорбционных аппаратах с движущимся сверху вниз слоем поглотителя *, причем парогазовая смесь идет ему навстречу (противотоком). Расчетом определяются минимальная скорость движения u сорбента (скорость, при которой степень использования равновесной адсорбционной емкости сорбентов в условиях динамического опыта составляет 0,95—0,98 и обеспечивается заданная глубина очистки или осушки паровоздушных потоков) и рабочая высота слоя в гиперсорбционном аппарате H_0.

Скорость движения слоя u рассчитывается по формуле:

$$u = 1/K = (\bar{C}_0 - \bar{C}_{\text{пр}}) \omega / a^*,$$ \hspace{1cm} (9.23)

где ω — скорость газового потока, отнесенная к полному сечению аппарата; K — коэффициент защитного действия слоя; \bar{C}_0 — начальная концентрация адсорбируемого вещества в парогазовой смеси; $\bar{C}_{\text{пр}}$ — постоянная индицируемая просоковая концентрация адсорбируемого вещества в парогазовом потоке за слоем сорбента.

В процессах тонкой осушки или очистки газовых потоков $\bar{C}_{\text{пр}}$ изменяется от 0,025 до 0,008 % в зависимости от величины \bar{C}_0 (когда \bar{C}_0 меняется от 20,0 до 10,0 г/м³). Поэтому в данном случае в уравнении (9.23) постоянной индицируемой просоковой концентрацией можно пренебречь.

Рабочая высота слоя в гиперсорбционном аппарате рассчитывается по формуле:

$$H_0 = \gamma h_0.$$ \hspace{1cm} (9.24)

Здесь γ — коэффициент, характеризующий отношение насыпной плотности с вибрационным уплотнением слоя к плотности без уплотнения (в среднем $\gamma = 1,4$); h_0 — высота зоны массопередачи неподвижного слоя.

* При гиперсорбции или текущем слое.
12. Высота слоя адсорбента может быть рассчитана по общему методу через число единиц переноса:

\[H = \frac{V_r}{S \beta_y} \int_{\bar{C}_1}^{\bar{C}_0} \frac{d\bar{C}}{\bar{C} - \bar{C}^*} = h \theta m, \]

где \(V_r \) — расход парогазовой смеси; \(S \) — площадь поперечного сечения слоя; \(\beta_y \) — коэффициент массоотдачи; \(\bar{C} \) и \(\bar{C}_1 \) — концентрация парогазовой смеси при входе в адсорбер и при выходе из него; \(\bar{C}^* \) — равновесная концентрация адсорбируемого вещества в парогазовой смеси по изотерме.

Разность концентраций \(\bar{C} - \bar{C}^* \) определяет движущую силу процесса. Примером такой разности может служить отрезок \(DE \) на рис. 9.1, у которого абсцисса точки \(D \) равна \(\bar{C} \), а точки \(E - \bar{C}^* \). Отношение \(V_r/(S \beta_y) \) выражает высоту слоя поглотителя, эквивалентную одной единице переноса, и обозначается через \(h \theta \), а интеграл \(\int_{\bar{C}_1}^{\bar{C}_0} \frac{d\bar{C}}{\bar{C} - \bar{C}^*} \) представляет собой общее число единиц переноса и обозначается через \(m \). Для определения \(H \) надо найти величину интеграла \(\int_{\bar{C}_1}^{\bar{C}_0} \frac{d\bar{C}}{\bar{C} - \bar{C}^*} \). Делается это графическим методом.

Располагая данными \(\bar{C}_0 \), \(a_{do} \) и \(\bar{C}_1 \), \(a_{d1} \), наносят на диаграмму изотермы адсорбции обе эти точки и, соединяя их прямой, получают рабочую линию \(AK \). Затем в координатах \(\bar{C} - \frac{1}{\bar{C} - \bar{C}^*} \) строят кривую (аналогичные расчеты см. в гл. 6 и 7).

Вместо такого определения интеграла \(\int_{\bar{C}_1}^{\bar{C}_0} \frac{d\bar{C}}{\bar{C} - \bar{C}^*} \) можно воспользоваться более простым графическим методом. Начав от точки \(A \) (рис. 9.1) на рабочей линии (точки выхода парогазовой смеси в адсорбер), строят между равновесной кривой и этой линией ступени изменения концентрации до точки \(K \) (точки выхода парогазовой смеси из адсорбера).

Число единиц переноса, соответствующее одной ступени, обозначается через \(m_0 \). Если число ступеней равно \(n \) и все они одинаковы, то \(m = m_0 n \) и высота слоя

\[H = h \theta m = h \theta m_0 n. \]

Рис. 9.1. Определение числа ступеней изменения концентрации.
Такой случай возможен лишь на прямолинейном участке изотермы. В общем же виде формула для расчета высоты слоя имеет следующий вид:

$$H = h_0 \left(m_0^1 + m_0^{11} + \cdots + m_0^n \right) = h_0 \sum_{i=0}^{n} m_0^i. \quad (9.27)$$

Для каждой ступени изменения концентрации число единиц переноса m_0 вычисляется отдельно по формуле:

$$m_0 = \frac{\bar{C}_{нач} - \bar{C}_{кон}}{((\bar{C}_{нач} - \bar{C}_{нач}^*) + (\bar{C}_{кон} - \bar{C}_{кон}^*))/2} = \frac{2(\bar{C}_{нач} - \bar{C}_{кон})}{\bar{C}_{нач} - \bar{C}_{кон}^*}, \quad (9.28)$$

где $\bar{C}_{нач}$ — концентрация на входе парогазовой смеси в ступень, например абсцисса точки A; $\bar{C}_{кон}$ — концентрация на выходе парогазовой смеси из ступени, например абсцисса точки D; $\bar{C}_{нач}^*$ — равновесная концентрация, например абсцисса точки B, причем $\bar{C}_{кон} = \bar{C}_{нач}^*$; $\bar{C}_{кон}^*$ — равновесная концентрация, например абсцисса точки E.

На прямолинейном участке изотермы для определения высоты слоя можно воспользоваться также формулой

$$H = \frac{G}{S \beta_b \Delta C_{ср}}. \quad (9.29)$$

Здесь G — количество вещества, адсорбируемого в единицу времени; $\Delta C_{ср}$ — средня движущая сила адсорбции, которую можно вычислить как среднюю логарифмическую

$$\Delta C_{ср} = \frac{\Delta C_0 - \Delta C_1}{\ln(\Delta C_0/\Delta C_1)}, \quad (9.30)$$

где ΔC_0 — большая движущая сила на одном конце слоя ($\bar{C}_0 - \bar{C}_0^*$); ΔC_1 — меньшая движущая сила на другом конце слоя ($\bar{C}_1 - \bar{C}_1^*$).

13. Адсорбция в неподвижном слое адсорбента является неустановившимся процессом, что затрудняет определение изменения концентрации целевого компонента по высоте слоя, а также расчет времени защитного действия.

Связь между концентрациями в газе, высотой слоя адсорбента и временем для первой (линейной) части изотермы адсорбции описывается уравнением:

$$\frac{C}{C_0} = 1 - e^{-x - z}x^n \frac{d^n J_0(2im\sqrt{zz})}{d (xz)^n}, \quad (9.31)$$

где C и C_0 — концентрация сорбтива в газовой смеси в момент времени t на высоте слоя L и на входе в адсорбер, соответственно; J_0 — функция Бесселя первого рода нулевого порядка; x — безразмерное приведенное расстояние или высота слоя; z — безразмерное приведенное время контакта адсорбента с газовой смесью (без учета газа, находящегося в слое перед началом процесса).

В результате преобразования уравнения (9.31) получим:

$$\frac{C}{C_0} = e^{-x - z} \sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{x^m}{m!} \frac{z^k}{k!} \quad (9.32)$$
Рис. 9.2. Изотермы адсорбции при 20 °C:
1 — бензол; 2 — диэтиловый эфир; 3 — этиловый спирт (70%) + диэтиловый эфир (30%).

Или в развернутом виде:

\[
\frac{C}{C_0} = e^{-x-z} \left[1 + (1 + x) z + \left(1 + x + \frac{x^2}{2!} \right) \frac{z^2}{2!} + \cdots \right.
\]

\[
\cdots + \left(1 + x + \cdots + \frac{x^n}{n!} \right) \frac{z^n}{n!} + \cdots \right].
\]

(9.32a)

Это уравнение удобно для расчета на ЭВМ (рис. 9.2).

14. Распределение концентрации сорбита в неподвижном слое адсорбента аналогично (9.31), (9.32) описывается зависимостью:

\[
\frac{y^*}{C_0} = 1 - e^{-x-z} \sum_{n=0}^{\infty} x_n \frac{d^n J_0(2iVxz)}{d(xz)^n},
\]

(9.33)

где \(y^*\) — концентрация сорбита в газовой фазе, равновесная с концентрацией в твердой фазе.

В развернутом виде:

\[
\frac{y^*}{C_0} = e^{-x-z} \left[z + (1 + x) \frac{z^2}{2!} + \left(1 + x + \frac{x^2}{2!} \right) \frac{z^3}{3!} + \cdots \right.
\]

\[
\cdots + \left(1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} \right) \frac{z^{n+1}}{(n+1)!} + \cdots \right].
\]

(9.33a)

В уравнениях (9.31)—(9.33):

\[
x = K_\nu L/\omega_y; \quad (9.34)
\]

\[
z = \frac{K_\nu}{A} \left(\tau - \frac{L}{\omega_y} \right), \quad (9.35)
\]

412
<table>
<thead>
<tr>
<th>C/C₀</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,005</td>
<td>z</td>
<td>1,5</td>
<td>6,6</td>
<td>13,0</td>
<td>27,1</td>
<td>66,4</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,15</td>
<td>0,33</td>
<td>0,43</td>
<td>0,54</td>
<td>0,66</td>
<td>0,72</td>
</tr>
<tr>
<td>0,010</td>
<td>z</td>
<td>2,0</td>
<td>7,6</td>
<td>14,3</td>
<td>29,0</td>
<td>69,3</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,20</td>
<td>0,38</td>
<td>0,48</td>
<td>0,58</td>
<td>0,69</td>
<td>0,75</td>
</tr>
<tr>
<td>0,020</td>
<td>z</td>
<td>2,6</td>
<td>8,7</td>
<td>15,8</td>
<td>31,1</td>
<td>72,6</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,26</td>
<td>0,44</td>
<td>0,53</td>
<td>0,62</td>
<td>0,73</td>
<td>0,77</td>
</tr>
<tr>
<td>0,030</td>
<td>z</td>
<td>3,0</td>
<td>9,5</td>
<td>16,8</td>
<td>32,5</td>
<td>74,7</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,30</td>
<td>0,48</td>
<td>0,56</td>
<td>0,65</td>
<td>0,75</td>
<td>0,79</td>
</tr>
<tr>
<td>0,040</td>
<td>z</td>
<td>3,3</td>
<td>10,0</td>
<td>17,5</td>
<td>33,5</td>
<td>76,3</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,33</td>
<td>0,50</td>
<td>0,58</td>
<td>0,67</td>
<td>0,76</td>
<td>0,80</td>
</tr>
<tr>
<td>0,050</td>
<td>z</td>
<td>3,6</td>
<td>10,5</td>
<td>18,2</td>
<td>34,5</td>
<td>77,6</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0,36</td>
<td>0,53</td>
<td>0,61</td>
<td>0,69</td>
<td>0,78</td>
<td>0,82</td>
</tr>
</tbody>
</table>

Здесь K_\circ — объемный коэффициент массопередачи; L — высота слоя адсорбента; v_y — скорость газовой фазы, рассчитанная на общее сечение адсорбера; τ — продолжительность процесса адсорбции; A — константа из уравнения изотермы адсорбции: $A = y^*/a$ (a — величина адсорбции).

Кривые распределения концентраций (см. рис. 9.2) сорбтива в твердой фазе представлены в литературе [1] в соответствии с данными, рассчитанными по уравнению (9.33а). Практически такие графики используют редко, так как для условий проскока представляют интерес малые значения C/C_0 или y/C_0, которые трудно определить по рисунку из-за мелкого масштаба.

Для расчета времени защитного действия с помощью ЭВМ удобно пользоваться данными табл. 9.4.

В табл. 9.4 приведены значения z и η (η — коэффициент полезного действия адсорбционной емкости адсорбента при проскоке). При низких значениях C/C_0 коэффициент полезного действия адсорбционной емкости η приближенно равен отношению комплексов z/x.

После экспериментального определения C/C_0 и η из табл. 9.4 находят значения x и z. Из величин x и z по формулам (9.34) и (9.35) рассчитывают коэффициент массопередачи K_\circ и соотношение равновесных концентраций между фазами C/C_0 или y/C_0. Для единичного объема газовой смеси (при $z = \text{const}$) в отрезке высоты слоя L/x (равно высоте единицы массопередачи) концентрация C_1 изменяется в C_2 по зависимости:

$$\int_{C_1}^{C_2} \frac{dC}{C - y^*} = 1.$$

Таким образом, комплекс x представляет собой число единиц массопереноса.
ПРИМЕРЫ

Пример 9.1. Определить требуемое количество активного угля, высоту слоя адсорбента и диаметр адсорбера периодического действия для поглощения паров бензина из смеси его с воздухом. Расход паровоздушной смеси 3450 м³/ч. Начальная концентрация бензина \(C_0 = 0,02 \text{ кг/м}^3 \). Скорость паровоздушной смеси \(w = 0,23 \text{ м/с} \), считая на полное сечение аппарата, динамическая активность угля по бензину 7% (масс.), остаточная активность после десорбции 0,8% (масс.), насыпная плотность угля \(\rho_{\text{nac}} = 500 \text{ кг/м}^3 \). Продолжительность десорбции, сушки и охлаждения адсорбента составляет 1,45 ч.

Решение. Для поглощения бензина за 1,45 ч необходимо адсорбента:

\[
G = \frac{3450 \cdot 1,45 \cdot 0,02}{0,07 - 0,008} = 1612 \text{ кг.}
\]

При заданной скорости паровоздушной смеси 0,23 м/с и расходе 3450 м³/ч диаметр адсорбера должен быть равен:

\[
D = \sqrt{\frac{3450}{3600 \cdot 0,785 \cdot 0,23}} = 2,3 \text{ м.}
\]

Высота слоя адсорбента:

\[
H = \frac{1612}{500 \cdot 0,785 \cdot 2,3^2} \approx 0,8 \text{ м.}
\]

Пример 9.2. По опытным данным, продолжительность поглощения паров хлорпикринина \((C_0 = 6,6 \text{ г/м}^3) \) слоем активного угля высотой \(H = 0,05 \text{ м} \) и площадью поперечного сечения \(S = 0,01 \text{ м}^2 \) при объемной скорости \(V = 0,03 \text{ м}^3/\text{мин} \) составляет \(t = 336 \text{ мин.} \)
По изотерме хлорпикринина активность угля \(a^*_a = 222 \text{ кг/м}^3 \). Диаметр частиц угля \(d_a = 1,5 \text{ мм.} \) Определить: a) коэффициент защитного действия слоя \(K \); b) потерю времени защитного действия \(\tau_a \); в) величину динамических характеристик \(B_1 \) и \(B_2 \).

Решение. По формуле (9.16):

\[
K = \frac{a^*_a}{(wC_0)}.
\]

Величины \(a^*_a \) и \(C_0 \) заданы, а линейная скорость паров вычисляется по объемной скорости и поперечному сечению адсорбера:

\[
w = V/S = 0,03/0,01 = 3 \text{ м/мин.}
\]

После подстановки получаем:

\[
K = 222/(3 \cdot 0,0066) = 11200 \text{ мин/м} \approx 187 \text{ ч/м.}
\]

Потеря времени защитного действия определяется по уравнению (9.15):

\[
\tau_a = KH - t = 11200 \cdot 0,05 - 336 = 224 \text{ мин.}
\]
Динамические коэффициенты B_1 и B_2 определяются по формулам (9.17) и (9.18):

\[B_1 = K\omega = 11 \cdot 200 \cdot 3 = 33 600; \]
\[B_2 = \tau_0 V \frac{\bar{w}}{d_3} = 224 \sqrt[3]{0.0015} = 259 000. \]

Пример 9.3. Если в условиях предыдущего примера скорость потока паровоздушной смеси $\omega' = 6$ м/мин, то как при этом изменяется: а) коэффициент защитного действия слоя; б) потеря времени защитного действия; в) продолжительность поглощения для слоя высотой $H' = 0,1$ м?

Решение. Так как коэффициент B_1 — величина постоянная,

\[K' = K\omega/\omega' = B_4/\omega' = 33 600/6 = 5600 \text{ мин/м}. \]

Из формулы для коэффициента B_2 определим:

\[\tau_0 = B_2d_3/V\omega' = \frac{259 000 - 0.0015}{\sqrt[6]{6}} \approx 159 \text{ мин}. \]

Продолжительность поглощения определим по уравнению Шилова:

\[\tau' = K'H' - \tau_0 = 5600 \cdot 0.1 - 159 = 401 \text{ мин}. \]

Пример 9.4. Через адсорбер периодического действия за один период проходит 2000 м³ паровоздушной смеси с концентрацией диэтилового эфира $\tilde{C}_0 = 0,006$ кг/м³. Температура процесса 20 °C, давление атмосферное, скорость потока паровоздушной смеси $\omega = 13$ м/мин, концентрация смеси после выхода из адсорбера $\tilde{C} = 3 \cdot 10^{-5}$ кг/м³. В качестве поглотителя применяется активный уголь марки АГ-5 с диаметром зерен $d_3 = 0,004$ м и насыпной плотностью 500 кг/м³. Высота слоя угля $H = 0,7$ м.

По изотерме бензола для 20 °C на том же угле построить изотерму адсорбции диэтилового эфира из воздуха при 20 °C. Пользуясь этой изотермой, определить количество активного угля, необходимое на одну загрузку, диаметр адсорбера и продолжительность поглощения до проскала.

Решение. Ординаты и абсциссы точек изотермы диэтилового эфира вычисляются по формулам (9.4) и (9.6):

\[a_2 = a_1 \frac{V_1}{V_2}; \quad \lg p_2 = \lg p_{8,2} - \beta \frac{T_1}{T_2} \lg \frac{p_{8,1}}{p_1}, \]

где a_1 и a_2 — концентрация адсорбированных бензола и эфира, кг/кг; V_1 и V_2 — мольные объемы бензола и эфира в жидкостном состоянии, м³/кмоль; p_1 и p_2 — парциальные давления паров бензола и эфира, мм рт. ст.; $p_{8,1}$ и $p_{8,2}$ — давления насыщенных паров бензола и эфира при 20 °C, мм рт. ст.; T_1 и T_2 — температуры бензола и эфира при адсорбции (в данном случае $T_1 = T_2 = 293$ К); β — коэффициент адсорбции.

Мольные объемы бензола и эфира:

\[V_1 = M_1/p_1 = 78/879 = 0,0887 \text{ м³/кмоль}; \]
\[V_2 = M_2/p_2 = 74/714 = 0,1036 \text{ м³/кмоль}. \]
Коэффициент аффинности:

\[\beta = \frac{V_2}{V_1} = \frac{0,1036}{0,0887} = 1,17. \]

На изотерме бензола (рис. 9.2) берем ряд точек.
Первая точка: \(a_1^* = 0,262 \text{ кг/кг}, p_1 = 8 \text{ мм рт. ст.} \). Вычислим координаты соответствующей точки на изотерме диэтилового эфира:

\[a_2^* = a_1^* \frac{V_1}{V_2} = \frac{0,262}{0,0887} \text{ кмоль/кг} = 0,0287 \text{ кмоль/кг} = \frac{0,00287 \cdot 74 \text{ кг/кг}}{23} = 0,212 \text{ кг/кг}; \]

\[\lg p_2 = \lg 442 - 1,17 \frac{293}{74} = 1,50822; \quad p_2 = 32,2 \text{ мм рт. ст.} \]

По этому методу вычисляем ординаты и абсциссы для остальных точек и полученные данные сводим в табл. 9.5.

По найденным точкам строим изотерму диэтилового эфира для 20 °C (кривая 2 на рис. 9.2).
Определим с помощью изотермы статическую активность угла по диэтиловому эфиру при концентрации паровоздушной смеси \(\bar{C}_0 = 0,006 \text{ кг/м}^3 \).
Предварительно необходимо рассчитать парциальное давление, соответствующее \(\bar{C}_0 \), по формуле (9.1):

\[\rho_0 = \bar{C}_0 RT = 0,006 \cdot \frac{848}{74} \cdot \frac{760}{1030} = 1,4 \text{ мм рт. ст.} \]

По диаграмме, абсциссе \(\rho_0 = 1,4 \text{ мм рт. ст.} \) соответствует ордината \(a_0 = 0,132 \text{ кг/кг}. \)
Количество активного угля на одну загрузку составляет:

\[G_1 = 2000 \cdot 0,006/0,132 = 91 \text{ кг или } 91/500 = 0,182 \text{ м}^3. \]
Диаметр адсорбера вычисляется из равенства

\[\frac{\pi D_a^2}{4} H = 0,182 \text{ м}^3, \]

откуда

\[D_a = \sqrt{\frac{0,182 \cdot 4}{\pi H}} = \sqrt{\frac{0,182 \cdot 4}{3,14 \cdot 0,7}} = 0,69 \text{ м}. \]

Так как на изотерме точка, соответствующая исходной концентрации паровоздушной смеси \(C_0 = 0,006 \text{ кг/м}^3 \), находится в первой (прямолинейной) области, то продолжительность процесса вычисляется по формуле (9.19):

\[\sqrt{\tau} = \sqrt{\Gamma} \sqrt{\omega H} - b \sqrt{\Gamma / \beta_y}, \]

где \(\Gamma = \frac{a_0}{\bar{C}_0} = 0,132 \cdot 500/0,006 = 11 \text{ 000}; \omega = 13 \text{ м/мин} — скорость газового потока; \(H = 0,7 \text{ м} — высота слоя угля; } b — функция, определяемая по табл. 9.3 (для \(\bar{C}/C_0 = 0,00003/0,006 = 0,005 \text{ значение } b = 1,84) \); \(\beta_y — коэффициент массоотдачи, который вычисляется по формуле (9.13), приведенной к расчетному виду:

\[\beta_y = 1,6 \cdot \frac{D_w^{0,54}}{v^{0,54} d_3^{1,46}}. \]

Находим кинематический коэффициент вязкости воздуха. Так как по рис. VI \(\mu = 0,018 \cdot 10^{-3} \text{ Па·с}, то

\[\nu = \mu/\rho = 0,018 \cdot 10^{-3}/1,2 = 0,15 \cdot 10^{-4} \text{ м}^2/\text{с}. \]

Тогда

\[v^{0,54} = (0,15 \cdot 10^{-4})^{0,54} = 0,248 \cdot 10^{-2}. \]

Диаметр частиц угля \(d_3 = 0,004 \text{ м. Следовательно,}

\[d_3^{1,46} = 0,004^{1,46} = (0,40 \cdot 10^{-2})^{1,46} = 0,3154 \cdot 10^{-3}. \]

Скорость \(\omega = 13 \text{ м/мин} = 13/60 \text{ м/с}, поэтому

\[(\omega/60)^{0,54} = (13/60)^{0,54} = 0,438. \]

Коэффициент диффузии при 0 °C для системы диэтиловый эфир — воздух:

\[D_e = 0,028 \text{ м}^2/\text{ч} = 0,0778 \cdot 10^{-4} \text{ м}^2/\text{с}. \]

Для температуры 20 °C коэффициент диффузии вычисляем по формуле:

\[D = D_e \frac{p_0}{\rho} \left(\frac{T}{T_a} \right)^{5/2} = 0,0778 \cdot 10^{-4} \frac{1}{1} \left(\frac{293}{273} \right)^{5/2} = \]

\[= 0,0778 \cdot 10^{-4} \cdot 1,11 = 0,0864 \cdot 10^{-4} \text{ м}^2/\text{с}. \]
После подстановки получаем объемный коэффициент массоотдачи:

$$\beta_y = \frac{1,6 \cdot 0,0864 \cdot 10^{-4} \cdot 0,438}{0,248 \cdot 10^{-2} \cdot 0,3154 \cdot 10^{-3}} = 7,75 \text{ с}^{-2}.$$

Определяем продолжительность процесса:

$$V^2 = \sqrt{\frac{11 \cdot 1000}{13/60}} \sqrt{0,7 - 1,84 \sqrt{\frac{11 \cdot 1000}{7,75}}} = 18,1 - 69,4 = 118,7;$$

$$\tau = 118,7 \cdot 2 = 14 \cdot 900 = 234,9 \text{ ми} = 3,9 \text{ ч.}$$

Определяем количество паровоздушной смеси, проходящей через адсорбер за это время:

$$V = \frac{\pi D_a^2}{4} \quad \omega \tau = \frac{3,14 \cdot 0,69^2}{4} \cdot 13 \cdot 234,9 = 1142 \text{ м}^3.$$

По условиям примера, за один период через адсорбер должно пройти 2000 м^3. Следовательно, диаметр адсорбера следует увеличить:

$$D_a = \sqrt{\frac{2000 \cdot 4}{\pi \omega \tau}} = \sqrt{\frac{2000 \cdot 4}{3,14 \cdot 13 \cdot 234,9}} = 0,83 \text{ м.}$$

Необходимо также увеличить количество активного угля на одну загрузку:

$$\frac{\pi D_a^2}{4} \cdot H \cdot 500 = 0,785 \cdot 0,83^2 \cdot 500 \cdot 0,7 = 190 \text{ кг.}$$

Пример 9.5. Пользуясь изотермой адсорбции смеси паров этанолового спирта и диэтилового эфира (кривая 3 на рис. 9.2), определить продолжительность адсорбции этой смеси слоем активного угля высотой $H = 1,0 \text{ м.}$ Начальная концентрация смеси $C_0 = 0,072 \text{ кг/м}^3$; средняя концентрация на выходе из адсорбера $C = 0,0001 \text{ кг/м}^3$; скорость парогазовой смеси, отнесенная к полному сечению адсорбера, $w = 12 \text{ м/мин.}$ Диаметр частиц активного угля $d_3 = 0,004 \text{ м;}$ насыпная плотность $\rho_{нас} = 500 \text{ кг/м}^3;$ температура адсорбции 20 °C; давление атмосферное.

Решение. По изотерме адсорбции (рис. 9.2) определяется a_0^*, соответствующая концентрация $C_0 = 0,072 \text{ кг/м}^3$. Мольная масса смеси $M_{см} = 0,3 \cdot 46 + 0,7 \cdot 74 = 65,6 \text{ кг/моль.}$

Давление, соответствующее C_0:

$$p_0 = \frac{C_0}{\rho_{нас} R T} = 0,072 \cdot \frac{848}{65,6} = 293 \cdot \frac{760}{10330} = 20 \text{ мм рт. ст.}$$

По изотерме $a_0^* = 0,20 \text{ кг/кг} = 0,2 \cdot 500 = 100 \text{ кг/м}^3$. Эта точка находится в третьей области изотермы; поэтому продолжительность определяется по формуле (9.21):

$$\tau = \frac{a_0^*}{w C_0} \left[H - \frac{w}{\beta_y} \ln \left(\frac{C_0}{C} - 1 \right) \right].$$
Для расчета по этой формуле необходимо вычислить только коэффициент массоотдачи β_y для смеси.
Коэффициент диффузии эфира в воздухе при 0 °C:
$$D_0^* = 0,028 \text{ м}^2/\text{ч} = 0,0778 \cdot 10^{-4} \text{ м}^2/\text{с}.$$
Коэффициент диффузии этилового спирта в воздухе при 0 °C:
$$D_0'' = 0,0367 \text{ м}^2/\text{ч} = 0,1019 \cdot 10^{-4} \text{ м}^2/\text{с}.$$
Для расчета примем меньший коэффициент диффузии (для эфира) и пересчитаем его на температуру 20 °C:
$$D = D_0^* \frac{p_8}{p} \left(\frac{T}{T_0} \right)^{1/4} = 0,028 \frac{1}{1} \left(\frac{293}{273} \right)^{1/4} =$$
$$= 0,0312 \text{ м}^2/\text{ч} = 0,0866 \cdot 10^{-4} \text{ м}^2/\text{с}.$$
Кинематический коэффициент вязкости рассчитываем по воздуху (см. предыдущий пример): $\nu = 0,15 \cdot 10^{-4} \text{ м}^2/\text{с}$
Рассчитаем значения $\nu^{0,54}$, $\omega^{0,54}$ и $d_3^{1,46}$:
$$\nu^{0,54} = (0,15 \cdot 10^{-4})^{0,54} = 0,248 \cdot 10^{-2};$$
$$(\omega/60)^{0,54} = (12/60)^{0,54} = 0,42;$$
$$d_3^{1,46} = 0,004^{1,46} = 0,3154 \cdot 10^{-3}.$$
После подстановки найденных величин получим коэффициент массоотдачи:
$$\beta_y = \frac{1,6 \cdot 0,0866 \cdot 10^{-4} \cdot 0,42}{0,248 \cdot 10^{-2} \cdot 0,3154 \cdot 10^{-3}} = 7,4 \text{ с}^{-1}.$$
Продолжительность поглощения составляет:
$$\tau = \frac{100 \cdot 60}{12 \cdot 0,072} \left[1,0 - \frac{12}{60 - 7,4} \right] = 2,31 \log \left(\frac{0,072}{0,0001} - 1 \right) = 5900 \text{ с} = 1 \text{ ч} 38 \text{ мин}.$$
Пример 9.6. Через адсорбер непрерывного действия диаметром $D = 0,32 \text{ м}$ проходит в 1 ч 120 м³ парогазовой смеси. Поступающий в зону адсорбции активный уголь содержит $a_1 = 4 \text{ кг/м}^3$ адсорбируемого компонента; при выходе из нее содержание адсорбируемого компонента доходит до $a_3 = 30 \text{ кг/м}^3$. Концентрация парогазовой смеси, поступающей в адсорбер $C_0 = 0,105 \text{ кг/м}^3$, покидающей адсорбер $C_1 = 0,0065 \text{ кг/м}^3$. Коэффициент массоотдачи адсорбируемого компонента в условиях работы адсорбера $\beta_y = 5 \text{ с}^{-1}$. Изотерма адсорбции известна (рис. 9.1). Определить скорость движения и высоту слоя активного угля.
Решение. Скорость движения угля находим по формуле (9.23):
$$u = 1/K = C_0 \omega / a_0^*.$$

Определим линейную скорость парогазовой смеси:

\[\omega = \frac{V \cdot 4}{3600 \pi D^2} = \frac{120 \cdot 4}{3600 \cdot 3,14 \cdot 0,32^2} = 0,415 \text{ м/с.} \]

Подставив найденное значение \(\omega \) в формулу (9.23), определим скорость движения угля:

\[u = \frac{0,105 \cdot 0,415}{34} = 0,00128 \text{ м/с.} \]

Для расчета высоты слоя на диаграмму изотермы наносим рабочую линию (рис. 9.1) по координатам ее начальной точки \(A \) \((\overline{C}_0 = 0,105 \text{ кг/м}^3 \text{ и } \alpha_d = 30 \text{ кг/м}^3) \) и конечной \(K \) \((\overline{C}_1 = 0,0065 \text{ кг/м}^3 \text{ и } \alpha_1 = 4 \text{ кг/м}^3) \).

От начальной точки рабочей линии к конечной строим ступени изменения концентрации. Получается пять ступеней. Для каждой ступени определяем число единиц переноса \(m_0 \) по формуле (9.28):

\[m_0^{I} = \frac{2 (\overline{C}_0 - \overline{C}_I)}{\overline{C}_0 - \overline{C}_\ast} = \frac{2 (0,105 - 0,0815)}{0,105 - 0,053} = 0,905; \]
\[m_0^{II} = \frac{2 (0,0815 - 0,053)}{0,0815 - 0,028} = 1,065; \]
\[m_0^{III} = \frac{2 (0,053 - 0,028)}{0,053 - 0,0115} = 1,205; \]
\[m_0^{IV} = \frac{2 (0,028 - 0,0115)}{0,028 - 0,0065} = 1,535; \]
\[m_0^{V} = \frac{2 (0,0115 - 0,0065)}{0,0115 - 0,004} = 1,335. \]

Высоту слоя активного угля находим по формулам (9.25) и (9.27):

\[H = \frac{V}{S \beta_y} \sum_{1}^{V} m_0 = \frac{\omega}{\beta_y} \sum_{1}^{V} m_0 = \frac{0,415}{5} \cdot (0,905 + 1,065 + 1,205 + 1,535 + 1,335) = 0,083 \cdot 6,045 \approx 0,5 \text{ м.} \]

Пример 9.7. Определить количество теплоты, которое выделяется за один период (\(t = 133 \text{ мин} \)) при адсорбции паров этилового спирта активным углем. Диаметр адсорбера 2 м, высота слоя \(H = 1,0 \text{ м}. \)

Скорость паровоздушной смеси \(\omega = 25 \text{ м/мин} \); начальная концентрация \(\overline{C}_0 = 0,029 \text{ кг/м}^3 \); концентрация смеси на выходе из адсорбера \(\overline{C}_1 = 0,0002 \text{ кг/м}^3 \); насыпная плотность слоя \(\rho_{нас} = 500 \text{ кг/м}^3 \).

Решение. Площадь поперечного сечения аппарата:

\[S = \pi D^2/4 = 3,14 \cdot 2^2/4 = 3,14 \text{ м}^2. \]

За один период через адсорбер проходит парогазовой смеси:

\[V = \omega S t = 25 \cdot 3,14 \cdot 133 = 10400 \text{ м}^3. \]

Адсорбируется паров этилового спирта:

\[G_{сп} = 10400 (29 - 0,2)/1000 = 300 \text{ кг.} \]
или

\[c_{cp} = 300/46 \approx 6,52 \text{ кмоль.} \]

В адсорбер загружается активного угля!

\[SH = 3,14 \cdot 1,0 \cdot 500 = 1570 \text{ кг,} \]

что составляет

\[1570/6,52 \approx 240,8 \text{ кг угля/кмоль.} \]

Воспользоваться данными табл. LIII здесь нельзя, так как она составлена из расчета поглощения 1 кмоль на 500 кг угля.

Теплоту адсорбции можно рассчитать по формуле (9.8):

\[q = ma^n. \]

Количество адсорбированного пара \(a \) на 1 кг угля составляет

\[a = 6,52 \cdot 22,4 \cdot 1000/1570 \approx 93 \text{ л/кг.} \]

Числовые значения \(m \) и \(n \) берутся из табл. 9.2: \(m = 3,65 \cdot 10^3 \), \(n = 0,928 \).

По формуле (9.8) на 1 кг угля выделяется теплоты

\[q = 3,65 \cdot 93^{0,928} = 245 \text{ кДж/кг.} \]

Всего за один период выделяется теплоты

\[q_1 = 245 \cdot 1570 = 385000 \text{ кДж.} \]

Эта теплота расходуется на нагревание угля и аппаратуры, на тепловые потери и в основном на нагревание парогазовой смеси. Если предположить, что вся выделяющаяся теплота расходуется только на нагревание парогазовой смеси, и считать удельную теплоемкость и плотность ее как для воздуха \((c = 1,01 \cdot 10^3 \text{ Дж/(кг \cdot К)}, \rho = 1,2 \text{ кг/м}^3) \), то температура смеси повысится на

\[\Delta t = \frac{385000 \cdot 10^3}{10400 \cdot 1,2 \cdot 1,01 \cdot 10^3} = 30,5 \text{ К.} \]

Пример 9.8. Определить длину зоны массопередачи неподвижного слоя осолочита типа NaA \((d_o = 0,002 \text{ м}) \) и рабочую высоту колонного аппарата для процесса глубокой осушки газов \((C_{np} = 2,94 \cdot 10^{-6} \text{ кг/м}^3) \) при следующих условиях: высота неподвижного слоя 0,26 м, \(C_0 = 0,01 \text{ кг/м}^3 \), скорость паровоздушного потока, отнесенная к полному сечению аппарата, 0,5 м/с, \(\tau_{нас} = 190 \text{ мин}, \tau_{np} = 110 \text{ мин.} \)

Решение. Высота зоны массопередачи рассчитывается по формуле (9.22):

\[h_0 = H \frac{\tau_{нас} - \tau_{np}}{(1 - l)(\tau_{нас} - \tau_{np})} = \]

\[= 0,26 \frac{190 - 110}{190 - (1 - 0,5)(190 - 110)} = \frac{25 \cdot 80}{150} = 13,8 \text{ см.} \]
Здесь h_0 — высота зоны массопередачи, см; H — высота слоя сорбента, см; $\tau_{	ext{нас}}$ — время для равновесного насыщения слоя, мин; $\tau_{	ext{пр}}$ — время защитного действия при минимальной индицируемой проскоковой концентрации, мин; f — неиспользованная часть адсорбента в зоне массопередачи.

Рабочая высота слоя в аппарате рассчитывается по формуле:

$$H_0 = \gamma h_0 = 1,4 \cdot 13,8 = 19,3 \text{ см},$$

где γ — коэффициент, характеризующий отношение гравиметрической плотности с вибрационным уплотнением слоя к гравиметрической плотности без уплотнения ($\gamma = 1,4$).

КОНТРОЛЬНЫЕ ЗАДАЧИ

9.1. Определить количество загружаемого активного угля, диаметр адсорбера и продолжительность периода поглощения 100 кг паров октана из смеси с воздухом при следующих данных:

начальная концентрация паров октана $C_0 = 0,012$ кг/м3, скорость $\omega = 20$ м/мин, активность угля по бензолу 7%, насыпная плотность угля $\rho_{	ext{нас}} = 350$ кг/м3, высота слоя угля в адсорбере $H = 0,8$ м.

9.2. Определить продолжительность поглощения до проскока углерода слоем активного угля высотой $H = 0,10$ м. Скорость парогазовой смеси $\omega = 5$ м/мин, диаметр частиц угля $d_3 = 2,75$ мм, динамические коэффициенты $B_1 = 14500$ и $B_2 = 52945$.

9.3. По изотерме адсорбции бензола при 20 °C (рис. 9.2) построить изотерму адсорбции паров этилового спирта при 25 °C.

9.4. Пользуясь изотермой адсорбции бензола (рис. 9.2), определить скорость и высоту слоя активного угля при непрерывной адсорбции парогазовой смеси с начальной концентрацией $C_0 = 0,011$ кг/м3, скоростью прохождения смеси $\omega = 20$ м/мин и коэффициентом массоотдачи $\beta_y = 4$ с$^{-1}$. Уголь в процессе адсорбции насыщается до 80% своей статической активности. Остаточная активность угля после десорбции составляет 14,5% от первоначальной статической активности. Парогазовая смесь должна быть очищена до концентрации не более $C_1 = 0,01$ кг/м3.

9.5. В вертикальный адсорбер диаметром 3 м со стальной трубой диаметром 0,35 м поступает 170 м3/мин парогазовой смеси, содержащей $C_0 = 0,02$ кг/м3 паров этилового спирта. Концентрация этилового спирта в отходящем газе $C_1 = 0,0002$ кг/м3; высота слоя активного угля в адсорбере $H = 1,5$ м; насыпная плотность угля $\rho_{	ext{нас}} = 500$ кг/м3; продолжительность одного периода поглощения 4 ч 37 мин. Определить количество теплоты, выделяющейся в адорбере за первый период.

9.6. Определить минимальную скорость движения целита типа NaA в колонном аппарате при глубокой осушке воздуха при следующих данных: $C_0 = 0,01$ кг/м3, $C_{	ext{пр}} = 2,94 \cdot 10^{-6}$ кг/м3, $d_3 = 0,002$ м, $a_2 = 170$ кг/м3. Скорость газового потока, отнесенная к полному сечению аппарата 0,5 м/с.
Глава 10

СУШКА

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Влажность материала может быть выражена в процентах либо от общей массы влажного вещества \((u)\), либо от массы сухого вещества \((u')\). Величины \(u\) и \(u'\) связаны соотношением:

\[
u' = \frac{100u}{100 - u}; \quad u = \frac{100u'}{100 + u'}.
\]
(10.1)

2. Количество влаги \(W\), удаляемое из материала в процессе сушки, при изменении влажности материала от \(u_n\) до \(u_k\), равняется:

\[
W = G_n \frac{u_k - u_n}{100 - u_n} \quad \text{или} \quad W = G_k \frac{u_n - u_k}{100 - u_n},
\]
(10.2)

где \(G_n\) и \(u_n\) — начальная масса и влажность материала, поступающего на сушку; \(G_k\) и \(u_k\) — конечная масса и влажность высушенногоматериала.

Если влагосодержание материала дано в процентах от массы сухого вещества \(u'\), то

\[
W = G_{сух} \frac{u_n' - u_k'}{100}.
\]
(10.3)

Здесь \(G_{сух}\) — производительность сушилки по абсолютно сухому материалу.

3. Паросодержание парогазовой смеси \(x\) (в кг пара/кг сухого газа):

\[
x = \frac{M_p}{M_g} \frac{P_n}{P - P_n},
\]
(10.4)

где \(M_p\) и \(M_g\) — мольные массы пара и газа; \(P\) — общее давление парогазовой смеси; \(P_n\) — парциальное давление пара.

Влагосодержание паровоздушной смеси \(x\) (в кг водяного пара/кг сухого воздуха):

\[
x = 0,622 \frac{\Phi_{пасс}}{\Pi - \Phi_{пасс}}.
\]
(10.5)

Здесь 0,622 — отношение мольных масс водяного пара и воздуха; \(\Phi\) — относительная влажность воздуха:

\[
\Phi = \frac{P_n}{P_{пасс}}.
\]
(10.6)

\(P_n\) — парциальное давление водяного пара в воздухе (при температуре сухого термометра); \(P_{пасс}\) — давление насыщенного водяного пара при той же температуре (табл. XXXVIII и LVI) *.

* Если температура влажного воздуха выше температуры насыщения водяного пара при давления \(\Pi\), то \(P_{пасс} = \Pi\) и \(x = 0,622 \frac{\Phi}{\Pi - \Phi}\).
4. Энталпия влажного воздуха \(I \) (в кДж/кг сухого воздуха):
\[
I = (c_v + c_p x) t + r_0 x = (1.01 + 1.97 x) t + 2493 x,
\]
где \(c_v = 1.01 \) кДж/(кг·К) — средняя удельная теплоемкость сухого воздуха (при постоянном давлении); \(c_p = 1.97 \) кДж/(кг·К) — средняя удельная теплоемкость водяного пара; \(x \) — влагосодержание воздуха, кг пара/кг сухого воздуха; \(t \) — температура воздуха (по сухому термометру), °C; \(r_0 = 2493 \) кДж/кг — удельная теплота парообразования воды при 0 °C.

5. Связь между параметрами влажного воздуха \(x, t, \varphi, I \) легко определяется по \(I - x \) диаграмме Рамзина (рис. 10.1), с помощью которой преимущественно и решаются задачи по статике конвективной воздушной сушки.

6. Плотность влажного воздуха \(\rho_{вл. в} \) (в кг/м³) при давлении \(P \) и температуре \(T \), выраженной в К, определяется по уравнению:
\[
\rho_{вл. в} = \rho_v + \rho_w
\]
во в котором плотность сухого воздуха \(\rho_b \) и плотность водяного пара \(\rho_d \) взяты каждая при своем парциальном давлении:

\[
\rho_b = \frac{M_b T_0 (\Pi - \varphi \rho_{нас})}{22,47 \Pi_0};
\]

(10.9)

\[
\rho_d = \frac{M_d T_0 \varphi \rho_{нас}}{22,47 \Pi_0},
\]

(10.10)

где \(\Pi \) — общее давление паровоздушной смеси; \(\Pi_0 \) — нормальное давление (0,1013 МПа, или 1 атм).

Из выражений (10.8)—(10.10) получаем:

\[
\rho_{вл. в} = \frac{M_d T_0 \Pi}{22,47 \Pi_0} \left[1 - \left(1 - \frac{M_d}{M_b} \right) \frac{\varphi \rho_{нас}}{\Pi} \right] =
\]

\[
= 1,293 \frac{273 \Pi}{T \cdot 101 300} \times \left(1 - 0,378 \frac{\varphi \rho_{нас}}{\Pi} \right) =
\]

\[
= \frac{3,48 \cdot 10^{-3}}{T} (\Pi - 0,378 \varphi \rho_{нас}).
\]

(10.11)
7. Удельный объем влажного воздуха (приходящийся на 1 кг сухого воздуха) \(v_{уд}\) (в м³/кг) рассчитывается по формуле:

\[
v_{уд} = \frac{R_B T}{\Pi - \phi P_{ни}};
\]

где \(R_B\) — газовая постоянная для воздуха, равная 287 Дж/(кг·К); \(T\) — температура воздуха, К; \(\Pi\) — общее давление паровоздушной смеси, Па; \(\phi P_{ни} = \rho \Pi\) — парциальное давление водяного пара, Па.

8. Расход сухого воздуха в сушилке \(L\) (в кг/с):

\[
L = WL\;.
\]

Здесь \(W\) — производительность сушилки по испаряемой влаге, кг/с; \(l\) — удельный расход сухого воздуха, кг/кг испаряемой влаги:

\[
l = \frac{1}{x_2 - x_0};
\]

\(x_0\) и \(x_2\) — начальное и конечное влагосодержание воздуха.

9. Расход теплоты в калорифере \(Q\) (в Вт) при нормальном (основном) варианте процесса сушки:

\[
Q = L (l_1 - l_0),
\]

где \(l_0\) и \(l_1\) — энталпии воздуха на входе в калорифер и на выходе из него, Дж/кг сухого воздуха.

Из теплового баланса сушильной установки для нормального сушильного варианта следует:

\[
Q = L (l_2 - l_0) + \sum Q,
\]

где \(l_2\) — энталпия воздуха на выходе из сушилки; \(\sum Q\) — сумма расходов теплоты на нагрев материала, нагрев транспортных устройств, потери в окружающую среду (см. ниже).

Пренебрегая величиной \(\sum Q\) по сравнению с \(L (l_2 - l_0)\) — основным расходом теплоты на испарение влаги и нагрев воздуха и пара, — получаем уравнение для теоретической сушилки:

\[
Q_Т = L (l_2 - l_0).
\]

10. Удельные расходы теплоты \(q\) (в Дж/кг испаряемой влаги) в действительной сушилке:

\[
q = \frac{Q}{W} = \frac{l_1 - l_0}{x_2 - x_0} = l (l_1 - l_0);
\]

в теоретической сушилке при том же конечном состоянии воздуха:

\[
q_Т = \frac{l_2 - l_0}{x_2 - x_0}.
\]
Разность удельных расходов теплоты в действительной и в теоретической сушилке

\[q - q_t = \frac{l_1 - l_2}{x_2 - x_0} = \Delta \] \hspace{1cm} (10.20)

при отсутствии дополнительного подогрева в сушильной камере равна:

\[\Delta = \frac{\sum Q}{W} = q_{\text{мат}} + q_{\text{тр}} + q_{\text{пот}} - c\theta_n. \] \hspace{1cm} (10.21)

Здесь

\[q_{\text{мат}} = \frac{G_n}{W} c_k (\theta_k - \theta_n); \quad q_{\text{тр}} = \frac{G_{\text{тр}}}{W} c_{\text{тр}} (\theta_n - \theta_n); \quad q_{\text{пот}} = \frac{Q_{\text{пот}}}{W}; \]

\[\theta_n, \theta_k, \theta_{\text{тр}}, c \] — удельные теплоемкости высушенного материала, транспортных устройств, воды, Дж/(кг·К); \(\theta_n, \theta_k \) — температуры начальная (поступающего в сушилку влажного материала) и конечная (высушенного материала, выходящего из сушилки), °C.

11. Тепловой к. п. д. сушилки:

\[\eta = r/q, \] \hspace{1cm} (10.22)

где \(r \) — удельная теплота парообразования воды, определяемая по температуре материала при сушке (температуре мокрого термометра), Дж/кг; \(q \) — удельный расход теплоты в сушилке, Дж/кг.

12. При измерении психрометром относительной влажности движущегося воздуха парциальное давление водяного пара в нем может быть рассчитано по психрометрической формуле:

\[p_n = P'_{\text{нас}} - A (t - t_m) \Pi, \] \hspace{1cm} (10.23)

где \(P'_{\text{нас}} \) — давление насыщенного водяного пара при температуре мокрого термометра; \(t - t_m \) — разность температур сухого и мокрого термометров; \(\Pi \) — барометрическое давление; \(A \) — коэффициент, зависящий от ряда факторов, из которых основным является скорость воздуха.

При \(w > 0,5 \text{ м/с} \):

\[A = 0,00001 \left(65 + \frac{6,75}{w} \right). \] \hspace{1cm} (10.24)

Приближенное определение по показаниям психрометра относительной влажности воздуха на \(I - x \) диаграмме Рамзина — см. пример 10.12.

13. Скорость испарения воды с влажной поверхности материала (в первом периоде сушки) \(G \) [в кг/(м²·ч)] может быть рассчитана по эмпирическому уравнению:

\[G = 0,04075w^{0.8} \Delta p, \] \hspace{1cm} (10.25)

где \(w \) — скорость воздуха над материалом, м/с; \(\Delta p = (P_{\text{нас}} - p_n) \) — разность давлений насыщенного пара в пограничном слое воздуха у поверхности влажного материала и парциального давления пара в проходящем воздухе, мм рт. ст.

\[* \quad q_{\text{мат}} = G_k c_k \theta_n - G_m c_m \theta_n = G_k c_k (\theta_k - \theta_m) - Wc \theta_m. \]
Значение \(P_{\text{нас}} \) берется по паровым таблицам для температуры мокрого термометра; \(p_\text{д} \) определяется по формуле (10.23) или по диаграмме Рамзина (рис. 10.1).

14. Продолжительность сушки при постоянных условиях (по воздуху) может быть определена по приближенным уравнениям:
а) для периода постоянной скорости
\[
\tau_1 = \frac{1}{N} (u''_n - u'_{kr}); \tag{10.26}
\]
б) для периода падающей скорости
\[
\tau_2 = \frac{u'_{kr} - u_p}{N} 2,3 \lg \frac{u'_{kr} - u'_2}{u'_n - u'_p}. \tag{10.27}
\]
Здесь \(N \) — скорость сушки в первом периоде, выражаемая числом килограммов влаги (на 1 кг сухого вещества), испаряемой за 1 с; \(u''_n, u'_{kr}, u'_2, u'_n \) — начальные, критическое, конечное и равновесное влагосодержание материала (считая на сухое вещество).

Общая продолжительность сушки:
\[
\tau = \tau_1 + \tau_2.
\]

Вследствие неравномерного омывания материала воздухом, наличия «мертвых» зон и других причин в теоретические формулы (10.26) и (10.27) приходится вводить поправочный коэффициент, равный 1,5—2. Приближенное уравнение для определения продолжительности сушки (без учета равновесного влагосодержания) имеет вид:
\[
\tau = \frac{u''_n - u'_{kr}}{N} + \frac{u'_{kr}}{N} 2,3 \lg \frac{u'_{kr}}{u'_n}. \tag{10.28}
\]

15. Движущая сила процесса сушки (в первом периоде) может быть выражена следующим образом.
а) Как разность температур воздуха \(t \) и поверхности влажного материала, которая принимается равной температуре мокрого термометра \(t_m \):
\[
x = t - t_m. \tag{10.29}
\]
Величину \(x \) называют также потенциалом сушки.
б) Как разность влагосодержаний воздуха насыщенного \(x_{\text{нас}} \) (в поверхностном слое) и ненасыщенного \(x \) (в ядре воздушного потока):
\[
\Delta x = x_{\text{нас}} - x. \tag{10.30}
\]
Средняя движущая сила определяется по уравнениям:
\[
x_{\text{ср}} = \frac{x_1 - x_2}{2,3 \ln (x_1/x_2)} \tag{10.31}
\]
И
\[
\Delta x_{\text{ср}} = \frac{\Delta x_1 - \Delta x_2}{2,3 \ln (\Delta x_1/\Delta x_2)}, \tag{10.32}
\]
где \(x_1 = t_1 - t_m; x_2 = t_2 - t_m; \Delta x_1 = x_{\text{нас}} - x_1; \Delta x_2 = x_{\text{нас}} - x_2. \)

428

16. Скорость сушки \(N \) в первом периоде может быть определена либо опытным путем, либо через коэффициент массоотдачи.
Так как количество испаренной влаги (в кг/с)
\[
\dot{W} = \beta F \Delta x_{\text{ср}}
\]
(10.33)
то
\[
N = \frac{\dot{W}}{G_{\text{сух}}} = \beta F \Delta x_{\text{ср}} / G_{\text{сух}} = \beta / \Delta x_{\text{ср}}.
\]
(10.34)
Здесь \(\beta \) — коэффициент массоотдачи в газовой фазе, кг/(м²·с·кг); \(F \) — площадь поверхности испарения, м²; \(\Delta x_{\text{ср}} \) — средняя движущая сила, кг пара/кг сухого воздуха; \(i = F / G_{\text{сух}} \) — удельная поверхность (в кг сухого вещества), м²/кг.

17. Коэффициент массоотдачи \(\beta \) может быть определен из критериального уравнения:
\[
Nu'_r = A \ Re'_r \ (Pr'_r)^{0.33} \ G u^{0.135},
\]
(10.35)
где \(Nu'_r = \beta l / D \); \(Re'_r = \omega l / \nu \); \(Pr'_r = \nu / D \).

Определяющим размером при вычислении критериев \(Nu'_r \) и \(Re'_r \) является длина поверхности испарения \(l \) в направлении движения сушильного агента.

Параметрический критерий Гухмана \(Gu = (T_0 - T_m) / T_0 \), где \(T_0 \) и \(T_m \) — температуры сухого и мокрого термометров, К.

Величины \(A \) и \(n \) в уравнении (10.35) зависят от критерия \(Re'_r \) (табл. 10.1).
Следует отметить, что при интенсивном процессе сушки значение коэффициента массоотдачи может быть выше рассчитанного по уравнению (10.35).

18. Продолжительность сушки и размеры противоточной сушилки при переменных условиях (по воздуху и материалу) могут быть определены с помощью уравнений (10.36) и (10.38). Для первого периода сушки в противоточной сушилке необходимо обеспечить площадь поверхности материала (в м²):
\[
F_1 = \frac{L}{\beta} \ln \frac{x_{\text{нас}} - x_1}{x_{\text{нас}} - x_2}.
\]
(10.36)

<table>
<thead>
<tr>
<th>(Re'_r)</th>
<th>(A)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–200</td>
<td>0,9</td>
<td>0,5</td>
</tr>
<tr>
<td>200–6 000</td>
<td>0,87</td>
<td>0,54</td>
</tr>
<tr>
<td>6 000–70 000</td>
<td>0,347</td>
<td>0,65</td>
</tr>
</tbody>
</table>
Для второго периода сушки в сушилке необходимо развить площадь поверхности материала (в м²):

\[
F_2 = \frac{L u_{кр}}{\beta} \int_{x_{0}}^{x_{1}} \frac{dx}{(x_{нас} - x) \left[u^* - \frac{L}{V_m} (x_{1} - x_{0}) \right]}.
\]

(10.37)

Правая часть уравнения (10.37) может быть проинтегрирована, так как переменным является только \(x\).

В результате интегрирования получаем следующее выражение:

\[
F_2 = \frac{u^*_{кр}}{\beta} \frac{V_m}{L} \ln \frac{(x_{нас} - x_{0})}{(x_{нас} - x_{1})} \left[u^*_{кр} \frac{V_m}{L} \right] - \frac{(x_{нас} - x_{1})}{(x_{нас} - x_{0})(x_{0} + \frac{u^*_{кр} V_m}{L} - x_{1})}.
\]

(10.38)

В сушилке должна быть развита общая площадь поверхности материала:

\[
F = F_1 + F_2.
\]

В уравнениях (10.36)—(10.38) приняты следующие обозначения: \(L\) — расход сухого воздуха, проходящего через сушилку, кг/ч; \(V_m\) — расход материала, проходящего через сушилку (считая на сухое вещество), м³/ч; \(\beta\) — коэффициент массоотдачи, определяемый экспериментальным путем, кг/(м²·ч·кг); \(u^*\) — содержание избыточной (свободной) влаги в материале \((u^* = u' - u'_{равн})\) в момент времени \(t\) после начала периода падающей скорости, кг влаги/м³ сухого материала; \(u^*_{кр}\) — содержание избыточной (свободной) влаги в материале в критической точке, кг влаги/м³ сухого материала; \(x_{0}\) — влагосодержание воздуха, входящего во вторую зону противоточной сушилки, кг/кг воздуха (см. рис. 10.13); \(x_{1}\) — влагосодержание воздуха, уходящего из второй зоны сушилки и входящего в первую зону, кг/кг воздуха; \(x_{2}\) — влагосодержание воздуха, выходящего из сушилки, кг/кг воздуха; \(x_{нас}\) — влагосодержание насыщенного воздуха, кг/кг воздуха.

ПРИМЕРЫ

Пример 10.1. Определить по \(I - x\) диаграмме Рамзина (рис. 10.1) энтальпию и влагосодержание воздуха при 60 °C и \(\phi = 0.3\).

Решение. Как показано на рис. 10.2, находим: \(I = 163\) кДж/кг сухого воздуха; \(x = 0.04\) кг/кг сухого воздуха.

Пример 10.2. Определить парциальное давление водяного пара в паровоздушной смеси при 80 °C и \(I = 150\) кДж/кг сухого воздуха.

Решение. По диаграмме Рамзина (рис. 10.1) находим точку пересечения изотермы 80 °C с линией \(I = 150\) кДж/кг сухого воздуха и эту точку проектируем на линию парциального давления водяного пара, которая находится внизу диаграммы; полученную точку проектируем направо на ось ординат, на которой нанесены парциальные давления водяного пара (в мм рт. ст.).

430
При \(t = 80 \, ^{\circ}C \) и \(I = 150 \, \text{kДж/кг сухого воздуха} \) находим \(p_a = 28 \, \text{мм рт. ст.} \).

Графическую схему решения см. на рис. 10.3.

Пример 10.3. Воздух с температурой 24 \(^{\circ}C \) и \(\phi = 0.7 \) нагревается в калорифере до 90 \(^{\circ}C \). Найти энтальпию и влагосодержание воздуха на выходе из калорифера.

Решение (рис. 10.4). Начальное состояние воздуха определяется на диаграмме \(I - x \) точкой пересечения изотермы \(t = 24 \, ^{\circ}C \) с линией \(\phi = 0.7 \). Этой точке соответствует \(x = 0.013 \, \text{кг/кг сухого воздуха} \) и \(I = 54.5 \, \text{kДж/кг сухого воздуха} \). Изменение состояния воздуха при нагревании его в калорифере происходит при постоянном влагосодержании, т. е. при \(x = \text{const} \). Следовательно, конечное состояние воздуха определяется точкой пересечения линии \(x = 0.013 \) с изотермой \(t = 90 \, ^{\circ}C \). Этой точке соответствует энтальпия \(I = 126 \, \text{kДж/кг сухого воздуха} \).

Пример 10.4. Найти аналитически влагосодержание и энтальпию воздуха при 30 \(^{\circ}C \) и \(\phi = 0.75 \); \(P = 0.098 \, \text{МПа} \) (1 кгс/см\(^2\)).

Решение. Для аналитического определения влагосодержания воздуха воспользуемся формулой (10.5). В нашем случае при \(t = 30 \, ^{\circ}C \) давление насыщенного пара \(P_{нас} = 0.0433 \, \text{кгс/см}^2 \) (табл. LVI).

Подставляя соответствующие значения, получаем:

\[
x = 0.622 \frac{\phi P_{нас}}{P + \phi P_{нас}} = 0.622 \times 0.75 - 0.0433 \quad \frac{1 - 0.75 - 0.0433}{1 \times 0.75 - 0.0433} = 0.021 \frac{\text{кг}}{\text{кг сухого воздуха}}.
\]

Рис. 10.4 (к примеру 10.4).
Энтальпия воздуха подсчитывается по уравнению (10.7). Подставив соответствующие величины, имеем:

\[t = (1,01 + 1,97x) \cdot t + 2493x = (1,01 + 1,97 \cdot 0,021) \cdot 30 + 2493 \cdot 0,021 = 83 \text{ кДж/кг сухого воздуха.} \]

Пример 10.5. По данным предыдущего примера определить удельный объем влажного воздуха, приходящийся на 1 кг сухого воздуха, т. е. на \((1 + x)\) кг воздушно-паровой смеси.

Решение. Удельный объем влажного воздуха находим по формуле (10.12):

\[
\rho_{\text{уд}} = \frac{R_B T}{\Pi - \varphi P_{\text{нас}}} = \frac{287 \cdot 303}{9,81 \cdot 10^4 - 0,75 \cdot 0,0433 \cdot 9,81 \cdot 10^4} = 0,92 \text{ м}^3/\text{кг сухого воздуха.}
\]

Пример 10.6. Найти парциальное давление водяного пара, плотность и влагосодержание воздуха, если его температура 60 °C, давление \(P_{\text{абс}} = 380\) мм рт. ст. и \(\varphi = 0,4\).

Решение. Из табл. XXXVIII находим \(P_{\text{нас}} = 149,4\) мм рт. ст.

По уравнению (10.6) парциальное давление водяного пара:

\[
p_{\text{в}} = P_{\text{нас}} \varphi = 149,4 \cdot 0,4 = 59,8 \text{ мм рт. ст.}
\]

Плотность влажного воздуха по уравнению (10.11):

\[
\rho_{\text{вл. в}} = 1,293 \cdot \frac{T_B \Pi}{T_B 0} \left(1 - \frac{0,378 \varphi P_{\text{нас}}}{\Pi}\right) = 1,293 \cdot \frac{273 \cdot 380}{333 \cdot 760} \left(1 - \frac{0,378 \cdot 59,8}{380}\right) = 0,5 \text{ кг/м}^3.
\]

Влагосодержание воздуха по уравнению (10.5):

\[
x = 0,622 \frac{\rho_B}{\Pi - \rho_B} = 0,622 \frac{59,8}{380 - 59,8} = 0,116 \frac{\text{кг}}{\text{кг сухого воздуха}}
\]

Пример 10.7. Определить относительную влажность воздуха при \(t = 150 \text{ °C}\) и \(\Pi = 760\) мм рт. ст., если его влагосодержание \(x = 0,07\) кг/кг сухого воздуха.

Решение. Под атмосферным давлением насыщенный водяной пар не может иметь температуру выше 100 °C. Поэтому при температуре воздушно-паровой смеси выше 100 °C \(P_{\text{нас}} = \Pi\). Тогда по уравнению (10.5):

\[
x = 0,622 \frac{\varphi \Pi}{\Pi - \varphi \Pi} = 0,622 \frac{\varphi}{1 - \varphi},
\]

т. е. при данном влагосодержании \(x\) относительная влажность \(\varphi\) является постоянной величиной, не зависит от температуры. В нашем случае:

\[0,07 = 0,622 \frac{\varphi}{1 - \varphi},\]

откуда \(\varphi \approx 0,1 = 10\%.

492
Пример 10.8. Найти влагосодержание влажного воздуха при \(t = 60 \, ^\circ\text{C} \) и \(\varphi = 50\% \), если барометрическое давление \(P = 765 \) мм рт. ст., и определить ошибку при расчете этого влагосодержания с помощью диаграммы Рамзина, построенной для \(P = 745 \) мм рт. ст.

Решение. По табл. XXXVIII для \(t = 60 \, ^\circ\text{C} \) находим \(P_{\text{нас}} = 149,4 \) мм рт. ст. Тогда

\[
x = 0,622 \frac{\varphi P_{\text{нас}}}{P - \varphi P_{\text{нас}}} = 0,622 \frac{0,5 \cdot 149,4}{765 - 0,5 \cdot 149,4} = 0,0672 \text{ кг пара/кг сухого воздуха.}
\]

По диаграмме Рамзина (рис. 10.1) при \(t = 60 \, ^\circ\text{C} \) и \(\varphi = 50\% \) находим \(x = 0,0695 \) кг/кг.

Погрешность составляет:

\[
\frac{0,0695 - 0,0672}{0,0672} \cdot 100 = 3,4\%.
\]

Пример 10.9. Определить расход сухого воздуха и теплоты в теоретической сушилке для удаления из влажного материала 100 кг/ч влаги, если начальное состояние воздуха (до калорифера): \(t_0 = 15 \, ^\circ\text{C} \), \(\varphi_0 = 0,8 \), а на выходе из сушилки: \(t_2 = 44 \, ^\circ\text{C} \), \(\varphi_2 = 0,5 \).

Решение. По диаграмме \(I - x \) находим: \(x_0 = 0,009 \) кг/кг; \(x_2 = 0,03 \) кг/кг. По уравнению (10.14) определяем удельный расход сухого воздуха:

\[
I = \frac{1}{x_2-x_0} = \frac{1}{0,03-0,009} = 47,6 \text{ кг испаряемой влаги/кг.}
\]

Удельный расход теплоты находим по уравнению (10.19), предварительно сняв значения энтальпии по диаграмме \(I - x \). В условиях данного примера \(I_2 = 121,5 \) кДж/кг; \(I_0 = 40 \) кДж/кг. Удельный расход теплоты:

\[
q = \frac{I_2 - I_0}{x_2-x_0} = \frac{121,5 - 40}{0,03-0,009} = 3880 \text{ кДж/кг испаряемой влаги.}
\]

Расход сухого воздуха по уравнению (10.13):

\[
L = Wl = 100 \cdot 47,6 = 4760 \text{ кг/ч.}
\]

Расход теплоты:

\[
Q = Wq = 100 \cdot 3880/3600 = 108 \text{ кВт.}
\]

Пример 10.10. В калорифер вводится смесь свежего воздуха \((t_0 = 25 \, ^\circ\text{C}; \varphi_0 = 0,5) \) и отработанного \((t_2 = 50 \, ^\circ\text{C}; \varphi_2 = 0,8) \) в массовых отношениях 1 : 3 (считая на сухой воздух). Найти параметры смеси перед калорифером и после подогрева ее в калорифере до 80 °С.

Решение. По диаграмме \(I - x \) определяем влагосодержание и энтальпию свежего и отработанного воздуха при заданных \(t \) и \(\varphi \). При \(t_0 = 25 \, ^\circ\text{C} \) и \(\varphi_0 = 0,5; \varphi_0 = 0,01 \) и \(I_0 = 50 \) кДж/кг.
При $t_2 = 50^\circ C$ и $\varphi_2 = 0,8$: $x_2 = 0,069$ и $l_2 = 228$ кДж/кг. Следовательно, влагосодержание смеси будет равно:

$$x_{cm} = 0,25 \cdot 0,01 + 0,75 \cdot 0,069 = 0,0542 \text{ кг/кг},$$

а энтальпия

$$l_{cm} = 0,25 \cdot 50 + 0,75 \cdot 228 = 183,5 \text{ кДж/кг}.$$

Далее находим на диаграмме точку с координатами $x = 0,0542$ и $l = 183,5$. Этой точке соответствуют $t_{cm} = 45^\circ C$ и $\varphi_{cm} = 0,85$. Нагревание смеси в калорифере происходит при $x = \text{const}$. Следовательно, точка пересечения линии $x = 0,0542 \text{ кг/кг}$ с изотермой 80 °C даст нам состояние смеси после калорифера. Этой точке соответствуют: $l_{cm} = 147 \text{ кДж/кг}$ и $\varphi_{cm} = 0,018$.

Пример 10.11. Найти точку росы для воздуха, имеющего $t = 40^\circ C$ и $\varphi = 0,8$.

Решение. Точка росы соответствует той температуре, при которой паровоздушная смесь с данным влагосодержанием становится насыщенной водяным паром. При охлаждении влажного воздуха ниже этой температуры происходит конденсация водяного пара. Для определения точки росы необходимо на диаграмме $l - x$ найти точку, соответствующую заданному состоянию воздуха, затем опуститься по линии $x = \text{const}$ до пересечения с кривой $\varphi = 1$, т. е. до линии насыщения. В нашем случае $x = 0,039 \text{ кг/кг}$ и точка росы соответствует температуре $t = 36^\circ C$ (см. схему решения на рис. 10.5).

Пример 10.12. Показания психрометра: по сухому термометру $t = 40^\circ C$, по мокрому $t_m = 35^\circ C$. Определить приближенно по диаграмме $l - x$ Рамзина относительную влажность воздуха.

Решение. Находим на диаграмме точку пересечения изотермы t_m с линией $\varphi = 100\%$ (точка A на рис. 10.6). Из этой точки, двигаясь по линии постоянной температуры мокрого термометра.
(t_m = const)*, доходим до пересечения с изотермой t. В точке пересечения B находим искомое значение φ.

Если на диаграмме Рамзина для упрощения ее линии t_m = const не нанесены, как на рис. 10.1, а, то искомую относительную влажность воздуха приближенно можно определить, двигаясь из точки A по линии I = const до пересечения ее с изотермой t. Линии t_m = const и I = const близки, и при небольших значениях разности (t — t_m) погрешность при таком приближенном определении невелика.

В нашем случае при t = 40 °C и t_m = 35 °C находим по линии I = const: φ = 70 %.

Пример 10.13. Найти температуру материала, выходящего из сушилки, если его влажность выше критической и воздух на выходе из сушилки имеет t_2 = 100 °C и x_2 = 0,0135 кг/кг.

Решение. В первом периоде сушки температура влажного материала равна температуре мокрого термометра t_m. Ее находим (рис. 10.7), двигаясь от точки A по линии I = const до пересечения с линией φ = 1 в точке B, через которую проходит изотерма t_m = 60 °C.

Пример 10.14. Найти движущую силу процесса сушики Δx_ср и κ_ср для теоретической сушилки при следующих условиях: t_0 = 22 °C; t_2 = 50 °C; φ_0 = 0,75; φ_2 = 0,45.

Решение. По диаграмме I — x (рис. 10.8) находим: x_1 = 0,0125 кг/кг; x_2 = 0,037 кг/кг; x_нас = 0,043 кг/кг; φ ≈ 37 °C. Следовательно,

Δx_ср = \frac{\Delta x_1 - \Delta x_2}{2,3 \lg \frac{\Delta x_1}{\Delta x_2}} = \frac{(0,043 - 0,0125) - (0,043 - 0,037)}{2,3 \lg \frac{0,043 - 0,0125}{0,043 - 0,037}} = 0,0152 кг/кг;

κ_ср = \frac{x_1 - x_2}{2,3 \lg \frac{x_1}{x_2}} = \frac{(111 - 37) - (50 - 37)}{2,3 \lg \frac{111 - 37}{50 - 37}} = 35 °C = 35 K.

* На рис. 10.1, b линии t_m = const нанесены пунктиром.
Пример 10.15. Определить по показаниям психрометра относительную влажность воздуха, покидающего сушилку, если температура сухого термометра \(t = 85 \, ^\circ C \), температура мокрого термометра \(t_m = 68 \, ^\circ C \), барометрическое давление \(P = 750 \, \text{мм рт. ст.} \), а скорость воздуха \(w = 1 \, \text{м/с}. \)

Решение. Относительная влажность воздуха:

\[
\varphi = \frac{p_n}{P_{\text{nac}}}
\]

По табл. Л VI находим, что при \(t = 85 \, ^\circ C \) давление насыщенного пара \(P_{\text{nac}} = 0,59 \, \text{кгс/см}^2 \). Затем определяем парциальное давление водяного пара \(p_n \) по формуле (10.23):

\[
p_n = P_{\text{nac}} - A (t - t_m) P.
\]

Находим по табл. Л VI давление насыщенного пара при температуре \(t_m \) мокрого термометра: \(P_{\text{nac}} = 0,2912 \, \text{кгс/см}^2 \).

Коэффициент \(A \) определяем по формуле (10.24):

\[
A = 0,00001 \left(65 + \frac{6,75}{1} \right) = 0,00072.
\]

Затем находим:

\[
\varphi = \left[0,2912 - 0,00072 \left(85 - 68 \right) \frac{750}{735} \right] / 0,59 = 0,47.
\]

Пример 10.16. Определить расход воздуха, а также расход и необходимое давление греющего пара для непрерывнодействующей противоточной сушилки, работающей по нормальному сушильному варианту.

Производительность сушилки по влажному материалу \(G_n = 350 \, \text{кг/ч} \)

Начальная влажность материала \(u_n = 42\% \)

Конечная влажность материала \(u_k = 11\% \)

Temperatura материала, поступающего на сушку \(\theta_1 = 18 \, ^\circ C \)

Temperatura материала, выходящего из сушилки \(\theta_2 = 47 \, ^\circ C \)

Характеристика состояния воздуха:

do калорифера

\(t_0 = 15 \, ^\circ C, \varphi_0 = 70 \% \)

после сушилки

\(t_2 = 45 \, ^\circ C, \varphi_2 = 60 \% \)

Удельная теплоемкость высущенного материала \(c_k = 2,35 \cdot 10^3 \, \text{Дж/(кг\cdotК)} \)

(\(u_k = 11 \% \)) материала

Масса транспортирующего устройства \(G_{\text{тр}} = 600 \, \text{кг} \)

(стальной транспортер)

Тепловые потери сушилки и калорифера в окружающую среду \(Q_{\text{пот}} = 12 \% \) от суммы всех остальных слагаемых теплового баланса \(6 \% \)

Решение. Количество испаренной в сушилке влаги определим по уравнению:

\[
W = G_n \frac{u_n - u_k}{100 - u_k} = 350 \frac{42 - 11}{100 - 11} = 122 \, \text{кг/ч}.
\]
По диаграмме $L - x$ находим влагосодержание и энталпию воздуха до калорифера и воздуха, выходящего из сушилки: $x_0 = 0,0077$; $x_2 = 0,038$; $I_0 = 35$ кДж/кг; $I_2 = 145$ кДж/кг.
Расход сухого воздуха в сушилке на испарение W кг/ч влаги:

$$L = \frac{W}{x_2 - x_0} = \frac{122}{0,38 - 0,0077} = 4030 \text{ кг/ч.}$$

Расход теплоты в теоретической сушилке:

$$Q_T = L (I_2 - I_0) = \frac{4030 (145 \cdot 10^3 - 35 \cdot 10^3)}{3600} = 123 000 \text{ Вт.}$$

В действительной сушилке теплота расходуется еще на подогрев материала:

$$G_{\text{в}}c_{\text{в}} (\theta_2 - \theta_1) = \frac{(350 - 122) 2,35 \cdot 10^3 (47 - 18)}{3600} = 4300 \text{ Вт,}$$

а также на нагрев транспортирующих устройств:

$$G_{\text{тр}}c_{\text{тр}} (\theta_2 - \theta_1) = \frac{600 \cdot 0,5 \cdot 10^3 (47 - 18)}{3600} = 2420 \text{ Вт,}$$

где $0,5 \cdot 10^3$ — удельная теплоемкость стали, Дж/(кг·К) — табл. XXV.

Из общего количества теплоты, которое необходимо подать в сушилку, надо вычесть количество теплоты, вносимое влагой, находящейся во влажном материале:

$$W\theta_1c_{\text{в}} = 122 \cdot 18 \cdot 4,19 \cdot 10^3 / 3600 = 2560 \text{ Вт.}$$

Тогда общее количество теплоты, которое должно быть подведено в калорифер, с учетом потерь в окружающую среду, составит:

$$Q = (123 000 + 1300 + 2420 - 2560) 1,12 = 142 500 \text{ Вт.}$$

Сравнивая расходы теплоты в теоретической и действительной сушилке, можно видеть, что в последней расход теплоты выше на 15%.

Так как

$$Q = L (I_1 - I_0) = 142 500 \text{ Вт,}$$

то

$$I_1 - I_0 = \frac{Q}{L} = \frac{142 500 \cdot 3600}{4030} = 127,5 \cdot 10^3 \frac{\text{Дж}}{\text{кг сухого воздуха}}.$$

Следовательно,

$$I_1 = 127,5 + I_0 = 127,5 + 35 = 162,5 \frac{\text{кДж}}{\text{кг сухого воздуха}}.$$

Этому значению I_1 соответствует температура воздуха после калорифера $t_1 \approx 138^\circ\text{C}$ (по диаграмме $I - x$).
Принимаем разность температур греющего пара и воздуха на выходе из калорифера:
\[\Delta t = t_{\text{гр.}} - t_1 = 10 \, ^\circ \text{C} = 10 \, \text{К.} \]

Тогда
\[t_{\text{гр.}} = 138 + 10 = 148 \, ^\circ \text{C}. \]

чему соответствует необходимое давление греющего пара \(p_{\text{абс}} \approx 0,461 \, \text{МПа}, \) или 4,7 кгс/см² (табл. LVI).

Расход греющего пара:
\[G_{\text{гр.}} = \frac{Q}{r x'} = \frac{142500}{2122 \cdot 10^3 \cdot 0,94} = 0,0715 \, \text{кг/с} = 257 \, \text{кг/ч}, \]

где \(r = 2122 \, \text{кДж/кг} \) — удельная теплота конденсации греющего пара при 148 \(^\circ\)C (табл. LVI); \(x' \) — паросодержание греющего пара.

Удельный расход греющего пара:
\[d = \frac{G_{\text{гр.}}}{W} = \frac{257}{122} = 2,1 \frac{\text{кг греющего пара}}{\text{кг испаряемой влаги}}. \]

Пример 10.17. Определить средний коэффициент теплопередачи (относя его к разности температур греющего пара и высушиваемого материала) в опытном элементе паровой трубчатой сушилки для торфа по следующим данным:

Производительность элемента сушилки (считая на абсолютно сухой торф) \(G_{\text{сух}} = 11,2 \, \text{кг/ч} \)
Начальная влажность торфа (считая на сухое вещество) \(u''_n = 0,57 \, \text{кг/кг} \)
Конечная влажность торфа \(u'_x = 0,148 \, \text{кг/кг} \)
Температура торфа, поступающего на сушку \(\theta_1 = 20 ^\circ \text{C} \)
Температура торфа, выходящего из сушилки \(\theta_2 = 52 ^\circ \text{C} \)
Удельная теплоемкость абсолютно сухого торфа \(c = 1,26 \cdot 10^3 \, \text{Дж/(кг·К)} \)
Характеристика состояния продувающего воздуха:
до сушилки \(t_0 = 22 \, ^\circ \text{C}, \phi_0 = 0,34 \)
после сушилки \(t_2 = 82 \, ^\circ \text{C}, \phi_2 = 0,37 \)
Барометрическое давление \(\Pi = 773 \, \text{мм рт. ст.} \)
Температура греющего пара \(t = 100 ^\circ \text{C} \)
Площадь поверхности нагрева трубы \(F = 2,18 \, \text{м}^2 \)

Решение. Средний коэффициент теплопередачи определим по уравнению:
\[K = \frac{Q}{F \Delta t_{\text{ср}}}. \]

Здесь \(Q \) — расход теплоты, проходящей через поверхность нагрева; \(\Delta t_{\text{ср}} \) — средняя разность температур.
Расход теплоты, передаваемой через греющую поверхность:

\[Q = Q_1 + Q_2 + Q_3, \]

где \(Q_1 \) — теплота, пошедшая на испарение влаги и на нагрев воздуха; \(Q_2 \) — теплота, пошедшая на нагревание торфа; \(Q_3 \) — потери теплоты в окружающую среду.

Расход испаренной влаги [формула (10.3)]:

\[W = G_{\text{сух}} \left(u'_n - u'_n \right) = 11,2 \left(0,57 - 0,148 \right)/3600 = 0,0013 \text{ кг/с.} \]

Определяем начальное и конечное влагосодержание воздуха по формуле (10.5):

\[x_0 = 0,622 \frac{0,34 - 0,0270}{1,017 - 0,34 - 0,0270} = 0,0057 \text{ кг/кг;} \]

\[x_2 = 0,622 \frac{0,37 - 0,5233}{1,017 - 0,37 - 0,5233} = 0,146 \text{ кг/кг.} \]

Энталпия воздуха до поступления в сушилку [формула (10.7)]:

\[l_0 = (1,01 \cdot 10^3 + 1,97 \cdot 10^3 \cdot 0,0057) 22 + 2493 \cdot 10^3 \cdot 0,0057 = 36,5 \cdot 10^3 \text{ Дж/кг}, \]

а по выходе из сушилки:

\[l_2 = (1,01 \cdot 10^3 + 1,97 \cdot 10^3 \cdot 0,146) 82 + 2493 \cdot 10^3 \cdot 0,146 = 470 \cdot 10^3 \text{ Дж/кг}. \]

Тогда

\[Q_1 = W \frac{l_2 - l_0}{x_2 - x_0} = 0,0013 \frac{470 \cdot 10^3 - 36,5 \cdot 10^3}{0,146 - 0,0057} = 4050 \text{ Вт}; \]

\[Q_2 = G_{\text{сух}} (l_2 - l_0). \]

Здесь \(l_2 \) и \(l_0 \) — энталпии выходящего и входящего в сушилку торфа (считая на 1 кг сухого торфа):

\[l_2 = (1,26 \cdot 10^3 \cdot 1 + 4,19 \cdot 10^3 \cdot 0,148) 52 = 97,8 \cdot 10^3 \text{ Дж/кг}; \]

\[l_0 = (1,26 \cdot 10^3 \cdot 1 + 4,19 \cdot 10^3 \cdot 0,57) 20 = 73 \cdot 10^3 \text{ Дж/кг}. \]

Следовательно,

\[Q_2 = \frac{11,2}{3600} (97,8 \cdot 10^3 - 73 \cdot 10^3) = 77 \text{ Вт}. \]

Потери теплоты в окружающую среду \(Q_3 \) примем равными 10% от \(Q_1 \). Тогда общее количество теплоты:

\[Q = 4050 + 77 + 405 = 4532 \text{ Вт}. \]

Средняя разность температур в сушилке:

\[\Delta t_{\text{ср}} = [(100 - 20) + (100 - 52)]/2 = 64 \text{ °C} = 64 \text{ К.} \]

Коэффициент теплопередачи:

\[K = \frac{Q}{F \Delta t_{\text{ср}}} = \frac{4532}{2,18 \cdot 64} = 32,4 \text{ Вт/(м}^2\cdot \text{К).} \]
Пример 10.18. Определить к. п. д. теоретической воздушной сушилки при следующих условиях: процесс сушки идет при \(I = 115 \text{ кДж/кг}, \) состояние воздуха меняется от \(\phi_0 = 0,8, t_0 = 20 ^\circ\text{C} \) до \(\phi_2 = 0,6, t_2 = 40 ^\circ\text{C}. \)

Ре ш е н и е. С помощью диаграммы \(I - x \) Рамзина (рис. 10.1) находим по формуле (10.19) удельный расход теплоты в сушилке на испарение 1 кг влаги: \(q = 3820 \text{ кДж/кг}. \) По табл. LVI для \(t_m = 33 ^\circ\text{C} \) при \(I = 115 \text{ кДж/кг} \) удельная теплота парообразования \(r \) равна 2420 кДж/кг. Следовательно, к. п. д. сушилки по формуле (10.22):

\[
\eta = \frac{r}{q} = \frac{2420}{3820} \times 100 = 63,3\%.
\]

Пример 10.19. Паста красителя высушивалась в камерной сушилке с рециркуляцией воздуха. Анализ проб на влажность дал следующие результаты (табл. 10.2).

Определить скорость сушки в зависимости от времени; по полученным данным построить кривую и найти критическое влагосодержание материала.

Ре ш е н и е. Составляем табл. 10.3. По данным этой таблицы строим кривую в координатах скорость сушки — время сушки (рис. 10.9) и находим, что критическое влагосодержание материала достигается через 6 ч после начала сушки. Ему соответствуют 43,9% влаги, считая на абсолютно сухое вещество, или

\[
\frac{43,9 \times 100}{100 + 43,9} = 30,6\% \text{ влаги, считая на общую массу продукта.}
\]

Пример 10.20. Для сушки влажного материала с 33 до 9% влагосодержания (считая на абсолютно сухое вещество) в промышленной сушилке потребовалось 7 ч. Критическое влагосодержание материала было

Рис. 10.9 (к примеру 10.19).
<table>
<thead>
<tr>
<th>Время от начала сушки ч</th>
<th>Скорость сушки $\frac{\Delta u'}{\Delta t}$ (считая на сухое вещество), %/ч</th>
<th>Время от начала сушки ч</th>
<th>Скорость сушки $\frac{\Delta u'}{\Delta t}$ (считая на сухое вещество), %/ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\frac{104 - 84}{2} = 10$</td>
<td>10</td>
<td>$\frac{32 - 21,9}{2} = 5,05$</td>
</tr>
<tr>
<td>2,5</td>
<td>$\frac{84 - 79,1}{0,5} = 9,8$</td>
<td>12</td>
<td>$\frac{21,9 - 14}{2} = 3,95$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{79,1 - 63,9}{1,5} = 10,14$</td>
<td>14</td>
<td>$\frac{14 - 8}{2} = 3,0$</td>
</tr>
<tr>
<td>5</td>
<td>$63,9 - 53,9 = 10$</td>
<td>16</td>
<td>$\frac{8 - 5}{2} = 1,5$</td>
</tr>
<tr>
<td>6</td>
<td>$53,9 - 43,9 = 10$</td>
<td>18</td>
<td>$\frac{5 - 3}{2} = 1,0$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{43,9 - 32}{2} = 5,95$</td>
<td>20</td>
<td>$\frac{3,0 - 1,5}{2} = 0,75$</td>
</tr>
</tbody>
</table>

16%, а равновесное 5%. Требуется определить время, необходимое для сушки этого материала от 37 до 7% влажности, если условия сушки остаются без изменения. Начальным пусковым периодом можно пренебречь.

Решение. Определим N — скорость сушки в первом периоде. Продолжительность первого периода сушки (уравнение (10.26)):

$$\tau_1 = \frac{(u'_n - u'_{кр})}{N} = \frac{(0,33 - 0,16)}{N} = \frac{0,17}{N}.$$

Продолжительность второго периода (уравнение (10.27)):

$$\tau_2 = \frac{\frac{u'_{кр} - u'_p}{N}}{2,3 \lg \frac{u'_{кр} - u'_p}{u'_k - u'_p}} = \frac{\frac{0,16 - 0,05}{N}}{2,3 \lg \frac{0,16 - 0,05}{0,09 - 0,05}} = \frac{0,111}{N}.$$

Общая продолжительность сушки была 7 ч. Следовательно,

$$\tau_1 + \tau_2 = \frac{0,17}{N} + \frac{0,111}{N} = \frac{0,281}{N},$$

откуда $N = 0,0402$ кг/(кг·ч).

При новых условиях начальной и конечной влажности материала:

$$\tau_1 = \frac{0,37 - 0,16}{0,0402} = 5,22 \text{ ч};$$

$$\tau_2 = \frac{0,16 - 0,05}{0,0402} \cdot 2,3 \lg \frac{0,16 - 0,05}{0,07 - 0,05} = 4,66 \text{ ч}.$$

Общее время сушки составит:

$$\tau = 5,22 + 4,66 = 9,9 \text{ ч}.$$
Пример 10.21. Определить время сушки кристаллов салициловой кислоты (частицы угловатой формы) в воздушной пневматической сушилке и необходимую длину сушилки при следующих условиях: производительность \(G_k = 250 \) кг/ч высушенного продукта, эквивалентный диаметр частиц \(d_a = 1 \) мм, плотность материала \(\rho_{мат} = 1480 \) кг/м³.

Характеристика состояния воздуха:
до калорифера \(t_0 = 15^\circ C, \phi_0 = 0,7 \)
после калорифера \(t_1 = 90^\circ C \)
на выходе из сушилки \(t_2 = 50^\circ C \)
Температура кристаллов при входе \(\theta_1 = 15^\circ C \)
Температура кристаллов при выходе \(\theta_2 = 40^\circ C \)
Удельная теплоемкость сухих кри
c\nсталлов \(c_n = 1,16 \cdot 10^3 \) Дж/(кг·К)
Влагосодержание кристаллов (считая на абсолютно сухое вещество):
начальное \(u'_n = 15 \% \)
конечное \(u''_n = 1 \% \)

Решение. Время сушки можно определить из уравнения теплоотдачи:
\[
\tau = \frac{Q}{\alpha F_c \Delta t_{ср}}.
\]

Для определения расхода воздуха и теплоты на сушку производим построение сушильного процесса на \(I - x \) диаграмме (рис. 10.10).

В теоретической сушилке при \(I_1 = 111 \) кДж/кг процесс сушики шел бы по линии постоянной энталпии \(BC' \) и удельный расход теплоты \(q'_t \) равнялся бы
\[
q'_t = \frac{I_1 - I_0}{x_2 - x_0} = \frac{111 - 33,5}{0,023 - 0,0073} = 5000 \text{ кДж/кг испаряемой влаги,}
\]
где \(x'_2 = 0,023 \) — влагосодержание воздуха в точке \(C' \).

В действительной сушилке конечное влагосодержание воздуха \(x_2 \) (в точке \(C \)) будет меньше \(x'_2 \). Его значение находим следующим образом. Из уравнения линии реального процесса суши \(BC \)
\[
I = I_1 - \Delta (x - x_0),
\]
задаваясь произвольным значением \(x \), находим \(I \), предварительно рассчитав расход испаряемой влаги \(W \) и поправку \(\Delta \) для реального процесса сушки.

Рис. 10.10 (к примеру 10.21).
По уравнению (10.3):

$$W = G_{сух} \frac{u'_{u} - u'_{k}}{100} = 250 \cdot 0.99 (0.15 - 0.01) = 34.6 \text{ кг/ч.}$$

По уравнению (10.21) при $q_{пр} = 0$:

$$\Delta = q_{мат} + q_{пот} - c \theta_{1};$$

$$q_{мат} = G_{сух} c_{к} (\theta_{x} - \theta_{1})/W = 250 \cdot 1.16 \cdot 10^{3} (40 - 15)/34.6 =$$

$$= 209.5 \cdot 10^{3} \text{ Дж/кг испаряемой влаги.}$$

Примем удельную потерю теплоты $q_{пот}$ в размере 5.5% от $q_{\theta_{1}}$

$$q_{пот} = 0.055 \cdot 5000 = 275 \text{ кДж/кг испаряемой влаги. Тогда}$$

$$\Delta = q_{мат} + q_{пот} - c \theta_{1} = 209.5 + 275 - 4.19 \cdot 15 =$$

$$= 421.7 \text{ кДж/кг испаряемой влаги.}$$

Задаемся $x = 0.016$ и находим:

$$I = I_{1} - \Delta (x - x_{0}) = 111 - 421.7 (0.016 - 0.0075) = 107.4 \text{ кДж/кг.}$$

Проведя через точки B и D ($x_{D} = 0.016; I_{D} = 107.4$) прямую линию до пересечения с изотермой $t_{1} = 50^\circ \text{C}$, получаем точку C, для которой находим $x_{2} = 0.021 \text{ кг/кг.}$

Расход сухого воздуха на сушку:

$$L = \frac{W}{x_{2} - x_{0}} = \frac{34.6}{0.021 - 0.0075} = 2560 \text{ кг/ч.}$$

Расход теплоты, передаваемой воздуху в калорифере:

$$Q = L (I_{1} - I_{0}) = 2560 (111 \cdot 10^{3} - 33.5 \cdot 10^{3})/3600 = 55200 \text{ Вт.}$$

Коэффициент теплоотдачи α от горячего воздуха к частицам материала, подвергающимся сушке в трубе-сушилке, может быть определен приближенно по рис. 10.11, на котором представлена зависимость $Nu = f (Ar)$, полученная по опытным данным И. М. Федорова.

Критерий Нуссельта

$$Nu = \alpha d_{o}/\lambda.$$

Критерий Архимеда:

$$Ar = d_{o}^{3} \rho_{мат} \sigma/(v_{c}^{2} \rho_{c}),$$

где $d_{o} = 10^{-3} \text{ м} -$ диаметр частицы; $\lambda = 0.0285 \text{ Вт/(м·К)} -$ коэффициент тепло проводности воздуха при его средней температуре $(90 + 50)/2 = 70^\circ \text{C}; \rho_{мат} =$

$$= 1480 \text{ кг/м}^{3} -$ плотность материала; $\rho_{o} = 1.03 \text{ кг/м}^{3} -$ плотность воздуха при

$$70^\circ \text{C}; v_{c} = 2 \cdot 10^{-6} \text{ м}^{2}/\text{с} -$ кинематический коэффициент вязкости воздуха.

Полставя эти значения, получаем:

$$Ar = \frac{10^{-3} \cdot 1480 \cdot 9.81}{2 \cdot 10^{-16} \cdot 1.03} = 3.52 \cdot 10^{4}; \quad Ar^{1/2} = 32.8.$$

По рис. 10.11 находим $Nu = 10$, откуда

$$\alpha = Nu \lambda/d_{o} = 10 \cdot 0.0285/0.001 = 285 \text{ Вт/(м}^{2} \cdot \text{К)}.$$

443
Рис. 10.11. Зависимость критерия \(Nu \) от критерия \(Ar \) (к примеру 10.21).

Число частиц материала, проходящих через сушилку за 1 с

\[
n = \frac{G}{(\pi d^2_3 / 6) \rho_{\text{мат}} \cdot 3600}.
\]

Они дают общую площадь поверхности:

\[
F_c = n d_3^2 = \frac{6G}{d_3 \rho_{\text{мат}} \cdot 3600} = \frac{6 \cdot 250}{0,001 \cdot 1480 \cdot 3600} = 0,281 \text{ м}^2/\text{s}.
\]

Среднюю разность температур приближенно * определяем следующим образом:

\[
\begin{align*}
\text{Воздух} & \rightarrow & 90 & \rightarrow & 50 \\
\text{Материал} & \rightarrow & 32 & \rightarrow & 40 \\
\Delta t_b = 58 & & & \Delta t_m = 10 \Rightarrow
\end{align*}
\]

\[
\Delta t_{cp} = \frac{58 - 10}{2,3 \lg (58/10)} = 27,3^\circ C = 27,3 \text{ К}.
\]

Расход теплоты, получаемой в сушилке материалом от горячего воздуха, складывается из следующих слагаемых (принимая приближенно, что вода влаги испаряется при \(t_m = 32 ^\circ C \)).

* Не учитывая кратковременного начального периода подогрева материала, его начальную температуру здесь можно принять равной температуре мокрого термометра, т. е. 32 °C (см. рис. 10.10).
1) Нагрев влажного материала:

\[Q_1 = (G_n c_n + W c) (t_m - \theta_1) = \left(\frac{250}{3600} 1,16 + \frac{34,6}{3600} 4,19 \right) (32 - 15) = 2,05 \text{ кВт.} \]

2) Испарение влаги:

\[Q_2 = W_r = \frac{34,6}{3600} 2420 = 23,25 \text{ кВт.} \]

3) Нагрев высушенного материала:

\[Q_3 = G_n c_n (\theta_2 - t_m) = \frac{250}{3600} 1,16 (40 - 32) = 0,65 \text{ кВт.} \]

Всего:

\[Q = Q_1 + Q_2 + Q_3 = 2,05 + 23,25 + 0,65 = 25,95 \text{ кВт.} \]

Продолжительность сушки:

\[\tau = \frac{Q}{\alpha F_c \Delta t_c p} = \frac{25,95 \cdot 10^3}{285 \cdot 0,281 \cdot 27,3} = 11,9 \text{ с.} \]

Длина сушилки может быть найдена из следующего равенства:

\[\tau = \frac{l}{(w - w_{oc})}, \]

где \(l \) — длина трубы, м; \(w \) — скорость воздуха в сушилке, м/с; \(w_{oc} \) — скорость осаждения (вывитания), м/с; \(w_{oc} \) находим по рис. 3.1, на котором дана зависимость \(Ly = f \) (Ar) для частиц угловатой формы.

Для \(Ar = 3,52 \cdot 10^4 \) находим \(Ly = 205 \), откуда

\[w_{oc} = \sqrt[3]{Ly v_0 \rho_{мат} / \rho_c} = \sqrt[3]{205 \cdot 2 \cdot 10^{-8} \cdot 1,48 \cdot 10^3 \cdot 9,81 / 1,03} = 3,86 \text{ м/с.} \]

Обычно принимают \(w = (1,1 \div 1,25) w_{oc} \). Примем \(w = 3,86 \cdot 1,2 = 4,64 \text{ м/с.} \) Тогда

\[l = \tau (w - w_{oc}) = 11,9 (4,64 - 3,86) = 9,28 \text{ м.} \]

В действительности время пребывания частиц в трубе-сушилке больше, чем получается по расчету, так как в расчете не учитывается время на разгон частиц, только после которого устанавливается режим движения; это подтверждается экспериментальными данными.

Дополнительная длина \(l_p \) трубы для частиц размером 0,2—1 мм и скорости воздуха 15—50 м/с может быть определена по эмпирической зависимости:

\[l_p = \omega d, \]

где \(\omega \) — скорость воздуха, м/с; \(d \) — диаметр частицы, мм.

Для нашего примера \(l_p = 4,64 \cdot 1 = 4,64 \text{ м.} \) Тогда необходимая длина трубы-сушилки:

\[L = 9,28 + 4,64 \approx 14 \text{ м.} \]
Диаметр трубы-сушилки определяется из уравнения расхода:

\[D = \sqrt{\frac{V}{0,785\omega}}; \]

\[V = \frac{2560}{1,03 \cdot 3600} = 0,69 \text{ м}^3/\text{с}; \]

\[D = \sqrt{\frac{0,69}{0,785 \cdot 4,64}} = 0,224 \text{ м}. \]

При мер 10.22. Определить расход воздуха и теплоты при высыхании 1 т влажного материала от \(u_n = 50\% \) до \(u_k = 6\% \) (считая на общую массу) в теоретической сушилке, работающей: а) по нормальному сушильному варианту; б) по варианту с промежуточным подогревом (считая, что воздух в калориферах подогревается до 100 °C); в) по варианту с рециркуляцией 80% отработанного воздуха. Сравнить также потенциалы сушки для этих вариантов. Параметры атмосферного воздуха: \(t_0 = 25 \text{ °C}; x_0 = 0,0095 \text{ кг/кг} \) сухого воздуха. Параметры отработанного воздуха: \(t_2 = 60 \text{ °C}; x_2 = 0,041 \text{ кг/кг} \) сухого воздуха.

Р е ш е н и е. Определяем количество испаренной при сушке влаги:

\[W = G_n \cdot \frac{u_n - u_k}{100 - u_k} = 1000 \cdot \frac{50 - 6}{100 - 6} = 468 \text{ кг/ч}. \]

а) Нормальный сушильный вариант (\(ABC \) на рис. 10.12). Удельный расход сухого воздуха:

\[l = \frac{1}{x_2 - x_0} = \frac{1}{0,041 - 0,0095} = 31,8 \frac{\text{кг}}{\text{кг испаряющейся влаги}}. \]

Общий расход сухого воздуха:

\[L = lw = 31,8 \cdot 468 = 14900 \text{ кг/ч}. \]

Удельный расход теплоты:

\[q = l (t_2 - t_0) = 31,8 (167 - 46) = 3860 \text{ кДж/кг испаряемой влаги}. \]

Значения энталпий находим, пользуясь \(l - x \) диаграммой Рамзина (рис. 10.1).

Общий расход теплоты:

\[Q = Wq = 468 \cdot 3860/3600 = 502 \text{ кВт}. \]
б) При ведении процесса сушики с промежуточным подогревом \((AB'C'C''C\) на рис. 10.12) необходимы два калорифера для подогрева воздуха в каждом до 100 °C. При этом в первой зоне сушилики влагосодержание воздуха повышается до 0,02525 кг/кг сухого воздуха и удельный расход сухого воздуха составляет:

\[
l' = \frac{1}{0,02525 - 0,0095} = 63,6 \, \text{кг испаряемой влаги.}
\]

Но так как в первой зоне сушилики испаряется только половина всей влаги, т. е. \(468/2 = 234\) кг/ч, то часовой расход сухого воздуха:

\[
L = l' \frac{W}{2} = 63,6 \cdot 234 = 14900 \text{ кг/ч.}
\]

Во второй зоне сушилики происходит испарение остальной влаги тем же воздухом, но подогретым до 100 °C в промежуточном калорифере.

Теплота на подогрев воздуха затрачивается в двух калориферах, и расход его равен:

\[
Q = l' (l'_2 - l'_0) \frac{W}{2} + l' (l_2 - l_0) \frac{W}{2} = \frac{W}{2} l' (l'_2 - l'_0),
\]

но так как \(l'/2 = l\), то

\[
Q = Wl (l'_2 - l'_0) = \frac{468}{3600} \cdot 31,8 \cdot (167 - 46) = 500 \text{ кВт.}
\]

в) Для сушильного процесса с возвратом 80% отработанного воздуха \((AB'M'B'C'C'\) на рис. 10.12) определяем характеристики смеси, поступающей в калорифер:

\[
x_{см} = 0,2x_0 + 0,8x_2 = 0,2 \cdot 0,0095 + 0,8 \cdot 0,041 =
\]

= \(0,0347\) кг влаги/кг сухого воздуха;

\[
l_{см} = 0,2l_0 + 0,8l_2 = 0,2 \cdot 46 + 0,8 \cdot 167 = 143 \text{ кДж/кг сухого воздуха.}
\]

Тогда удельный расход сухого воздуха:

\[
l'' = \frac{1}{x_2 - x_{см}} = \frac{1}{0,041 - 0,0347} = 159 \text{ кг/кг влаги,}
\]

а расход воздуха (смеси), поступающего в сушилку:

\[
L'' = Wl'' = 468 \cdot 159 = 74500 \text{ кг/ч.}
\]

Расход атмосферного воздуха (20%):

\[
L = 74500 \cdot 0,2 = 14900 \text{ кг/ч.}
\]

Удельный расход теплоты:

\[
q = \frac{l_2 - l_{см}}{x_2 - x_{см}} = \frac{467 - 143}{0,041 - 0,0347} = 3820 \text{ кДж/кг влаги.}
\]
Расход теплоты

\[Q = \frac{Wq}{3600} = \frac{468}{3820} = 495 \text{ кВт.} \]

Из сравнения расходов воздуха и теплоты на сушку по трем рассмотренным вариантам видно, что при одних и тех же начальных и конечных параметрах воздуха (точки A и C на рис. 10.12) эти расходы одинаковы.

Сравним средние потенциалы сушки:

а) \(\chi_{cp} = \frac{(t_1 - t_m) - (t_2 - t_m)}{2.3 \lg \frac{t_1 - t_m}{t_2 - t_m}} = \frac{(140 - 40) - (60 - 40)}{2.3 \lg \frac{140 - 40}{60 - 40}} = 49,8 ^\circ C = 49,8 \text{ К; } \)

б) \(\chi_{cp1} = \frac{(100 - 35) - (60 - 35)}{2.3 \lg \frac{100 - 35}{60 - 35}} = 41,8 ^\circ C = 41,8 \text{ К; } \)

\(\chi_{cp2} = \frac{(100 - 40) - (60 - 40)}{2.3 \ lg \frac{100 - 40}{60 - 40}} = 36,5 ^\circ C = 36,5 \text{ К; } \)

в) \(\chi_{cp} = \frac{(41,8 + 36,5)/2 = 39,15 ^\circ C = 39,15 \text{ К; } \)

Из сравнения потенциалов сушки видно, что наименьшее значение потенциала (наиболее мягкие условия сушки), получено в варианте с возвратом части отработанного воздуха, а наибольшее — при нормальном сушильном варианте.

Пример 10.23. Некоторый материал высушивается в противоточной сушилке непрерывного действия от 50 до 3,5% влаги, считая на общую массу. Производительность сушилки по влажному материалу 2260 кг/ч. Плотность сухого материала 640 кг/м³. На 1 кг сухого материала приходится 0,0615 м² поверхности испарения.

При предварительном опытом высушивании было найдено, что критическое влагосодержание материала составляет 20%, а равновесное — 1,5% от общей массы. В первом периоде сушки, когда поверхность материала насыщена влагой, скорость сушки составляла 2,44 кг влаги с 1 м² в 1 ч. Применявшийся в этом случае воздух имел влагосодержание 0,0306 кг/кг. Влагосодержание насыщенного воздуха при температуре материала было \(x_{nас} = 0,0495 \text{ кг/кг. } \) По этим данным определен коэффициент массоотдачи:

\[\beta = \frac{2,44}{0,0495 - 0,0306} = 129 \text{ кг/(м²ч.Δx = 1).} \]

Определить необходимую продолжительность сушки.
Решение (рис. 10.13). Определим по уравнению (10.36) длительность первого периода сушки, в котором вся поверхность материала насыщена влагой. По заданным параметрам: \(t_0 = 20 \, ^\circ C; \varphi_0 = 0.5; \, t_1 = 140 \, ^\circ C \) и \(t_2 = 63 \, ^\circ C, \) находим \(x_0 = 0.0075 \) и \(x_3 = 0.0294. \) Затем обычным расчетом, который здесь не приводится, находим, что часовой расход сухого воздуха \(L = 49 \, 700 \, кг/ч; \, x_1 = 0.0124 \, кг/кг; \, x_{нас} = 0.0495 \, кг/кг. \) Тогда по уравнению (10.36):

\[
F_1 = \frac{2.8 \cdot 49700}{120} \cdot \frac{0.0495 - 0.0124}{0.0495 - 0.0294} = 237 \, м^3.
\]

При заданной производительности сушилки часовая подача материала соответствует поверхности испарения

\[2260 \cdot 0.5 \cdot 0.0615 = 69.5 \, м^3/ч. \]

Таким образом, первая зона сушилки, соответствующая первому периоду сушки, должна содержать количество материала, загруженного в течение \(237/69.5 = 3.41 \, ч, \) т. е. длительность первого периода сушки 3 ч 25 мин.

Переходя к определению длительности второго периода сушки, находим:

а) объем сухого материала:

\[V_m = 2260 \cdot 0.5/640 = 1.77 \, м^3/ч; \]

б) критическое влагосодержание

\[u'_кp = 20 \cdot 640/80 = 160 \, кг/м^3 \] сухого материала;

в) равновесное влагосодержание

\[u'_p = 1.5 \cdot 640/98.5 = 9.95 \, кг/м^3 \] сухого материала.

Содержание свободной влаги в критической точке:

\[u'^*_кp = u'_кp - u'_p = 160 - 9.75 = 150.25 \, кг/м^3 \] сухого материала.
Требуемую площадь поверхности испарения для второй зоны сушилки F_2 находим по уравнению (10.38), в котором

$$ u^{*}_{n,p} V_m / L = 150,25 \cdot 1,77 / 49700 = 0,0054; $$

$$ F_2 = \frac{150,25}{129} \times 1,77 \times \ln \frac{(0,0495 - 0,0075)0,0054}{(0,0495 - 0,0124) (0,0075 + 0,0054 - 0,0124)} = 120 \text{ м}^2, $$

т. е. вторая зона сушилки, соответствующая второму периоду сушки, должна содержать количество материала, загруженного в течение $120/69,5 = 1,73$ ч. Следовательно, длительность второго периода сушки будет 1 ч 44 мин.

Общая продолжительность сушки:

$$ \tau = 3 \text{ ч } 25 \text{ мин } + 1 \text{ ч } 44 \text{ мин } = 5 \text{ ч } 9 \text{ мин}. $$

Пример 10.24. В сушилке, работающей по нормальному сушильному варианту, удаляется из материала влаги 1000 кг/ч. Атмосферный воздух ($t_0 = 10^\circ C$, $\varphi_0 = 78\%$) нагревается в паровом калорифере, давление греющего пара в котором 4 кгс/см2 ($\approx 0,4$ МПа) по манометру. Психрометр на воздухопроводе после сушилки показывает $t_2 = 50^\circ C$, $t_m = 37,5^\circ C$. Приняв удельный расход теплоты на 13% больше, чем в теоретической сушилке, определить: производительность вытяжного вентилятора, расход греющего пара, имеющего влажность 5%, и площадь поверхности нагрева калорифера, если коэффициент теплопередачи в нем равен 30 Вт/(м$^2 \cdot ^\circ C$).

Решение. По диаграмме Рамзина находим: $x_0 = 0,006 \text{ кг/кг}$ сухого воздуха; $I_0 = 25,1 \text{ кДж/кг}$; $x_2 = 0,037 \text{ кг/кг}$ сухого воздуха; $I_2 = 146,6 \text{ кДж/кг}$; $p_n = 41,5 \text{ mm рт. ст.}$ (рис. 10.14).

Удельный расход сухого воздуха по уравнению (10.14):

$$ l = \frac{1}{x_2 - x_3} = \frac{1}{0,037 - 0,006} = $$

$$ = 32,3 \text{ кг/кг испаряемой влаги}. $$

Расход сухого воздуха

$$ L = \dot{W} = 1000 \cdot 32,3 = 32300 \text{ кг/ч}. $$

Удельный объем влажного воздуха по уравнению (10.12):

$$ v_{УЛ} = \frac{R_b T}{\Pi - p_n} = $$

$$ = \frac{287 (273 + 50)}{(745 - 41,5) 133,3} = $$

$$ = 0,988 \text{ м}^3/\text{кг сухого воздуха}. $$

Рис. 10.14 (к примеру 10.24).
Производительность вытяжного вентилятора:

\[V = L \nu = 32300 \cdot 0,988 = 31900 \text{ м}^3/ч. \]

Удельный расход теплоты в теоретической сушилке по уравнению (10.19):

\[q_т = \frac{I_2 - I_0}{x_2 - x_0} = l (I_2 - I_0) = 32,3 (146,6 - 25,1) = 3920 \text{ кДж/кг испаряемой влаги.} \]

Для реальной сушилки:

\[q = 1,13 q_т = 1,13 \cdot 3920 = 4430 \text{ кДж/кг испаряемой влаги.} \]

Из уравнения (10.18)

\[q = \frac{l_1 - l_0}{x_2 - x_0} = l (l_1 - l_0) \]

находим:

\[l_1 = l_0 + \frac{q}{l} = 25,1 + \frac{4430}{32,3} = 162,1 \text{ кДж/кг.} \]

Этому значению \(l_1 \) в точке \(B \) соответствует температура \(t_1 = 144 \text{ °C.} \)

Расход теплоты в калорифере:

\[Q = W q = \frac{1000}{3600} \cdot 4430 = 1230 \text{ кВт.} \]

Расход греющего пара:

\[G_{пр} = \frac{Q}{r_x} = \frac{1230}{2117 \cdot 0,95} = 0,613 \text{ кг/с = 2,2 т/ч.} \]

Средняя разность температур в калорифере

\[151,1 \rightarrow 151,1 \]

\[10 \rightarrow 144 \]

\[\Delta t_6 = 141,1; \quad \Delta t_m = 7,1; \]

\[\Delta t_{ср} = \frac{\Delta t_6 - \Delta t_m}{2,3 \lg (\Delta t_6/\Delta t_m)} = \frac{141,1 - 7,1}{2,3 \lg (141,1/7,1)} = 45 \text{ °C = 45 K.} \]

Площадь поверхности нагрева калорифера:

\[F = \frac{Q}{K \cdot \Delta t_{ср}} = \frac{1230 \cdot 10^3}{30 \cdot 45} = 910 \text{ м}^2. \]

КОНТРОЛЬНЫЕ ЗАДАЧИ

10.1. Во сколько раз больше придется удалить влаги из 1 кг влажного материала при высушивании его от 50 до 25%, чем при высушиании от 2 до 1% влажности (считая на общую массу). В обоих случаях поступает на сушку 1 кг влажного материала.

10.2. Найти влагосодержание, энталпию, температуру мокрого термометра и точку росы для воздуха, покидающего сушилку при \(t = 50 \text{ °C} \) и \(\varphi = 0,7. \)
10.3. Температура воздуха по сухому термометру 50 °C, по мокрому 30 °C. Найти все характеристики воздуха.
10.4. Найти влагосодержание и относительную влажность паровоздушной смеси при 50 °C, если известно, что парциальное давление водяного пара в смеси 0,1 кгс/см².
10.5. Найти содержание водяного пара в смеси: а) с воздухом, б) с водородом, в) с этаном (считая на 1 кг сухого газа) при \(t = 35 °C \), \(\varphi = 0,45 \). Общее давление (абсолютное) \(P = 1,033 \) кгс/см².
10.6. Сопоставить удельный расход воздуха и теплоты в сушилке для летнего и зимнего времени (в условиях Ленинграда), если в обоих случаях воздух, уходящий из сушилки, будет иметь \(t_a = 40 °C \) и \(\varphi_a = 0,6 \). Сушилка теоретическая, нормальный сушильный вариант. Характеристики состояния воздуха в различных районах в разное время года см. в табл. XL.
10.7. Общее давление (абсолютное) паровоздушной смеси при 150 °C и относительной влажности \(\varphi = 0,5 \) составляет 745 мм рт. ст. Найти парциальное давление водяного пара и воздуха и влагосодержание воздуха.
10.8. Влажный воздух с температурой 130 °C и \(\varphi = 0,3 \) находится под давлением \(P_{abc} = 7 \) кгс/см² (\(\sim 0,7 \) МПа). Определить парциальное давление воздуха, его плотность и влагосодержание.
10.9. Какое количество влаги удаляется из материала в сушилке, если воздух поступает в сушилку в количестве 200 кг/ч (считая на абсолютно сухой воздух) с \(t_1 = 95 °C \), \(\varphi_1 = 5 \% \), а уходит из сушилки с \(t_2 = 50 °C \) и \(\varphi_2 = 60 \% \)? Определить также удельный расход воздуха.
10.10. Влажный воздух с температурой 130 °C и \(\varphi = 1 \) находится под абсолютным давлением \(P = 7 \) кгс/см² (\(\sim 0,7 \) МПа). Найти парциальное давление водяного пара, плотность влажного воздуха и его влагосодержание.
Сравнить результаты задач 10.10 и 10.8.
10.11. Определить производительность вытяжного вентилятора для сушилки, в которой из высушиваемого материала удаляется 100 кг/ч влаги при следующих условиях: \(t_0 = 15 °C \), \(\varphi_0 = 0,8 \), \(t_2 = 45 °C \), \(\varphi_2 = 0,6 \), \(P = 750 \) мм рт. ст.
10.12. Воздух перед поступлением в сушилку подогревается в калорифере до 113 °C. При выходе из сушилки температура воздуха 60 °C и \(\varphi = 0,3 \). Определить точку росы воздуха, поступающего в калорифер. Процесс сушки идет по линии \(l = \text{const} \).
10.13. Определить часовой расход атмосферного воздуха и теплоты, а также температуру воздушной смеси перед калорифером в сушилке с рециркуляцией части отработанного воздуха при следующих условиях:

<table>
<thead>
<tr>
<th>Характеристика воздуха (считая на сухой воздух):</th>
<th>(t_0 = 50) кДж/кг; (\varphi_0 = 0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>атмосферного</td>
<td>отработанного</td>
</tr>
<tr>
<td>(t_2 = 260) кДж/кг; (\varphi_2 = 0,8)</td>
<td></td>
</tr>
</tbody>
</table>
Количество возврата воздуха 80 % (от выходящего из сушилки)

Влажность материала (считая на общую массу):
- начальная
- конечная

Производительность сушилки (по влажному материалу)

10.14. Найти необходимый расход воздуха в сушилке и расход теплоты на калорифер при следующих условиях:

Характеристика воздуха:
- атмосферного
- отработанного

Влажность материала (считая на общую массу):
- начальная
- конечная

Производительность сушилки по абсолютно сухому материалу

Потери теплоты \(\Sigma Q \) с материалом, 15 % от общего количества теплоты транспортным устройством и в окружающую среду (за вычетом теплоты, вносимой влагой)

10.15. Определить к. п. д. теоретической сушилки, если состояние воздуха в ней меняется от \(\varphi_0 = 0,7 \) и \(t_0 = 20 ^\circ C \) до \(\varphi_2 = 0,6 \) и \(t_2 = 50 ^\circ C \). Влага испаряется при температуре мокрого термометра.

10.16. Найти средний потенциал сушки в теоретической сушилке при \(t_0 = 20 ^\circ C, \varphi_0 = 0,7 \) и \(t_2 = 50 ^\circ C, \varphi_2 = 0,4 \). Испарение идет при температуре мокрого термометра.

10.17. В теоретическую сушилку поступает воздух из калорифера с температурой 85 °C, при этом потенциал сушки составляет 43 °C. Потенциал сушки воздуха, покидающего сушилку, 8 °C. Найти парциальное давление водяного пара в воздухе, уходящем из сушилки, и объемный процент водяного пара в нем, если давление в сушилке (абсолютное) \(P = 750 \) мм рт. ст.

10.18. Влажный материал с начальной влажностью 33 %, критической 17 % и равновесной 2 %, высушивается при постоянных условиях сушки до 9 % влажности в течение 8 ч. Определить продолжительность сушки до 3 % влажности в тех же условиях. Влажность дана в процентах от массы абсолютно сухого вещества.

10.19. Определить поверхность нагрева вальцовой вакуум-сушилки производительностью 200 кг/ч (по высушенному материалу). Начальная влажность 50 %, конечная 5 % (считая на общую массу). Коэффициент теплопередачи 350 Вт/(м²·К); температура сушки 60 °C; удельная теплоемкость сухого материала \(1,26 \cdot 10^7 \) Дж/(кг·К); начальная температура материала 20 °C; давление греющего пара \(P_{\text{пар}} = 1,5 \) кгс/см². Потери теплоты составляют 10 % от общего количества теплоты, отдаваемого греющим паром.

453
10.20. Найти точку росы и относительную влажность воздуха, выходящего из сушилки, по показаниям психрометра:

\[t_e = 50 \degree C, \quad t_m = 35 \degree C. \]

10.21. Найти температуру влажного материала в теоретической сушилке (в первом периоде сушки), если атмосферный воздух поступает в калорифер при

\[t_0 = 15 \degree C \quad \text{и} \quad \varphi_0 = 0.8 \] и нагревается в нем до

\[t_1 = 123 \degree C. \]

10.22. В сушилке производительностью 1 т/ч (по влажному материалу) высушивается материал от 55 до 8% влажности (на общую массу). Атмосферный воздух имеет параметры

\[t_0 = 20 \degree C, \quad \varphi_0 = 0.75 \] и нагревается в калорифере до

\[t_1 = 110 \degree C. \]

Потенциал сушки на выходе из сушилки

\[x_2 = 10 \degree C. \]

Определить расход воздуха и греющего пара, если давление пара

\[P_{абс} = 0,25 \text{ МПа, а степень сухости его 95 \%.} \]

10.23. В сушилке производительностью 500 кг/ч (по абсолютно сухому продукту) высушивается материал от 42 до 9% влажности (на абсолютно сухое вещество). Температура воздуха, поступающего в калорифер,

\[t_0 = 20 \degree C, \quad \text{а его точка росы} \quad t_p = 8 \degree C. \]

Процесс сушки в теоретической сушилке шел бы при

\[l = 125 \text{ кДж/кг.} \]

Температура воздуха на выходе из сушилки

\[t_2 = 45 \degree C. \]

Нормальный сушильный вариант. Определить расход греющего пара и поверхность нагрева калорифера, если давление (абсолютное) греющего пара

\[0,2 \text{ МПа, влажность 5 \%, а коэффициент тепло-} \]

передачи

\[K = 32 \text{ Вт/(м}^2\cdot\text{К). Сумма всех потерь теплоты составляет} \]

15% от расхода теплоты в теоретической сушилке.

10.24. Воздух с

\[t = 60 \degree C \quad \text{и} \quad \varphi = 0.2 \] охлаждается холодной водой в трубчатом противоточном теплообменнике до точки росы. Охлаждающая вода нагревается от 15 до 25 °C. Определить расход охлаждаемого воздуха, циркуляционное давление водяного пара и его объемный процент в воздухе, а также расход охлаждающей воды, если поверхность теплообменника

\[15 \text{ м}^2, \quad \text{а коэффициент тепло-} \]

передачи

\[K = 46 \text{ Вт/(м}^2\cdot\text{К).} \]

10.25. Найти температуру и благосодержание воздуха, уходящего из теоретической сушилки, если средний потенциал сушки

\[x_{ср} = 41 \degree C. \]

Воздух поступает в калорифер при

\[t_0 = 15 \degree C \quad \text{и} \quad \varphi = 70 \%. \]

Энтальпия воздуха, поступающего из калорифера в сушилку,

\[l = 144,2 \text{ кДж/кг.} \]

Определить также температуру влажного материала (в первом периоде сушки).

10.26. Определить температуру поступающего в теоретическую сушилку воздуха, если средняя движущая сила сушильного процесса

\[\Delta x_{ср} = 0,0136 \text{ кг/кг, температура уходящего из сушилки воздуха} \quad t_2 = 45 \degree C, \quad \text{и его относительная влажность} \quad \varphi_2 = 60 \%. \]

10.27. Определить расход воздуха, расход греющего пара и требуемое его давление для противоточной воздушной сушилки, работающей по нормальному сушильному варианту. Производительность сушилки 600 кг/ч влажного материала, начальная влажность которого 50% (считая на общую массу), а конечная 9%.

Воздух, поступающий в калорифер, имеет

\[t_0 = 10 \degree C, \quad \varphi_0 = 80 \%; \]

454
воздух, выходящий из сушилки, имеет \(t_2 = 50^\circ C \), \(\varphi_2 = 50% \). Температуру греющего пара выбрать. Влажность греющего пара 6%.

Расчет произвести: а) для теоретической сушилки, б) для действительной сушилки, призимая в ней температуру материала на входе 16 \(^\circ C \), на выходе 55 \(^\circ C \). Удельная теплоемкость высушенного материала 1,68 кДж/(кг·К). Масса транспортного устройства (стальной транспортер), несущего часовой загрузку сырого материала, 450 кг. Потери теплоты сушилкой в окружающую среду составляют 10% от количества теплоты, передаваемого воздуху в калорифере.

10.28. В теоретическую сушилку,рабатывающую с промежуточным (ступенчатым) подогревом воздуха, поступает 1800 кг/ч влажного материала с начальной влажностью 39%. Конечная влажность 8% (считая на общую массу). Воздух на выходе из сушилки имеет температуру 45 \(^\circ C \). Температура атмосферного воздуха 20 \(^\circ C \). Всего в сушильной установке три калорифера, в каждом из которых воздух нагревается до 70 \(^\circ C \). После каждого калорифера воздух в сушилке насыщается водяным паром до \(\varphi = 0,7 \). Определить расход сухого воздуха и греющего пара. Давление греющего пара \(P_{абс} = 0,3 \) МПа, влажность его 5%. Дать схему процесса на диаграмме Рамзина.

10.29. Расход пара в калорифере сушилки при давлении \(P_{абс} = 0,2 \) МПа и влажности 10% составляет 200 кг/ч. Расход теплоты на 10% больше расхода теплоты в теоретической сушилке. Площадь поверхности нагрева калорифера 41 м². Атмосферный воздух имеет \(t_0 = 25 ^\circ C \) и точку росы \(t_r = 10 ^\circ C \). Процесс сушики идет при \(I_2 = 100 \) кДж/кг. Парциальное давление водяного пара в воздухе, покидающем сушилку, 25 мм рт. ст.

Определить коэффициент теплопередачи в калорифере и производительность сушилки по влажному материалу, если поступающий в сушилку материал имеет влажность 60%, а выходящий из сушилки 10% (считая на общую массу).

10.30. В сушилке производительностью 500 кг/ч (по высушенному материалу) высушивается материал от 70 до 10% (считая на общую массу). Показания психрометра атмосферного воздуха 15 и 20 \(^\circ C \). Из сушилки воздух выходит с температурой 45 \(^\circ C \) и относительной влажностью 50%. Потери теплоты в сушилке и в калорифере составляют 8% от расхода теплоты в теоретической сушилке.

Определить площадь поверхности нагрева калорифера и расход греющего водяного пара, если он имеет давление \(P_{абс} = 0,2 \) МПа и влажность 5%. Коэффициент теплопередачи в калорифере 35 Вт/(м²·К).

10.31. 1000 кг/ч влажного материала с начальной влажностью 50% высушивается до конечной влажности 8% (считая на общую массу). Высушивание производится: а) в вакуум-сушилке при температуре материала во время сушки 40 \(^\circ C \); б) в атмосферной воздушной сушилке при той же температуре материала (в первом периоде). Атмосферный воздух имеет \(t_0 = 20 ^\circ C \), \(\varphi_0 = 0,7 \); ухо-
дящий из сушилки воздух имеет $t_2 = 55^\circ C$. В обоих случаях влажный материал поступает в сушилку при $15^\circ C$, а выходит при $40^\circ C$. Удельная теплоемкость высушенного материала $1,26 \cdot 10^3$ Дж/(кг·К). Пренебрегая потерями теплоты в окружающую среду и на нагрев транспортирующего устройства, определить удельные расходы теплоты в обеих сушилках.

10.32. В теоретической сушилке производительностью 600 кг/ч абсолютно сухого материала высушивается материал от влажности 35 до 8% (считая на общую массу). Показания психрометра, установленного в помещении, из которого поступает воздух в калорифер: $t_0 = 18^\circ C$, $t_m = 15^\circ C$. Выходящий из сушилки воздух имеет $t_2 = 40^\circ C$ и $\varphi_2 = 0,65$.

Определить расход греющего пара в калорифере и площадь поверхности нагрева, если давление пара $P_{абс} = 0,2$ МПа и коэффициент теплопередачи $K = 33$ Вт/(м2·К).

10.33. Определить расход воздуха, расход греющего пара, требуемое его давление и поверхность калорифера для сушилки, производительностью которой равна 600 кг/ч влажного материала с начальной влажностью 50% и конечной 9% (считая на общую массу). Показания психрометра для воздуха, поступающего в калорифер, 10 и 5°С. Воздух на выходе из сушилки имеет $t_2 = 50^\circ C$, $\varphi_2 = 50%$. Температуру греющего водяного пара принять на 15°С выше температуры воздуха на выходе из калорифера. Влажность греющего водяного пара 6%. Расход теплоты на 10% больше расхода теплоты в теоретической сушилке. Коэффициент теплопередачи в калорифере 35 Вт/(м2·К).

10.34. Определить производительность по высушенному материалу, поверхность нагрева калорифера и долю возвращаемого воздуха в теоретической сушилке с рециркуляцией части отработанного воздуха. Расход свежего атмосферного воздуха 6000 кг/ч, его энтальпия 50 кДж/кг, парциальное давление водяного пара в нем 12 мм рт. ст. Начальная влажность материала 40%, конечная 7% (на общую массу). Параметры воздушной смеси на входе в калорифер: $x = 0,034$; $t = 40^\circ C$. В калорифере воздух нагревается до 88°С. Коэффициент теплопередачи в калорифере 47 Вт/(м2·К). Давление греющего водяного пара $P_{абс} = 0,2$ МПа.

ПРИМЕР РАСЧЕТА СУШИЛКИ КИПЯЩЕГО СЛОЯ
ДЛЯ СУШКИ ХЛОРИСТОГО КАЛИЯ

Данные для расчета.
Продолжительность (по высушенному материалу) $G_к = 20$ т/ч
Влажность соли (на общую массу):
наличная $\sigma_\text{вх} = 10 \%$
конечная $\sigma_\text{вк} = 0,5 \%$
Средний диаметр частиц $d = 0,25 \text{ мм}$ ($d_{\text{макс}} = 0,5 \text{ мм}$, $d_{\text{мин}} = 0,1 \text{ мм}$)
Температура соли, поступающей на сушку $\vartheta_0 = 20^\circ C$
Удельная теплоемкость сухой соли $c_\text{м} = 0,712 \cdot 10^8$ Дж/(кг·К)
Плотность соли $\rho_{\text{мат}} = 2 \cdot 10^3$ кг/м3
Для сушки использовать топочные газы. Тепловые потери принять равными 15 % от расхода теплоты на нагрев материала и испарение влаги. В качестве топлива используется мазут марки М-100 состава: С = 80,8 %; Н = 9,8 %; Н = 0,46 %; СО = 0,64 %; О = 0,28 %; А = 0 %; В = 8 %. Коэффициент избытка воздуха α = 1,25.

Тепловые потери в топке принять равными 5 % от теплоты сгорания твердого топлива. Параметры воздуха на входе в топку: t₀ = 20 °C; x₀ = 0,01 кг/кг.

Значения коэффициентов для расчета теплопотерь различных компонентов при заданных температурах дать в табл. 10.4.

Выбор конструкции сушилки и условий ее работы.

Факторы, влияющие на выбор конструкции сушилки:
1) состояние высушиваемого материала — сыпучий, комкующийся во влажном состоянии;
2) материал выдерживает нагревание до высокой температуры (tₚₙ = 770 °C); 3) отношение максимального размера частиц к минимальному dₘₐₓ/dₘᵢₙ = 0,5/0,1 = 5;
4) подлежит удалению в основном поверхностная влага;
5) решетку выбираем (рекомендуемую при сушке солей) с диаметром отверстий dₜₚₙ = 5 мм;
6) допускается некоторая неравномерность высушиваемого материала по конечному влагосодержанию, поскольку при хранении все частицы соли приобретут одинаковую влажность.

Фактор 3) позволяет предварительно выбрать однокамерный сушильный аппарат с вертикальными стенками.

Для обеспечения лучших гидродинамических условий выбираем аппарат круглого сечения.

Высоту кипящего слоя в аппарате принимаем в 4 раза большей зоны действия струй — зоны гидродинамической стабилизации [10,7]. Последняя определяется из соотношения:

\[hₜₚₙ = 20dₜₚₙ = 20 \cdot 5 = 100 \text{ мм}; \quad h = 4hₜₚₙ = 4 \cdot 100 = 400 \text{ мм}. \]

Температуру разбавленных газообразованных газов, поступающих под решетку, принимаем равной t₁ = 800 °С, температуру выходящих газов t₂ = 125 °С, что позволит исключить конденсацию паров в пьезулаивающей аппаратуре (циклон, фильтры). Температуру выгружаемой соли приближенно можно принять равной температуре отходящих газов, т.е. tᵣ = 125 °С.

Подачу комкующейся влажной соли для обеспечения равномерного кипения следует производить с помощью разбрасывателей, равномерно распределяющих материал по поверхности слоя.

Выгрузку соли из аппарата рекомендуется производить непосредственно у решетки для вывода из аппарата комков.

Расчет. 1. Количество влажного материала:

\[Gₚ = \frac{Gₚ}{Gₚ} \left(\frac{100 - uₚ}{100 - uₚ} \right) = 20000 \left(\frac{0,995}{0,9} \right) = 22100 \text{ кг/ч} = 6,15 \text{ кг/с.} \]

Таблица 10.4

<table>
<thead>
<tr>
<th>Газ</th>
<th>Коэффициенты для расчета с = 1/(t)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b \cdot 10⁵</td>
<td>d \cdot 10⁶</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>0,3805</td>
<td>0,2221</td>
<td>-0,0473</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>0,3569</td>
<td>0,0532</td>
<td>-0,0014</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>0,3092</td>
<td>0,0240</td>
<td>-0,0007</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>0,3805</td>
<td>0,2221</td>
<td>-0,0473</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>0,3119</td>
<td>0,0506</td>
<td>-0,0231</td>
<td></td>
</tr>
<tr>
<td>Воздух</td>
<td>0,3150</td>
<td>0,0310</td>
<td>-0,0027</td>
<td></td>
</tr>
</tbody>
</table>
2. Количество испаряемой влаги:
\[W = G_Н - G_Р = 22 \, 100 - 20 \, 000 = 2100 \, \text{кг/ч} = 0,584 \, \text{кг/с}. \]

3. Расход теплоты:
\[Q = Q_{\text{исп}} + Q_{\text{нагр}} + Q_{\text{шот}} = 1,15 \left(W \left[r + c_П (t_2 - \theta_1) \right] + G_Н c_m (\theta_2 - \theta_1) \right) =
\]
\[= 1,15 \left(0,584 \left[2490 \cdot 10^3 + 1,97 \cdot 10^3 (125 - 20) \right] + 5,56 \cdot 0,712 \cdot 10^3 (125 - 20) \right) =
\]
\[= 2280 \cdot 10^3 \, \text{Вт}. \]

Удельный расход теплоты:
\[q = Q/W = 2280/0,584 = 3900 \, \text{кДж/кг влаги}. \]

4. Расчет расхода и состава сушильных газов.
Так как этот расчет связан с большим объемом вычислений, то он проводится на ЭВМ.

Блок-схема алгоритма расчета:
Условные обозначения к блок-схеме расчета: Q^p_i — теплота сгорания твердого топлива (пнича, с учетом диссоциации продуктов сгорания); V_{ax} — расход воздуха на горение; V^0 — количество воздуха, теоретически необходимого для горения; $V_{l(k)}$ — объемы отдельных составляющих продуктов горения; $\Sigma V_{l(k)}$ — объем тонких газов после топки; $c_{l(t, k)}$ — теплоемкости компонентов газа при заданных температурах; t' — температура горения газов; V_{cm} — расход воздуха на смешение; B — расход топлива на горение; x_1 — благосодержание вноса в сушку; L_1 — расход сушильных газов на входит в сушку; L_2 — расход сушильных газов на выходе из сушки; ρ_1 — средняя плотность газа на выходе в сушку; ρ_2 — средняя плотность газа на выходе из сушки; $g_{l(k)}$ — объемные доли компонентов газа; f — тепловые потери в топке; x_0 — благосодержание воздуха в входит в топку; α — коэффициент избытка воздуха.

Таблицы идентификаторов:
Индекс i соответствует: 1 — температуру газов на выходе из топки; 2 — температуру газов на входе в сушку (после смешения); 3 — температуру газов на выходе из сушки; 4 — температуру воздуха, поступающего на смешение.
Индекс k соответствует: 1 — CO$_2$; 2 — H$_2$O; 3 — N$_2$; 4 — SO$_2$; 5 — O$_2$.

Исходные данные

<table>
<thead>
<tr>
<th>Величина</th>
<th>t_r</th>
<th>t_1</th>
<th>t_2</th>
<th>t_0</th>
<th>$M_{(k)}$</th>
<th>C^P</th>
<th>H^P</th>
<th>N^P</th>
<th>S^P</th>
<th>O^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>T(1)</td>
<td>T(2)</td>
<td>T(3)</td>
<td>T(4)</td>
<td>M(K)</td>
<td>X(1)</td>
<td>X(2)</td>
<td>X(3)</td>
<td>X(4)</td>
<td>X(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Величина</th>
<th>W^P</th>
<th>α</th>
<th>W</th>
<th>Q</th>
<th>$a_{(k)}$</th>
<th>$b_{(k)}$</th>
<th>$d_{(k)}$</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>X(6)</td>
<td>AL</td>
<td>W</td>
<td>Q</td>
<td>TK(K, 1)</td>
<td>TK(K, 2)</td>
<td>TK(K, 3)</td>
<td>I</td>
<td>K</td>
</tr>
</tbody>
</table>

Рассчитываемые величины

<table>
<thead>
<tr>
<th>Величина</th>
<th>Q^P_{ill}</th>
<th>V^0</th>
<th>V_{ax}</th>
<th>t'</th>
<th>V_{cm}</th>
<th>B</th>
<th>L_1</th>
<th>L_2</th>
<th>x_1</th>
<th>$\bar{\rho}_1$</th>
<th>$\bar{\rho}_2$</th>
<th>$y_{(k)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификатор</td>
<td>QRN</td>
<td>V0</td>
<td>VA</td>
<td>T1</td>
<td>VSM</td>
<td>B</td>
<td>L1</td>
<td>L2</td>
<td>X1</td>
<td>ROI</td>
<td>RO2</td>
<td>Y(K)</td>
</tr>
</tbody>
</table>

Программа расчета:

```plaintext
PROGRAM
DIMENSION X(6), M(5), V(5), C(4,6), TK(6,3), T(4), Y(5)
REAL L1, L2, M
READ(5) X, T, M, W, Q, AL
READ(5) (TK(K,1), K=1,6) I=1,3
QRN=(34*0.9*X(1)-125.6*X(2)-1*0.9*(X(5)-X(4))- 25.*((9.*X(2)+X(7)))
V0=(X(8.89*X(1)+26.5*X(2)-3.33*X(5))*1.0E16
V1=AL*V0
SV=0.9S1=0.9
V(1)=1.85*X(1)
V(2)=11.2*X(2)+1.24*X(7)+0.96*AL*V0
V(3)=0.97AL*V0+0.98*X(3)
V(4)=0.97*X(4)
V(5)=0.21*(AL-1)*V0
```

459
DO 1 K=1,5
SV=SV+V(K)
1 S1=S1+(V(K)/22.4)*M(K)
DO 2 I=2,4
DO 2 K=1,6
C(I,K)=(TK(K,1)+TK(K,2)*T(I)+TK(K,3)*T(I)*2)*419 \(\Omega\)
S2=\(\emptyset\)
DO 4 K=1,6
C(I,K)=(TK(K,1)+TK(K,2)*T(I)+TK(K,3)*T(I)*2)*419 \(\Omega\)
S2=S2+C(I,K)*V(K)
T1=(\(9.95*QRN+V\ \emptyset*C(4,6)*T(4)\))/S2
IF (ABS(T(I)-T1)<5) GO TO 5
T(I)=T1 GO TO 3
5 T(I)=T1
S3=\(\emptyset\) S4=\(\emptyset\) S5=\(\emptyset\) S6=\(\emptyset\)
DO 6 K=1,5
S3=S3-C(2,K)*V(K)
S4=S4-C(3,K)*V(K)
S5=S5-C(2,K)*22.4/M(K)
S6=S6-C(3,K)*22.4/M(K)
VSM=(S2*T(I)-S3*T(2))/((C(2,6)*\(\emptyset\).984+\(\emptyset\).16*C(2,2))*T(2)-
(C(4,6)*\(\emptyset\).984+\(\emptyset\).16*C(4,2))*T(4))
V(2)=V(2)-W/B
V(3)=V(3)+\(\emptyset\).79*VSM
V(5)=V(5)+\(\emptyset\).21*VSM
SV=SV-VSM
S1=S1+VSM*29./22.4
S3=S3-C(2,6)*VSM
S4=S4-C(3,6)*VSM
DO 7 K=1,5
7 Y(K)=V(K)/SV
B=Q/(T(2)*S3-T(3)*S4)
L1=B*S1
X1=(\(\emptyset\).8*V(2)+VSM*\(\emptyset\).13)/L1
RO1=(S1/SV)*(273./273.+T(2))
L2=L1+W
RO2=(S1+W/B)/(SV+1.24*W/B)*(273./273.+T(3))
WRITE(7,8) QRN, V, VA, T1, VSM, Y(1), Y(2), Y(3), Y(4),
Y(5), B, X1, L1, L2, RO1, RO2
2X, 5E11.4/5X, 'Y(1)', 1X, 'X', 'Y(2)', 1X, 'X', 'Y(3)', 1X, 'X', 'Y(4)',
'L2', 1X, 'X', 'ROI'/2X, 5E11.4/5X, 'RO2'/2X, 5E11.4)
STOP
END

Программа реализована на ЭВМ «Искра-1256».

В результате расчета получены следующие данные: \(Q_H=37,42 \cdot 10^3\) кДж/кг;
\(x=0,6168\) кг/кг; \(y_2=0,707\); \(\dot{V}=9,927\) м³/кг*; \(L_1=2,969\) кг/с; \(y_3=1,805\);
\(V_\alpha=12,41\) м³/кг*; \(\dot{L_2}=3,555\) кг/с; \(y_4=0,0003\); \(T_1=1668\) °C; \(\bar{\delta}_1=0,329\) кг/м³;
\(y_5=0,323\); \(\dot{V}_{em}=17,95\) м³/кг*; \(\bar{\delta}_2=0,8067\) кг/м³; \(B=0,0737\) кг/с; \(y_1=0,113\).

5. Расчет динамических коэффициентов вязкости сульфидных газов.

* При 0 °C и давлении 0,1013 МПа (760 мм рт. ст.).
Значения динамических коэффициентов для каждого компонента при заданной температуре находим по номограмме (рис. VI):

\[M_{cm} = \sum_{k=1}^{5} y_k M_k = 0,113 \cdot 44 + 0,707 \cdot 18 + 1,805 \cdot 28 + \\
+ 0,0003 \cdot 64 + 0,323 \cdot 32 = 78,59 \text{ кг/кмоль}; \]

\[\mu_1 = \frac{M_{cm}}{5 \sum_{k=1}^{5} y_k M_k} = \]

\[= \frac{78,59}{0,113 \cdot 44 + 0,707 \cdot 18 + 1,805 \cdot 28 + 0,0003 \cdot 64 + 0,323 \cdot 32} = \]

\[= 4,606 \cdot 10^{-5} \text{ кг/(м·с)}; \]

\[\mu_2 = \frac{M_{cm}}{5 \sum_{k=1}^{5} y_k M_k} = \]

\[= \frac{78,59}{2,05 \cdot 10^{-8} + 1,4 \cdot 10^{-8} + 2,2 \cdot 10^{-8} + 1,7 \cdot 10^{-8} + 2,6 \cdot 10^{-8}} = \]

\[= 2,043 \cdot 10^{-5} \text{ кг/(м·с)}. \]

6. Скорость газов.

Предварительно рассчитываем критическую скорость псевдоожижения для частиц среднего размера, пользуясь графиком Ly = f (Аг) для температуры в слое, которую можно считать равной температуре уходящих газов, т. е. 125 °С. Критерий Архимеда:

\[\text{Аг} = \frac{d^4_{cp} \rho_m \rho_e \beta^2_2}{\mu^2_2} = \frac{2,5 \cdot 10^{-12} \cdot 2 \cdot 10^3 \cdot 9,81 \cdot 0,8067}{2,043 \cdot 10^{-10}} = 5,92 \cdot 10^2. \]

Критическое значение критерия Лиценко: \(L_y = 10^{-4}\). Критическая скорость псевдоожижения:

\[\omega_{kr} = \sqrt[3]{L_y \mu_2 \rho_m \beta^2_2} = \sqrt[3]{2,043 \cdot 10^{-10} \cdot 9,81 \cdot 2 \cdot 10^3 / 0,8067^2} = \]

\[= 0,039 \text{ м/с.} \]

Рабочее значение критерия Ly выбираем при порозности кипящего слоя \(\varepsilon = 0,75 \), так как для процессов сушики, идущих в первом периоде, интенсивность процесса тем выше, чем больше скорость газов.

При \(\varepsilon = 0,75 \) находим \(L_y = 3,4 \cdot 10^{-4} \) (рис. 10.15). Тогда число псевдоожижения:

\[K_w = \sqrt[3]{L_y / L_y_{kr}} = \sqrt[3]{3,4 \cdot 10^{-1} / 10^{-4}} = 15. \]

Скорость газов (считая на полное сечение решетки):

\[w = K_w \omega_{kr} = 15 \cdot 0,039 = 0,585 \text{ м/с.} \]

Скорость газов непосредственно у решетки больше из-за более высокой температуры. Эта скорость равна:

\[w_{реш} = \frac{273 + t_1}{273 + t_2} = 0,585 \frac{273 + 800}{273 + 125} = 1,58 \text{ м/с.} \]
Если площадь живого сечения решетки принять равной 10% от всей ее площади, то скорость газа в отверстиях решетки будет равна: \(w_{отв} = 10 \cdot 1,58 = 15,8 \) м/с. Эта скорость достаточна для псевдоожженного слоя не только с частицами наибольшего диаметра \((d_{макс} = 0,5 \) мм), но и с более крупными образованиями (комками), что видно из следующего расчета.

Если принять число псевдоожжения для укрупненных частиц небольшим, лишь достаточным для их перемещения (например, \(K_{вк} = 3 \)), то критическая скорость псевдоожжения для этих частиц будет

\[
 w_{кр (отв)} = \frac{w_{отв}}{K_{вк}} = \frac{15,8}{3} = 5,27 \text{ м/с.}
\]

Тогда

\[
 L_{yкр (отв)} = \frac{w_{кр (отв)}^3}{\mu_1 \rho_{мат}} = \frac{5,27^3 \cdot 0,329^2}{4,606 \cdot 10^{-8} \cdot 9,81 \cdot 2 \cdot 10^3} = 1,75 \cdot 10.
\]

Значению \(L_{yкр} = 1,75 \cdot 10 \) соответствует \(\text{Ar} = 10^7 \). Тогда диаметр укрупненных частиц (комков):

\[
 d_{ном} = \sqrt[3]{\frac{\text{Ar} \cdot \mu_1}{\rho_{мат} \cdot \rho_1}} = \sqrt[3]{\frac{10^7 \cdot 4,606 \cdot 10^{-10}}{2 \cdot 10^3 \cdot 9,81 \cdot 0,329}} = 0,0149 \text{ м.}
\]

Таким образом, у отверстий решетки в состоянии перемещаться даже комки соли диаметром \(\sim 15 \) мм.
7. Размер решетки сушилки.
Полную площадь решетки определим из выражения:

\[
 S_{реш} = \frac{L_2}{\rho_2 \omega} = \frac{3,555}{0,8067 \cdot 0,585} = 7,533 \text{ м}^2.
\]

Диаметр решетки:

\[
 D_{реш} = \sqrt{S_{реш} / 0,785} = \sqrt{7,533 / 0,785} = 3,098 \text{ м.}
\]

8. Сепарационное пространство.
В высоту сепарационного пространства принимаем в 4 раза больше высоты кипящего слоя:

\[
 h_{сеп} = 4 \cdot 400 = 1600 \text{ мм.}
\]

Общая высота аппарата (над решеткой):

\[
 h + h_{сеп} = 400 + 1600 = 2000 \text{ мм.}
\]
Проверим, будут ли выноситься из аппарата наименьшие частицы соли (диаметр ~ 0,1 мм). Критерий Архимеда:

$$Ar = \frac{\rho_2 \rho_{мат} \varphi_2}{\mu_2^2} = \frac{1 \cdot 10^{-12} \cdot 2 \cdot 10^3 \cdot 9,81 \cdot 0,8067}{2,043 \cdot 10^{-10}} = 3,79 \cdot 10.$$

Критерий Лацисенко, соответствующий уносу частиц, будет равен $L_{вит} \leq L_{вит,мак} = 0,16, а скорость витания частиц диаметром 0,1 мм:

$$w_{вит} = \sqrt[3]{L_{вит,мак} \cdot \frac{\rho_{ amat} \varphi_2}{\rho_2^2}} = \sqrt[3]{0,16 \cdot 2,043 \cdot 10^{-5} \cdot 2 \cdot 10^3 \cdot 9,81 / 0,8067^2} = 0,453 \text{ м/с.}$$

Таким образом, аппарат с вертикальными стенками не обеспечит осаждения в сепарационном пространстве частиц соли диаметром 0,1 мм. Для того чтобы обеспечить их осаждение, сечение сепарационного пространства следует расширить до значения

$$S_{csep} = 1,1 S_{реш} \frac{w}{w_{вит}} = 1,1 \cdot 7,533 \frac{0,585}{0,453} = 10,7 \text{ м².}$$

Здесь коэффициент 1,1 вводится для некоторого снижения скорости потока по сравнению со скоростью витания, необходимого для обеспечения осаждения частиц.

Диаметр сепарационного пространства при этом будет равен:

$$D_{csep} = \sqrt{S_{csep} / 0,785} = \sqrt{10,7 / 0,785} = 3,69 \text{ м.}$$

Эскиз сушилки дан на рис. 10.16.

ПРИМЕР РАСЧЕТА ВАЛЬЦОВОЙ СУШИЛКИ

Определить основные размеры двухвалцовой сушилки для сушики пасты углекислого нитрата производительностью 90 кг/ч пасты. Начальная влажность 75 %, конечная 10 % (на общую массу). Сушилка обогревается глухим паром ($P_абс = 1$ кгс/см2, т. е. ~0,1 МПа). Толщина слоя материала ~1 мм. Толщина стенок чугунного вальца 10 мм. Над поверхностью материала проникает воздух со скоростью 1,5 м/с. Температура воздуха 40 °C, $\varphi = 40 \%$.

Решение. Расчет сушилки можно сделать через коэффициент теплопередачи от пара к воздуху. Процесс передачи теплоты в вальцевой сушилке происходит следующим образом: от конденсирующегося пара теплота передается стенке барабана, а от него — высушиваемому материалу. Влага, испаряющаяся на материале, диффундирует в воздух, унося с собой соответствующее количество теплоты. Можно подсчитать количество диффундирующей влаги и, исходя из этого, определить эквивалентный коэффициент теплоотдачи.

Примем коэффициент теплоотдачи от конденсирующегося пара к стенке барабана $\alpha = 9280 \text{ Вт/(м²·К). Коэффициент теплопроводности чугуна } \lambda_ч = 46,4 \text{ Вт/(м·К), средний коэффициент теплопроводности высушенного материала } \lambda_{мат} = 0,8 \text{ Вт/(м·К).}$

Эквивалентный коэффициент теплоотдачи при испарении влаги определяем из следующего уравнения:

$$\alpha_{исп} = \frac{q_{исп}}{\Delta t} = \frac{Gr}{\varphi_{мат} - t_{возд}},$$

где r — угловая темпераucha параобразования, Дк/кг.

Так как по уравнению (10.25) удельный расход испаряемой влаги G [в кг/(м·ч)] равен

$$G = 0,04075 \varphi^{0,8} \Delta \rho,$$

то коэффициент теплоотдачи $\alpha_{исп}$ [в Вт/(м²·К)] может быть рассчитан по уравнению:

$$\alpha_{исп} = \frac{0,04075 \varphi^{0,8} \Delta \rho}{\Delta t \cdot 3600}.$$
Зададимся (с последующей проверкой) температурой наружной поверхности материала \(\theta_{\text{мат}} = 80 \, ^{\circ}\mathrm{C} \) (допустимая температура для углеродистого никеля не выше 85 \(^{\circ}\mathrm{C} \)). Давление насыщенного водяного пара при 80 \(^{\circ}\mathrm{C} \) \(P_{\text{нас}} = 355 \, \text{мм р. ст.} \); парциальное давление водяного пара \(P_{\text{v}} \) в воздухе при \(t = 40 \, ^{\circ}\mathrm{C} \) и \(\varphi = 0,4 \) составляет 22,4 \(^{\circ}\mathrm{мм} \) р. ст. Удельная теплота парообразования воды при атмосферном давлении \(t = 2264 \cdot 10^{3} \, \text{Дж/кг} \).

Следовательно, эквивалентный коэффициент теплоотдачи при испарении:

\[
\alpha_{\text{инв}} = \frac{0,04075 \cdot 1,5 \cdot 8 \cdot (355 - 22,4) \cdot 2264 \cdot 10^{3}}{(80 - 40) \cdot 3600} = 294 \, \text{Вт/(м}^{2}\cdot\text{К)}.\]

Коэффициент теплопередачи от конденсирующегося пара к воздуху:

\[
K = \frac{1}{\frac{1}{9280} + \frac{0,01}{46,4} + \frac{0,001}{0,8} + \frac{1}{294}} = 203 \, \text{Вт/(м}^{2}\cdot\text{К)}.\]

Удельная тепловая нагрузка:

\[
q = K (t_{\text{пара}} - t_{\text{возд}}) = 203 (100 - 40) = 12180 \, \text{Вт/м}^{2}.
\]

Проверим принятую температуру поверхности материала \(\theta_{\text{мат}} \) по уравнению:

\[
\Delta t = q/\alpha_{\text{инв}} = 12180/294 = 41,4 \, ^{\circ}\mathrm{C} = 41,4 \, \text{K}.
\]

Температура поверхности материала:

\[
\theta_{\text{мат}} = t_{\text{возд}} + \Delta t = 40 + 41,4 = 81,4 \, ^{\circ}\mathrm{C},
\]
что близко к принятой.

Расход воды, испаряемой в сушилке:

\[
W = \alpha_{\text{п}} \cdot \frac{u_{\text{n}} - u_{\text{k}}}{100 - u_{\text{k}}} = 90 \cdot \frac{75 - 10}{100 - 10} = 65 \, \text{кг/ч}.
\]

Расход теплоты на подогрев материала и на испарение влаги:

\[
Q = \frac{90 \cdot 3,46 \cdot 10^{3} \cdot (81,4 - 15) + 65 \cdot 2264 \cdot 10^{3}}{3600} = 46500 \, \text{Вт}.
\]

Необходимая площадь поверхности нагрева вальцовой сушилки:

\[
F = \frac{Q}{q} = \frac{46500}{12180 \cdot 0,75} = 5,38 \, \text{м}^{2},
\]
где 0,75 — коэффициент, учитывающий фактическую поверхность соприкосновения материала с греющей поверхностью вальцов.

По нормам ближайшая двухвальцовая сушилка имеет \(F = 5,2 \, \text{м}^{2} \) (диаметр валцов 600 мм, длина 1400 мм). Эту сушилку мы и выбераем, хотя площадь ее поверхности нагрева немного меньше, чем требуется по расчету. Для обеспечения заданной производительности потребуется несколько увеличить давление греющего пара, что легко отрегулировать на практике.

Тепловые потери сушилки должны быть учтены при определении расхода греющего пара.

Пример расчета камерной сушилки с рециркулирующей воздуха — см. седьмое издание этой книги, 1970 г.
Примеры расчета барабанной сушилки и вакуум-сушильного шкафа — см. шестое издание этой книги, 1964 г.
УМЕРЕНОЕ И ГЛУБОКОЕ ОХЛАЖДЕНИЕ

ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. Для холодильного (обратного) цикла Карно 1—2—3—4, состоящего из двух изотермических и двух изоэнтропических процессов (рис. 11.1), холодильный коэффициент:

\[
\varepsilon_k = \frac{Q_0}{L} = \frac{Q_0}{L_n - L_\lambda} = \frac{Q - Q_0}{T - T_0}.
\]

(11.1)

Здесь \(Q_0\) — холодопроизводительность — расход теплоты, получаемой холодильным агентом (рабочим веществом) от охлаждаемой среды при температуре \(T_0\), \(B\); \(Q\) — расход теплоты, отдываемой хладагентом воде при температуре \(T\), \(B\); \(L_n\) — мощность, затрачиваемая в компрессоре при изоэнтропическом сжатии пара рабочего вещества, \(B\); \(L_\lambda\) — мощность, получаемая при изоэнтропическом расширении хладагента в детандере, \(B\); \(L = L_n - L_\lambda = Q - Q_0\) — теоретическая мощность, затрачиваемая в цикле, \(B\).

Как следует из формул (11.1), \(\varepsilon_k\) теоретически зависит только от значений температуры \(T\) и \(T_0\) и не зависит от природы хладагента.

2. Для реального влажного цикла паровой компрессионной холодильной установки 1—2—3—4' (рис. 11.2) холодильный коэффициент:

\[
\varepsilon = \frac{Q_0}{L} = \frac{Q_0}{Q - Q_0} = \frac{i_1 - i_4}{i_2 - i_1} = \frac{i_1 - i_3}{i_2 - i_1},
\]

(11.2)

gде \(L\) — мощность, затрачиваемая компрессором при сжатии пара хладагента, \(B\); \(i_1, i_2, i_3, i_4\) — удельные энтальпии хладагента в соответствующих точках цикла (рис. 11.2), Дж/кг. Остальные обозначения — см. формулу (11.1).

3. Для сухого цикла одноступенчатой паровой компрессионной холодильной установки (рис. 11.3):

а) без переохлаждения жидкого хладагента (процесс 1—2—3—4—4')

\[
\varepsilon = \frac{Q_0}{L} = \frac{i_1 - i_4'}{i_2 - i_1} = \frac{i_1 - i_4}{i_2 - i_1}.
\]

(11.3)

б) с переохлаждением жидкого хладагента (процесс 1—2—3—4—5—6)

\[
\varepsilon = \frac{Q_0}{L} = \frac{i_1 - i_6}{i_2 - i_1} = \frac{i_1 - i_5}{i_2 - i_1}.
\]

(11.4)

В последней формуле: \(\varepsilon\) — холодильный коэффициент; \(Q_0 = G (i_5 - i_6)\) — холодопроизводительность установки, \(B\); \(L = Q - Q_0 = G (i_5 - i_1)\) — теоретическая мощность, затрачиваемая компрессором, \(B\); \(Q = G (i_5 - i_6)\) — расход теплоты, отдываемой хладагентом воде в конденсаторе (включая переохлаждение жидкого

Рис. 11.1. Холодильный цикл Карно.
хладагента), Bт; \(G \) — расход хладагента в цикле, кг/с; \(i_1, i_2, \ldots \) — удельные энталпии хладагента в соответствующих точках, цикла, Дж/кг.

На рис. 11.4 сухой цикл одноступенчатой компрессионной холодильной установки изображен в координатах \(p - i \).

4. Действительная мощность \(N \) (в кВт), расходуемая компрессионной холодильной установкой:

\[
N = \frac{L}{1000 \eta},
\]

(11.5)

где \(\eta \) — общий к. п. д., равный

\[
\eta = \eta_i \eta_{\text{mek}} \eta_{\text{n}} \eta_{\text{d}};
\]

(11.6)

\(\eta_i \) — индикаторный к. п. д. компрессора, которым учитывается отличие действительного рабочего процесса от теоретического (изоэнтropicсного) [величина \(\eta_i \) зависит от степени сжатия холодильного агента, т. е. от отношения давления конденсации \(p \) к давлению испарения \(p_0 \); ориентировочное значение \(\eta_i \) для аммиачных компрессоров приведено на рис. 11.5]; \(\eta_{\text{mek}} \) — механический к. п. д. компрессора, учитывающий потерю, вызываемую трением; \(\eta_{\text{n}} \) — к. п. д. передачи; \(\eta_{\text{d}} \) — к. п. д. двигателя компрессора.

При приближенных расчетах обычно принимают:

\[\eta_{\text{mek}} = 0.8 ; \eta_{\text{n}} = 0.9; \eta_{\text{d}} = 0.95. \]

5. Холодопроизводительность компрессора \(Q_0 \) (в Bт):

\[
Q_0 = \lambda V \pi q_0,
\]

(11.7)

где \(\lambda \) — коэффициент подачи компрессора — отношение действительного секундного объема пара, всасываемого компрессором, к геометрическому объему \(V_0 \) (в м\(^3\)/с), описываемому поршнем (для аммиачных компрессоров можно пользоваться графиками, представленными на рис. 11.8 и 11.9).
Рис. 11.5. Значения коэффициентов \(\eta_i \) и \(\lambda \) для вертикальных прямооточных аммиачных компрессоров (— — —) и для горизонтальных аммиачных компрессоров двойного действия (— — —).

Рис. 11.6. Идеальный процесс сжигания газа.

вавая значениями коэффициента подачи \(\lambda \), приведенными на рис. 11.5, в зависимости от отношения давления в конденсаторе \(p \) к давлению в испарителе \(p_0 \); \(q_0 \) — объемная холодопроизводительность (в Дж/м³) холодильного агента, равная

\[q_0 = \rho_1 (i_1 - i_0) \]

(11.8)

\(i_1 \) и \(i_0 \) — удельные энтальпии холодильного агента на выходе из испарителя и на входе в него (см. рис. 11.3 или 11.4), Дж/кг; \(\rho_1 \) — плотность пара, всасываемого компрессором, кг/м³.

6. При пересчете холодопроизводительности \(Q_0 \) компрессора на другие условия \((Q_0') \) при неизменной частоте вращения пользуются формулой:

\[\frac{Q_0}{Q_0'} = \frac{q_0 \lambda}{q_0 \lambda'} \]

(11.9)

Нормальными условиями работы паровой компрессионной холодильной установки при одноступенчатом сжатии считаются: температура испарения —10 °C, температура конденсации 25 °C, температура переохлаждения жидкого хладагента 15 °C.

7. Минимальная работа, необходимая для охлаждения 1 кг газа при идеальном процессе сжигания (рис. 11.6):

\[L_{\text{мин}} = T_1 (S_1 - S_0) - (i_1 - i_0) \]

(11.10)

где \(T_1 \), \(S_1 \) и \(i_1 \) — температура, удельные энтропия и энтальпия газа в начальном состоянии (точка 1); \(S_0 \) и \(i_0 \) — удельные энтропия и энтальпия жидкости (точка 0).

Хотя практически идеальный процесс сжигания неосуществим, но \(L_{\text{мин}} \) имеет значение как масштаб, с которым сравнивают реальные циклы.

8. Охлаждение воздуха с расширением его без отдачи внешней работы — дросселированием (цикл Линде).

a) Простой регенеративный цикл — см. стр. 477.
Удельная холодопроизводительность цикла \(q \) (в Дж/кг):

\[
q = i_1 - i_3.
\]
(11.11)

Здесь \(i_1, i_3 \) — удельные энталпии расширенного и сжатого воздуха при температуре входа в теплообменник, Дж/кг.

Ожидаемая доля воздуха:

\[
y = \frac{q - q_{\text{пот}}}{i_1 - i_0} = \frac{(i_1 - i_3) - q_{\text{пот}}}{i_1 - i_0},
\]
(11.12)

где \(q_{\text{пот}} \) — удельная энталпия жидкого воздуха (при давлении расширенного возду

hа), Дж/кг; \(q_{\text{пот}} \) — суммарные потери холода, отнесенные к 1 кг перерабатываемого воздуха.

6) Цикл с предварительным (аммиачным) охлаждением.

Удельная холодопроизводительность цикла \(q' \) (в Дж/кг):

\[
q' = i'_1 - i'_3,
\]
(11.13)

где \(i'_1 \) и \(i'_3 \) — удельные энталпии расширенного и сжатого воздуха при температуре входа в основной теплообменник после аммиачного холодильника, Дж/кг.

Ожидаемая доля воздуха:

\[
y = \frac{q' - q_{\text{пот}}}{i'_1 - i'_0} = \frac{(i'_1 - i'_3) - q_{\text{пот}}}{i'_1 - i'_0},
\]
(11.14)

Удельное количество теплоты \(q_a \) (в Дж/кг), передаваемой в аммиачном теплообменнике (считая на 1 кг сжатого воздуха)

\[
q_a = q' - q + y (i'_1 - i'_3).
\]
(11.15)

Здесь \(q' \) — удельная холодопроизводительность цикла [формула (11.13)]; \(q \) — удельная холодопроизводительность цикла в случае отсутствия предварительно го аммиачного охлаждения [формула (11.11)]; \(i'_1 \) и \(i'_3 \) — см. формулы (11.11) и (11.13).

в) Цикл с циркуляцией воздуха под давлением — см. стр. 479.

Удельная холодопроизводительность цикла \(q \) (в Дж/кг):

\[
q = (i_2 - i_3) + M (i_1 - i_2),
\]
(11.16)

где \(i_1, i_2, i_3 \) — удельные энталпии расширенного воздуха, сжатого воздуха среднего давления и сжатого воздуха высокого давления соответственно при температуре входа в основной теплообменник, Дж/кг; \(M \) — доля воздуха, дросселируемого до низкого давления (обычно 0,2—0,4).

Ожидаемая доля воздуха:

\[
y = \frac{(i_2 - i_3) + M (i_1 - i_2) - q_{\text{пот}}}{i_1 - i_0}.
\]
(11.17)

Обозначения те же, что и в формуле (11.12).

9. Ожидение воздуха при расширении его с отдачей внешней работы \(\dot{L} \) детандере.

а) Цикл среднего давления (Клода) — см. стр. 480.

Удельная холодопроизводительность цикла \(q \) (в Дж/кг):

\[
q = (i_1 - i_2) + M (i_3 - i_4),
\]
(11.18)
где i_1, i_2 — удельные энталпии расширенного и сжатого воздуха при температуре входа в основной теплообменник, Дж/кг; i_3, i_4 — удельные энталпии сжатого воздуха при входе в детандер и при выходе из него, Дж/кг; M — доля воздуха, направляемого в детандер (обычно принимают $M = 0.8$).

Для воздуха, расширяющегося в детандере, в этом цикле обычно принимают:

$$ i_3 - i_4 = 0.65 \Delta i_{34} = 0.65 (i_3 - i_6). $$

Здесь Δi_{34} — изменение удельной энталпии воздуха при изоэнтропическом процессе; i_5 — удельная энталпия воздуха при давлении после детандера и при той же энтропии, что и i_3, Дж/кг.

Ожидаемая доля воздуха:

$$ y = \left(\frac{(i_1 - i_2) + M (i_3 - i_4) - q_{\text{пот}}}{i_1 - i_0} \right). \quad (11.19) $$

Обозначения те же, что и в формуле (11.18).

6) Цикл высокого давления (Гейлингта) — см. стр. 482.
Удельная холодопроизводительность цикла q (в Дж/кг):

$$ q = (i_1 - i_3) + M (i_3 - i_4). \quad (11.20) $$

где i_1, i_3 — удельные энталпии расширенного и сжатого воздуха при температуре входа в основной теплообменник и в детандер, Дж/кг; i_4 — удельная энталпия воздуха по выходе из детандера, Дж/кг; M — доля воздуха, направляемого в детандер (обычно принимают $M = 0.45 \pm 0.5$).

В этом цикле можно принять для воздуха, расширяющегося в детандере:

$$ i_3 - i_4 = 0.75 \Delta i_{34} = 0.75 (i_3 - i_6). $$

Ожидаемая доля воздуха:

$$ y = \left(\frac{(i_1 - i_3) + M (i_3 - i_4) - q_{\text{пот}}}{i_1 - i_0} \right). \quad (11.21) $$

в) Цикл низкого давления с турбодетандером (Капицы) — см. стр. 483.
Ожидаемая доля воздуха:

$$ y = \left(\frac{(i_1 - i_2) + (1 - ay) (i_3 - i_4) - q_{\text{пот}}}{i_1 - i_0} \right), \quad (11.22) $$

где i_1, i_2 — удельные энталпии расширенного и сжатого воздуха при температуре входа в основной теплообменник, Дж/кг; i_3, i_4 — удельные энталпии сжатого воздуха перед турбодетандером и после него, Дж/кг; a — коэффициент, учитывающий испарение при дросселировании жидкости от давления конденсации до атмосферного давления (при давлении конденсации $p_{\text{абс}} = 5.89 \cdot 10^5$ Па = 6 кгс/см2, $a = 1.25$).

Можно принять для воздуха, расширяющегося в турбодетандере:

$$ i_3 - i_4 = 0.8 \Delta i_{34} = 0.8 (i_3 - i_6). \quad (11.23) $$

Здесь i_5 — удельная энталпия воздуха при давлении после детандера и при той же энтропии, что и i_3, Дж/кг.
10. Потери холода $q_\text{пот}$ складываются из двух слагаемых:

$$q_\text{пот} = q_\text{ned} + q_0 \cdot c.$$ \hspace{1cm} (11.24)

Потери холода от недорекуперации (в Дж/кг):

$$q_\text{ned} = c_\mu \cdot \Delta t,$$ \hspace{1cm} (11.25)

где c_μ — удельная теплоемкость газа при температуре выхода из теплообменника, Дж/(кг·К); Δt — разность температур сжатого воздуха, входящего в теплообменник, и расширенного воздуха, выходящего из теплообменника, К.

Потери холода в окружающую среду (через изоляцию) $q_0 \cdot c$ составляют обычно 4—12 кДж на 1 м3 (при нормальных условиях) перерабатываемого воздуха.

ПРИМЕРЫ

Пример 11.1. Определить холодильный коэффициент компрессионной холодильной установки, работающей по циклу Карно, если температура в испарителе — 23 °C, а в конденсаторе 27 °C.

Решение. По формуле (11.1) получаем:

$$\varepsilon_\gamma = \frac{T_0}{T - T_\theta} = \frac{273 - 23}{(273 + 27) - (273 - 23)} = 5.$$

Пример 11.2. Вычислить теоретическую мощность, затрачиваемую холодильной установкой, работающей по циклу Карно и отводящей в 1 с 17 400 Дж, при —19 °C (температура испарения). Температура конденсации 15 °C.

Решение. Холодильный коэффициент:

$$\varepsilon_\kappa = \frac{T_0}{T - T_\theta} = \frac{254}{268 - 254} = 7,5.$$

Теоретическая мощность:

$$N_\tau = \frac{L}{1000} = \frac{Q_0}{\varepsilon_\kappa \cdot 10^3} = \frac{17 400}{7,5 \cdot 10^3} = 2,32 \text{ кВт.}$$

Пример 11.3. Найти минимальную (для цикла Карно) теоретическую мощность компрессора: аммиачной холодильной установки и расход воды в конденсаторе при выработке в 1 ч 500 кг льда из воды, имеющей температуру 0 °C. Аммиак кипит при —7 °C, а конденсируется при 20 °C. Вода в конденсаторе нагревается от 10 до 15 °C.

Решение. Теплота, выделяющаяся при замерзании воды:

$$Q_0 = \frac{500 \cdot 339,1 \cdot 1000}{3600} = 47 100 \text{ Вт,}$$

где 339,1·102 Дж/кг — удельная теплота замерзания воды.

Мощность компрессора (за вычетом работы изоэнтропического расширения):

$$L = \frac{Q_0}{\varepsilon_\kappa} = \frac{T - T_\theta}{T_0} \cdot Q_0 = \frac{293 - 266}{266} \cdot 47 100 = 4780 \text{ Вт.}$$
Расход теплоты, отводимой водой в конденсаторе:

\[Q = Q_0 + L = 47100 + 4780 = 51880 \text{ Вт} = 51.9 \text{ кВт} \]

Расход воды:

\[\frac{51880}{(15 - 10) \cdot 4.187 \cdot 1000} = 2.478 \text{ кг/с}. \]

Пример 11.4. Определить для углекислотной холодильной установки, работающей по влажному циклу, удельную холодопроизводительность хладагента, холодильный коэффициент, количество отводимой в конденсаторе теплоты, количество циркулирующего хладагента и теоретическую рассчитываемую мощность, если температура испарения $-30 \degree C$, температура конденсации $20 \degree C$, температура переохлаждения $16 \degree C$. Требуемая холодопроизводительность установки 58 150 Вт.

На рис. 11.7 показан цикл в координатах $T - S$. Значения удельных энталпий определены с помощью диаграммы $T - S$ для диоксида углерода (рис. XXVII). Линия $1 - 2$ — сжатие в компрессоре, $2 - 3'$ — конденсация, $3' - 3$ — переохлаждение жидкого хладагента, $3 - 4$ — дросселирование, $4 - 1$ — испарение.

Решение. Удельная холодопроизводительность хладагента:

\[q_0 = i_1 - i_4 = 590 \cdot 10^3 - 461 \cdot 10^3 = 129 \cdot 10^3 \text{ Дж/кг}. \]

Холодильный коэффициент:

\[\varepsilon = \frac{Q_0}{L} = \frac{i_1 - i_4}{i_2 - i_1} = \frac{(590 - 461) \cdot 10^3}{(632 - 590) \cdot 10^3} = 3.1. \]

Количество отводимой в конденсаторе теплоты на 1 кг циркулирующего диоксида углерода:

\[q = i_3 - i_3 = 632 \cdot 10^3 - 461 \cdot 10^3 = 171 \cdot 10^3 \text{ Дж/кг}. \]

Расход хладагента, циркулирующего в цикле:

\[G = \frac{Q_0}{q_0} = \frac{58150}{129 \cdot 10^3} = 0.448 \text{ кг/с}. \]

Расход теплоты, отводимой в конденсаторе:

\[Q = 171 \cdot 10^3 \cdot 0.448 = 76900 \text{ Вт} = 76.9 \text{ кВт}. \]

Рис. 11.7 (к примеру 11.4).
Необходимая теоретическая мощность:

\[N_T = G (i_2 - i_1) = 0.448 \times (632 \times 10^3 - 590 \times 10^3) = 0.448 \times 42 \times 10^3 = 18700 \text{ Вт} = 18.7 \text{ кВт}. \]

Пример 11.5. Определить коэффициент подачи аммиачного компрессора простого действия имеющего ход поршня 0.32 м, диаметр цилиндра 0.25 м и частоту вращения 180 об/мин. Цикл сухой, без переохлаждения. Температура испарения — 10 °C, температура конденсации 30 °C, холодопроизводительность 93 000 Вт.

Решение. Удельная холодопроизводительность аммиака:

\[q_0 = i_1 - i_\delta = (1430 - 324) \times 10^3 = 1106 \times 10^3 \text{ Дж/кг}. \]

Удельные энталпии определены по диаграмме T—S для аммиака (рис. XXVI).

Объемная холодопроизводительность аммиака:

\[q_v = \rho q_1 = 1106 \times 2.39 \times 10^3 = 2640 \times 10^3 \text{ Дж/м}^3, \]
где \(\rho_1 = 2.39 \text{ кг/м}^3 \) — плотность засасываемого компрессором пара (табл. XLVIII).

Объем, описываемый поршнем:

\[V_r = \frac{\pi D^2}{4} s \frac{n}{60} = \frac{3.14 \times 0.25^2}{4} \times 0.32 \frac{180}{60} = 0.047 \text{ м}^3/с. \]

Коэффициент подачи по формуле (11.7):

\[\lambda = \frac{Q_0}{V_r q_v} = \frac{93000}{0.047 \times 2640 \times 10^3} = 0.745. \]

Пример 11.6. Аммиачный компрессор марки 3-АВ (вертикальный) имеет холодопроизводительность \(Q_0 = 174 \times 10^3 \) Вт при нормальных условиях. Какова будет холодопроизводительность этого компрессора, если он будет работать при температуре испарения —25 °C, температуре конденсации 30 °C и температуре переохлаждения 25 °C?

Решение. Для определения холодопроизводительности при рабочих условиях воспользуемся формулой (11.9):

\[Q' = Q_0 \frac{q_v' \lambda'}{q_v \lambda}. \]

Как следует из этой формулы, для пересчета холодопроизводительности компрессора необходимо определить \(q_v, q_v', \lambda \) и \(\lambda' \).

Исходя из определения нормальных условий работы (\(t_{\text{норм}} = 10 \text{ °C}, t_{\text{твдд}} = 25 \text{ °C}, t_\alpha = 15 \text{ °C} \)), находим с помощью диаграммы T—S (рис. XXVI) и табл. XLVIII:

\[q_v = q_\rho (i_1 - i_\delta) \rho = (1430 \times 10^3 - 251 \times 10^3) 2.39 = 2830 \times 10^3 \text{ Дж/м}^3. \]

Аналогично находим \(q_v' \):

\[q_v' = (i_1' - i_\delta') \rho' = (1410 \times 10^3 - 299 \times 10^3) 1.297 = 1440 \times 10^3 \text{ Дж/м}^3. \]
Для определения λ находим отношение давлений конденсации и испарения при нормальных условиях, т. е. отношение давления ρ, соответствующего температуре конденсации 25 °C, и давления ρ_0, соответствующего температуре испарения —10 °C (табл. XLVIII):

$$\frac{\rho}{\rho_0} = \frac{1004}{281} = 3,45.$$

Для этого отношения давлений $\lambda = 0,82$ (см. рис. 11.5).

Аналогично определяем λ', исходя из заданных рабочих условий. Нахождим отношение давления ρ, соответствующего температуре конденсации 30 °C, и давления ρ_0, соответствующего температуре испарения —25 °C:

$$\frac{\rho}{\rho_0} = \frac{1167}{152} = 7,7.$$

Для этого отношения давлений $\lambda' = 0,57$ (см. рис. 11.5).

Рабочая холодопроизводительность компрессора:

$$Q'_0 = Q_0 \cdot \frac{q_0 \lambda'}{q_0 \lambda} = 174000 \cdot \frac{1440 \cdot 10^3 \cdot 0,57}{2830 \cdot 10^3 \cdot 0,82} = 62000 \text{ Вт} = 62 \text{ кВт}.$$

Пример 11.7. Определить размеры цилиндра а также действительную расходируемую мощность для одноступенчатого аммиачного компрессора простого действия, работающего на сухом ходу. Требуемая холодопроизводительность 290 000 Вт при температуре испарения —20 °C. Температура конденсации 25 °C, температура переохлаждения 20 °C. Определить также холодильный коэффициент установки.

На рис. 11.8 показан цикл, соответствующий заданным условиям, в координатах T—S. Линия 1—2 — сжатие в компрессоре, 2—3' — охлаждение перегретого пара и конденсация, 3'—3 — переохлаждение жидкости, 3—4 — дросселирование, 4—1 — испарение.

Решение. Значения удельных энталпий аммиака в различных точках цикла находим на диаграмме T—S (рис. XXVI). Удельная холодопроизводительность аммиака:

$$q_0 = i_1 - i_4 = (1420 - 276) \cdot 10^3 = 1144 \cdot 10^3 \text{ Дж/кг}.$$

Расход циркулирующего аммиака:

$$c = \frac{Q_0}{q_0} = \frac{290000}{1144 \cdot 10^3} = 0,254 \text{ кг/с}.$$

Объемная холодопроизводительность аммиака:

$$q_v = q_0 \rho_1 = 1144 \cdot 10^3 \cdot 1,6 = 1830 \cdot 10 \text{ Дж/м}^3,$$

где $\rho_1 = 1,6 \text{ кг/м}^3$ — плотность засасываемого компрессором пара (табл. XLVIII). 473
Объем, описанный поршнем в 1 с:

\[V = \frac{Q_0}{q_0 \lambda} = \frac{290,000}{1830 \cdot 10^3 \cdot 0,7} = 0,227 \text{ м}^3/\text{s}. \]

Отношение \(p/p_0 \) = 10/1,9 = 5,3. По рис. 11.5 находим \(\lambda = 0,7 \).
Если принять частоту вращения \(n = 210 \text{ об/мин} \), то объем цилиндра:

\[V = 0,227 \cdot 60/210 = 0,065 \text{ м}^3. \]

Обычно отношение хода поршня \(s \) к диаметру \(D \) составляет \(s/D = 1,1 \div 1,3 \). Примем это отношение равным 1,2. Тогда

\[0,065 = \frac{\pi D^2}{4} \cdot 1,2D, \]
откуда \(D = 0,41 \text{ м} = 410 \text{ мм}; \ s = 410 \cdot 1,2 = 490 \text{ мм}. \)

Теоретическая мощность компрессора:

\[N_T = G \left(i_2 - i_1 \right) = 0,254 \left(1654 - 1420 \right) 10^3 = 59,5 \cdot 10^3 \text{ Вт} = 59,5 \text{ кВт}. \]

Действительная расходуемая мощность:

\[N = N_T/\eta = 59,5/0,643 = 92,5 \text{ кВт}. \]

Здесь \(\eta \) — общий к. п. д., равный по формуле (11.6).

\[\eta = \eta_m \eta_i \eta_d. \]

Значение индикаторного к. п. д. \(\eta_i \) при \(p/p_0 = 5,3 \) находим по рис. 11.5. Для этого отношения давлений \(\eta_i = 0,84 \).
Принимаем: \(\eta_{m} = 0,85; \ \eta_m = 0,95; \ \eta_d = 0,95 \). Тогда

\[\eta = 0,84 \cdot 0,85 \cdot 0,95 \cdot 0,95 = 0,643. \]

Холодильный коэффициент:

\[\varepsilon = \frac{Q_0}{i_2 - i_1} = \frac{1144 \cdot 10^3}{\left(1654 - 1420 \right) 10^3} = 4,88. \]

Пример 11.8. Определить по условиям предыдущего примера количество воды, подаваемой в конденсатор, и поверхность теплопередачи конденсатора (включая переохлаждение жидкого аммиака), если начальная температура воды 15 °C, конечная 21 °C, коэффициент теплопередачи для зоны конденсации (включая охлаждение перегретого пара) \(K' = 2330 \text{ Вт/(м}^2 \cdot \text{K}) \), а для зоны переохлаждения жидкого аммиака \(K'' = 465 \text{ Вт/(м}^2 \cdot \text{K}) \).

Решение. Расход теплоты, передаваемой в конденсаторе, определяем по формуле:

\[Q = G \left(i_2 - i_3 \right) = 0,254 \left(1654 - 276 \right) 10^3 = 350 \cdot 10^3 \text{ Вт} = 350 \text{ кВт}. \]

Расход теплоты, передаваемой в зоне охлаждения перегретого пара в конденсатор:

\[Q' = G \left(i_2 - i_3 \right) = 0,254 \left(1654 - 299 \right) 10^3 = 344 \cdot 10^3 \text{ Вт} = 344 \text{ кВт}. \]
Расход теплоты, передаваемой в зоне охлаждения жидкого аммиака:

\[Q' = (350 - 344,0) \cdot 10^3 = 6 \cdot 10^3 \text{ Вт} = 6 \text{ кВт.} \]

Расход воды, подаваемой в конденсатор:

\[G_w = \frac{Q}{(t_{кнв} - t_{нач}) \cdot c_w} = \frac{350 \cdot 10^3}{(21 - 15) \cdot 4,19 \cdot 10^3} = 13,9 \text{ кг/с.} \]

Температура воды после зоны охлаждения жидкого аммиака:

\[t = 15 + \frac{6 \cdot 10^3}{13,9 \cdot 4,19 \cdot 10^3} = 15,1 \text{ °C.} \]

Средняя разность температур в зоне конденсации без учета температуры перегрева аммиака (рис. 11.9):

\[\Delta t'_{cp} = \frac{(25 - 15,1) - (25 - 21)}{2,3 \lg \frac{25 - 15,1}{25 - 21}} = 6,5 \text{ °C} = 6,5 \text{ К.} \]

Средняя разность температур в зоне охлаждения жидкого аммиака:

\[\Delta t''_{cp} = [(25 - 15,1) + (20 - 15)] / 2 = 7,4 \text{ °C} = 7,4 \text{ К.} \]

Площадь поверхности теплопередачи в зоне конденсации:

\[F' = \frac{Q'}{K' \Delta t'_{cp}} = \frac{344 \cdot 10^3}{2330 \cdot 6,5} = 22,8 \text{ м².} \]

Площадь поверхности теплоотдачи в зоне охлаждения:

\[F'' = \frac{Q''}{K'' \Delta t''_{cp}} = \frac{6 \cdot 10^3}{465 \cdot 7,45} = 1,68 \text{ м².} \]

Общая площадь поверхности конденсатора:

\[F = F' + F'' = 22,8 + 1,68 = 24,5 \text{ м².} \]

Удельная тепловая нагрузка (съем теплоты с 1 м² теплопередающей поверхности):

\[q_F = 350 \cdot 10^3 / 24,5 = 14,3 \cdot 10^3 \text{ Вт/м².} \]

Пример 11.9. В воздухе содержится 5,8% (об.) пара четыреххлористого углерода. Если охлаждать эту газовую смесь под атмосферным давлением (760 мм рт. ст.), то при какой температуре начнется конденсация четыреххлористого углерода? Определить также, до какого давления необходимо.
димо сжать газовую смесь, чтобы при последующем охлаждении ее при постоянном давлении до 30 °C сконденсировалось 75% от содержащегося в воздухе четыреххлористого углерода.

По диаграмме зависимости давления насыщенного пара четыреххлористого углерода от температуры (рис. XXIV) находим, что давлению 44 мм рт. ст. соответствует температура 8 °C, при которой, следовательно, и начинается конденсация четыреххлористого углерода.

Определим давление П, до которого надо сжать исходную газовую смесь, чтобы после охлаждения до 30 °C сконденсировалось 75% четыреххлористого углерода.

Из 5,8 моль четыреххлористого углерода, содержащихся в 100 моль исходной смеси, по условию должно оставаться в газовой фазе после конденсации 5,8 - 0,25 = 1,45 моль. Общее число молей в газовой смеси после конденсации:

\[(100 - 5,8) + 1,45 = 95,65.\]

Парциальное давление четыреххлористого углерода в газовой фазе над жидкостью равняется его давлению насыщенного пара при 30 °C и составляет 145 мм рт. ст. (рис XXIV).

Общее давление смеси П найдем из пропорции

\[1,45 - 145\]

откуда

\[П = \frac{95,65 - 145}{1,45} = 9565 \text{ мм рт. ст.} = 13 \text{ кгс/см}^2 = 1,275 \text{ МПа.}\]

Пример 11.10. Определить по диаграмме Т—S (рис. XXIX) процент образовавшегося жидкого воздуха после дросселирования сжатого воздуха с 80 кгс/см² и 140 К до 1 кгс/см² (≈ 0,1 МПа).

По диаграмме находим точку пересечения изобары 80 кгс/см² с изотермой 140 К и от этой точки по линии t = const опускаемся до пересечения с изобарой 1 кгс/см². Беря отношение участка, лежащего на изобаре 1 кгс/см² справа от найденной точки до по границы линии пара, ко всему отрезку между линией жидкости и линией пара при р = 1 кгс/см², получаем, что жидкости в образовавшейся парожидкостной смеси содержится 33%.

Пример 11.11. Определить, какое количество теплоты необходимо отнять от 1 кг воздуха для сжигания его при атмосферном давлении и какую для этого необходимо затратить теоретически минимальную работу. Начальная температура воздуха 290 К.
Решение. По диаграмме T—S для воздуха (рис. XXIX) находим, что при $p = 1$ кгс/см2

$$i_1 - i_3 = 502 \cdot 10^3 - 92 \cdot 10^3 = 410 \cdot 10^3 \text{ Дж/кг.}$$

Теоретически минимальную затрату работы для охлаждения 1 кг воздуха находим по формуле (11.10):

$$L_{\text{мин}} = T_1 (S_1 - S_0) - (i_1 - i_0) = 290 (3,75 - 0) 10^3 - 410 \cdot 10^3 = 677 \cdot 10^3 \text{ Дж/кг.}$$

Значения S_1 и S_0 определены по диаграмме T—S для воздуха. Таким образом,

$$L_{\text{мин}} = 677/3600 = 0,188 \text{ кВт·ч/кг.}$$

Пример 11.12. Определить количество получаемого в 1 ч жидкого воздуха и необходимую для этого затрату мощности при переработке 200 кг/ч воздуха, сжатого до 200 кгс/см2. Установка работает по простому регенеративному циклу Лиинд. Температура воздуха до и после компрессора (при входе в теплообменник) 25 °C. Воздух дросселируется до 1 кгс/см2. Потери холода в окружающую среду принять в размере $4,19 \cdot 10^3$ Дж на 1 м3 воздуха (при нормальных условиях). Недорекуперация 5 °C.

Решение. На рис. 11.10 даны принципиальная схема установки и изображение процесса в координатах T—S. Для расчета пользуемся диаграммой T—S для воздуха (рис. XXIX).

Удельную холодопроизводительность цикла определяем по формуле (11.11):

$$q = i_4 - i_3 = (510 - 474) 10^3 = 36 \cdot 10^3 \text{ Дж/кг.}$$

477
Потери холода на 1 кг перерабатываемого воздуха определяем по формулам (11.24) и (11.25):

а) потери от недорескуюпрации *

\[q_{нед} = c_p \Delta t = 1,01 \cdot 10^3 \cdot 5 = 5,05 \cdot 10^3 \text{ Дж/кг}; \]

б) потери в окружающую среду

\[q_o = 4,19 \cdot 10^3 \cdot 1,29 = 3,25 \cdot 10^3 \text{ Дж/кг}. \]

Суммарные потери:

\[q_{пот} = (5,05 + 3,25) \cdot 10^3 = 8,3 \cdot 10^3 \text{ Дж/кг}. \]

Ожидаемую долю воздуха определяем по формуле (11.12):

\[y = \frac{(i_1 - i_3) - q_{пот}}{i_1 - i_0} = \frac{(36 - 8,3) \cdot 10^3}{(510 - 92,1) \cdot 10^3} = 0,067. \]

Расход ожидаемого воздуха:

\[G_{ин} = 200 \cdot 0,067 = 13,4 \text{ кг/ч}. \]

Затрачиваемую на валу компрессора мощность определяем по формуле (2.20):

\[N = 1,69 G_c R T \ln \frac{p_2}{p_1} = 1,69 \cdot \frac{200}{3600} \cdot \frac{287}{1000} \cdot 298 \ln \frac{200}{1} = \]

\[= \frac{1,69}{18} \cdot 0,287 \cdot 298 \cdot 2,3 \cdot \lg 200 = 42,5 \text{ кВт}. \]

Удельный расход энергии на 1 кг жидкого воздуха:

\[N_{уд} = 42,5/13,4 = 3,16 \text{ кВт·ч/кг}. \]

Пример 11.13. Определить расход перерабатываемого воздуха для получения 50 кг/ч жидкого воздуха и затрачиваемую при этом мощность, если ожидание ведется по циклу с предварительным (аммиачным) охлаждением воздуха до \(-35^\circ\text{С. Давление сжатия 200 кгс/см}^2, дросселирование до 1 кгс/см}^2, Начальная температура воздуха 25^\circ\text{С. Суммарные потери холода в окружающую среду и от недорескуперации принять в размере 8,8 кДж/кг.}

Решение. Для определения удельных энтальпий воспользуемся диаграммой \(T—S\) для воздуха (рис. XXIX).

Удельную холодопроизводительность цикла определяем по формуле (11.13):

\[q^* = i'_1 - i'_3 = (449 - 386) \cdot 10^3 = 63 \cdot 10^3 \text{ Дж/кг}, \]

где \(i'_1\) — удельная энталпия воздуха при \(p = 1 \text{ кгс/см}^2\) и \(t = -35^\circ\text{C; i'_3 — удельная энталпия воздуха при p = 200 кгс/см}^2\) и \(t = -35^\circ\text{C.}

Ожидаемую долю воздуха определяем по формуле (11.14):

\[y = \frac{(i'_1 - i'_3) - q_{пот}}{i'_1 - i'_0} = \frac{(63 - 8,8) \cdot 10^3}{(449 - 92) \cdot 10^3} = 0,153. \]

* Здесь не учитывается уменьшение обратного потока воздуха на количество ожидаемого воздуха.
Для получения 50 кг/ч жидкого воздуха необходимо перерабатывать воздух:

\[G = 50/0,153 = 327 \text{ кг/ч.} \]

Количество теплоты, передаваемой в аммиачном теплообменнике, определяем по формуле (11.15):

\[q_a = q' - q + y(i_1 - i_i) = 63 \cdot 10^4 - 36 \cdot 10^4 + 0,153 (510 - 449) \cdot 10^3 = \]

\[= 36 \cdot 10^3 \text{ Дж/кг,} \]

где \(q = 36,0 \cdot 10^3 \text{ Дж/кг} \) и \(i_i = 510 \cdot 10^3 \text{ Дж/кг} \) (см. пример 11.12).

Определяем мощность на валу воздушного компрессора:

\[N = 1,69G_vRT \ln \frac{P_2}{P_1} = 1,69 \frac{327}{3600} \cdot 287 \cdot 298 \cdot 2,3 \text{ г 200} = 69,5 \cdot 10^8 \text{ Вт} = 69,5 \text{ кВт.} \]

Мощность, потребляемая аммиачным компрессором:

\[N_a = \frac{36,0 \cdot 327}{8540 \cdot 0,66} = 2,11 \text{ кВт.} \]

Здесь 8540 кДж/(кВт·ч) — теоретическая удельная холодопроизводительность аммиачной холодильной установки при температуре испарения аммиака * -40 °C [11.2]; 0,66 — принятый общий к. п. д. аммиачного компрессора.

Общая расходуемая мощность:

\[N_p = 69,5 + 2,11 = 71,61 \text{ кВт.} \]

Удельный расход энергии на 1 кг жидкого воздуха:

\[N_{yl} = 71,61/50 = 1,43 \text{ кВт·ч/кг.} \]

Пример 11.14. Определить ожидаемую долю и удельный расход энергии при получении жидкого воздуха по схеме с циркуляцией воздуха под давлением. Высокое давление воздуха 200 кгс/см², среднее давление 50 кгс/см². Температура воздуха при входе в теплообменник 20 °C. Доля воздуха, дросселируемого до низкого давления, \(M = 0,3 \). Суммарные потери холода от недорекуперации и в окружающую среду составляют 10,5 кДж на 1 м³ воздуха (при нормальных условиях) высокого давления, поступающего в установку.

Решение. На рис. 11.11 даны принципиальная схема установки с циркуляцией воздуха под давлением и изображение процесса в координатах \(T - S \). Для определения удельных энталпий воспользуемся диаграммой \(T - S \) для воздуха (рис. XXIX). Удельную холодопроизводительность цикла определяем по формуле (11.16):

\[q = (i_2 - i_3) + M(i_1 - i_2) = (494 - 467) \cdot 10^3 + 0,3 (505 - 494) \cdot 10^3 = \]

\[= 30 \cdot 10^3 \text{ Дж/кг.} \]

* Температура -40 °C принята с учетом \(\Delta t = 5 \text{ К} \) между температурами воздуха и аммиака.
Ожидаемую долю y определяем по уравнению (11.17):

$$y = \frac{(i_2 - i_3) + M(i_1 - i_0) - q_{шот}}{i_1 - i_0} = \frac{30 \cdot 10^3 - (10,5 \cdot 10^3/1,29)}{(505 - 92) \cdot 10^3} = 0,053$$

Мощность на валу компрессора определяем по формулам:

$$N' = 1,69 \cdot \frac{1}{3600} \cdot 287 \cdot 293 \cdot 2,3 \cdot \log \frac{200}{50} = 54,5 \text{ Вт};$$

$$N'' = 1,69 \cdot \frac{0,3}{3600} \cdot 287 \cdot 293 \cdot 2,3 \cdot \log \frac{50}{1} = 46,1 \text{ Вт};$$

$$N = (54,5 + 46,1)/1000 = 0,1 \text{ кВт}.$$

Удельный расход энергии на 1 кг жидкого воздуха:

$$N_{уд} = 0,1/0,053 = 1,89 \text{ кВт} \cdot \text{ч/кг}.$$

Пример 11.15. При получении жидкого воздуха с отдачей внешней работы в детандере по циклу среднего давления затрачивается мощность 110 Вт (на валу компрессора). Сколько получается килограммов жидкого воздуха в 1 ч, если известно, что воздух сжимается до 35 кгс/см²? В детандер отводится 80% от всего количества перерабатываемого воздуха; температура воздуха перед детандером — 110 °C, недорекуперация 5 °C. Потери холодна в окружающую среду (через изоляцию) 0,93 кВт. Принять, что работа, возвращаемая детандером на вал компрессора, составляет половину от теоретического (изоэнтропического) тепло-
падения в детандере. Температура воздуха, поступающего после компрессора в теплообменник, 25 °С. Определить также удельный расход энергии на 1 кг жидкого воздуха.

Решение. На рис. 11.12 даны принципиальная схема установки и изображение процесса в координатах T—S. Для определения энталпии воспользуемся диаграммой T—S для воздуха (рис. XXIX).

Удельную холодопроизводительность цикла определяем по формуле (11.18):

\[q = (i_1 - i_4) + M (i_3 - i_4) = (510 - 502) \times 10^3 + 0.8 \times 58 \times 10^3 = 54 \times 10^3 \text{ Дж/кг}, \]

где \(i_3 - i_4 = 0.65 \) \((i_3 - i_4) = 0.65 (345 - 255) \times 10^3 = 58 \times 10^3 \text{ Дж/кг}. \)

Работа, возвращаемая детандером при расширении в нем 1 кг воздуха:

\[l_d = 0.5 (345 - 255) \times 10^3 = 44,6 \times 10^3 \text{ Дж/кг}. \]

Определяем количество воздуха \(G \) (в кг/с), сжимаемого компрессором, из уравнения:

\[L = L_n - L_d = 1,69 GRT \cdot 2,3 \lg 35 - 0,8 G \cdot 44,6. \]

По условию \(L = 110 \) кВт. Следовательно,

\[110 = 1,69 G \cdot 287 \cdot 298 \cdot 2,4 \lg 35 - 0,8 \cdot 44,6 G, \]

откуда

\[G = 0,231 \text{ кг/с} \text{ или } 0,231 \cdot 3600 = 835 \text{ кг/ч}. \]
Потери холода определяем по формулам * (11.24) и (11.25):

\[Q_{\text{ned}} = C_p \Delta t = 0,231 \cdot 1,01 \cdot 10^3 \cdot 5 = 1,17 \cdot 10^3 \text{ Вт.} \]

По условию \(Q_{0, \tau} = 0,93 \cdot 10^3 \text{ Вт.} \) Общие потери холода

\[Q_{\text{пот}} = (1,17 + 0,93) \cdot 10^3 = 2,10 \cdot 10^3 \text{ Вт} \]

или, считая на 1 кг перерабатываемого воздуха:

\[q_{\text{пот}} = 2,10 \cdot 10^3 / 0,231 = 9,1 \cdot 10^3 \text{ Дж/кг.} \]

Ожижаемую долю воздуха определяем по формуле (11.19):

\[y = \frac{(i_1 - i_2) + M (i_3 - i_4) - q_{\text{пот}}}{i_1 - i_0} = \frac{(54 - 9,1) \cdot 10^3}{(510 - 92) \cdot 10^3} = 0,107. \]

Количество получаемого жидкого воздуха на установке:

\[G_{\text{жк}} = 835 \cdot 0,107 = 89,3 \text{ кг/ч.} \]

Удельный расход энергии на 1 кг жидкого воздуха:

\[N_{\text{уд}} = 110 / 89,3 = 1,23 \text{ кВт.ч/кг.} \]

Пример 11.16. Определить к. п. д. процесса ожидения воздуха с отдачой внешней работы по циклу высокого давления, если известно, что воздух сжимается компрессором до 200 кгс/см². Начальная температура воздуха 30 °C, в детандер направляется половина перерабатываемого воздуха. Суммарные потери холода принять в размере 8,4 кДж на 1 кг перерабатываемого воздуха. Расширение в детандере происходит с 200 до 10 кгс/см², с 10 до 1 кгс/см² — дросселирование. Возврат работы детандером на вал компрессора принять как в предыдущем примере.

Решение. На рис. 11.13 даны принципиальная схема установки и изображение процесса в координатах \(T—S \). Для определения удельных энталпий воспользуемся диаграммой \(T—S \) для воздуха (рис. XXIX).

Удельную холодопроизводительность цикла определяем по формуле (11.20):

\[q = (i_1 - i_2) + M (i_3 - i_4) = (515 - 482) \cdot 10^3 + \]
\[+ 0,5 \cdot 119 \cdot 10^3 = 93,2 \cdot 10^3 \text{ Дж/кг.} \]

где \(i_3 - i_4 = 0,75 (i_3 - i_0) = 0,75 (482 - 322) \cdot 10^3 = 119 \cdot 10^3 \text{ Дж/кг.} \)

Ожижаемую долю воздуха определяем по формуле (11.21):

\[y = \frac{(i_1 - i_2) + M (i_3 - i_4) - q_{\text{пот}}}{i_1 - i_0} = \frac{(93,2 - 8,4) \cdot 10^3}{(515 - 92) \cdot 10^3} = 0,2. \]

Мощность, затрачиваемая на сжатие воздуха:

\[N_k = 1,69 G_0 R T \ln \frac{p_2}{p_1} = 1,69 \frac{1}{3600} 287 \cdot 303 \cdot 2,3 \lg 200 = 216 \text{ Вт.} \]

* Не учитывается уменьшение обратного потока на оживленную часть воздуха.
Мощность, возвращаемая на вал компрессора при расширении воздуха в детандере:

\[N_d = \frac{0,5}{3600} 0,5 (482 - 322) \times 10^3 = 11,1 \text{ Вт}. \]

Фактически затрачиваемая мощность на валу компрессора

\[N = N_H - N_d = 216 - 11,1 = 204,9 \text{ Вт} = 0,205 \text{ кВт}. \]

Удельный расход энергии на 1 кг жидкого воздуха:

\[N_{уд} = 0,205/0,2 = 1,02 \text{ кВт} \cdot \text{ч} / \text{кг}. \]

К. п. д. процесса ожидения:

\[\eta = \frac{0,188}{1,02} \times 100 = 18,5 \%, \]

где 0,188 кВт·ч/кг — теоретически минимальная работа ожидения 1 кг воздуха при начальной температуре его 303 К (см. пример 11.11).

Пример 11.17. Определить удельный расход энергии при ожидении воздуха по циклу низкого давления с турбодетандером (рис. 11.14). Воздух поступает в установку при 30 °C и абсолютном давлении 6 кгс/см². Недорекуперация 5 °C, потери в окружающую среду 8,4 кДж/м³ (при 0 °C, 760 мм рт. ст.).

Решение. Принимаем температуру воздуха перед турбодетандером 122 К. Тогда по формуле (11.23):

\[i_3 - i_4 = 0,8 (i_3 - i_5) = 0,8 (325 - 283) \times 10^3 = 33,5 \times 10^3 \text{ Дж} / \text{кг}. \]
Удельная энталпия взята по диаграмме T—S для воздуха (рис. XXIX).

Ожигаемую долью воздуха определяем по формуле (11.25):

$$
y = \frac{(513 - 511) \cdot 10^3 + 33,5 \cdot 10^3 (1 - 1,25y) - 8,4 \cdot 10^3}{1,29} - 1,01 \cdot 10^3 \cdot 0,5 (1 - y)
$$

откуда $y = 0,052$.

Работа, возвращаемая турбодетандером, считая на 1 кг перерабатываемого воздуха:

$$
L_x = \frac{(i_3 - i_4) (1 - ay) 0,85}{3600} = \frac{33,5 \cdot 10^3 (1 - 1,25 \cdot 0,052) 0,85}{3600} =
$$

$$
= 0,0074 \text{ кВт} \cdot \text{ч/кг},
$$

где 0,85 — коэффициент отдачи мощности турбодетандера; $a = 1,25$ — см. формулу (11.22).

Удельный расход энергии на 1 кг жидкого воздуха при изотермическом к. п. д. компрессора 0,6:

$$
N_yd = \left(\frac{287 \cdot 303 - 2,3 \lg 6,3}{1000 - 0,6 \cdot 3600} - 0,0074 \right) / 0,052 = 1,26 \text{ кВт} \cdot \text{ч/кг}.
$$

Здесь 6,3 — степень сжатия в компрессоре (с учетом гидравлических потерь установки).

Пример 11.18. При обследовании установки для ожигания воздуха, работающей с отдачей внешней работы по циклу низкого
давления, были измерены перед турбодетандером абсолютное давление 6 кгс/см² и температура 120 К. Давление и температура после турбодетандера были соответственно 1,6 кгс/см² и 89 К.

Измеренная мощность, отдаваемая турбодетандером, 100 кВт. Определить количество воздуха, проходящего через турбодетандер, и термодинамический к. п. д. турбодетандера.

Решение. Определяем действительное и изоэнтропическое теплопадение в турбодетандере, используя диаграмму $T—S$ воздуха (рис. XXIX):

Удельная энталпия воздуха при 6 кгс/см² и 120 К: $322 \cdot 10^3$ Дж/кг

Удельная энталпия воздуха после изоэнтропического расширения до 1,6 кгс/см²: $289 \cdot 10^3$ Дж/кг

Удельная энталпия воздуха при 1,6 кгс/см² и 89 К: $296 \cdot 10^3$ Дж/кг

Отсюда

$$\Delta l_д = (322 - 296) 10^3 = 26,6 \cdot 10^3 \text{ Дж/кг};$$

$$\Delta l_д\text{в} = (322 - 289) 10^3 = 33,3 \cdot 10^3 \text{ Дж/кг}.$$

Термодинамический к. п. д. детандера:

$$\eta = \frac{26,6 \cdot 10^3}{33,3 \cdot 10^3} = 0,8.$$

Определяем приближенно количество воздуха, проходящего через турбодетандер (пренебрегая потерями энергии):

$$G = \frac{3600N}{\Delta l_д} = \frac{3600 \cdot 100 \cdot 10^3}{26,6 \cdot 10^3} = 13 500 \text{ кг/ч}.$$

Пример 11.19. Найти необходимое давление воздуха при установившемся режиме в установке для получения газообразного кислорода. Установка работает без предварительного охлаждения по прямому регенеративному циклу. Недорекуперация 5 °C, потери холода через изоляцию 12,6 кДж на 1 м³ (при 0 °C и 760 мм рт. ст.) перерабатываемого воздуха. Температура воздуха перед теплообменником 25 °C.

Решение. Потери холода определяем по формулам (11.24) и (11.28):

$$q_\text{пад} = 1,01 \cdot 10^3 \cdot 5 = 5,05 \cdot 10^3 \text{ Дж/кг};$$

$$q_о, с = 12,6 \cdot 10^3/1,29 = 9,74 \cdot 10^3 \text{ Дж/кг};$$

$$q_\text{нот} = 5,05 \cdot 10^3 + 9,74 \cdot 10^3 = 14,8 \cdot 10^3 \text{ Дж/кг}.$$

Для покрытия этих потерь 1 кг сжатого воздуха, дросселируемого в установке, должен дать $\Delta l = 14,8$ кДж.

Эффект дросселирования определяем при 25 °C (температура входа сжатого воздуха в теплообменник):

$$\Delta l = l_т - l_в,$$

где $l_т$ — удельная энталпия воздуха при $p_\text{абс} = 1$ кгс/см² и 25 °C, равная 510×10^3 Дж/кг (по диаграмме $T—S$, рис. XXIX).
Следовательно,

\[14,8 \times 10^8 = 510 \times 10^3 - I_a \]

откуда \(I_a = 495,2 \times 10^3 \) Дж/кг. По диаграмме \(T-S \) находим, что этой удельной энтальпии воздуха при 25 °C отвечает давление \(P_{абс} = 65 \) кгс/см².

Пример 11.20. В воздухоразделительной установке, работающей с отдачей внешней работы по циклу среднего давления, получается 100 \(\text{м}^3/\text{ч} \) (при 0 °C и 760 мм рт. ст.) газообразного кислорода и 25,8 кг кислорода в жидком состоянии; кислород получается чистотой 99%. Давление сжатия воздуха 40 кгс/см². Температура сжатого воздуха перед детандером 160 К. Расширение в детандере идет до 6 кгс/см². Термодинамический к. п. д. детандера 0,65. Отбросный азот содержит 5% кислорода. Недорекуперация 5 °C. Температура входящего в установку воздуха 300 К. Потери в окружающую среду составляют 6,3 кДж на 1 м³ (при 0 °C и 760 мм рт. ст.) перерабатываемого воздуха. Определить долю воздуха, направляемого в детандер.

Решение. Общее количество получаемого кислорода:

\[V_{O_2} = 100 + \frac{25,8}{1,43} = 118 \text{ м}^3/\text{ч}, \]

где 1,43 — плотность кислорода при нормальных условиях, кг/м³.

Количество (при нормальных условиях) перерабатываемого воздуха (B) и отбросного азота (A) находим из уравнений материального баланса:

\[B = 118 + A; \]
\[0,21B = 0,99 \times 118 + 0,05A, \]

откуда \(B = 695 \text{ м}^3/\text{ч}, A = 577 \text{ м}^3/\text{ч}. \)

Определяем потери холода:
от недорекуперации

\[q_{нед} = (100 \times 1,43 \times 0,92 \times 10^3 + 777 \times 1,25 \times 1,05 \times 10^3)/3600 = 1230 \text{ Вт} = 1,23 \text{ кВт}; \]

в окружающую среду

\[q_{o.с} = 695 \times 6,3 \times 10^3/3600 = 1210 \text{ Вт} = 1,21 \text{ кВт}; \]

уносится жидким кислородом

\[q_{жк} = 25,8 \times 406 \times 10^3/3600 = 2930 \text{ Вт} = 2,93 \text{ кВт}. \]

Здесь 406 \(\times 10^3 \) — разность удельных энтальпий кислорода, газообразного при 300 К и жидкого (при 1 кгс/см²), Дж/кг.

Итого:

\[Q_{пот} = 1230 + 1210 + 2930 = 5370 \text{ Вт} = 5,37 \text{ кВт}. \]

Холодопроизводительность установки, получаемая за счет дросселирования:

\[G \Delta t_{др} = 695 \times 1,29 \times 8,38 \times 10^3/3600 = 2080 \text{ Вт} = 2,08 \text{ кВт}, \]

где 8,38 \(\times 10^3 \) — разность удельных энтальпий воздуха при 1 и 40 кгс/см² (при 300 К), Дж/кг.
Теоретическое (изоэнтропическое) теплопадение в детандере:
\[
\Delta_{т.ин} = i_{p=40 \text{ кгс/см}^2} - i_{p=6 \text{ кгс/см}^2} = (333 - 283) \times 10^3 = 50 \cdot 10^3 \text{ Дж/кг}.
\]

Действительное теплопадение:
\[
\Delta_{t.д} = 50 \cdot 10^3 \cdot 0,65 = 32,5 \cdot 10^3 \text{ Дж/кг}.
\]

Количество воздуха, поступающего в детандер, находим из уравнения
\[
5370 - 2080 = 32,5 \cdot 10^2 x.
\]
Отсюда
\[
x \approx 0,1 \text{ кг/с} = 360 \text{ кг/ч}.
\]

Доля воздуха, направляемого в детандер:
\[
\frac{360}{695 \cdot 1,29} = 0,40.
\]

Пример 11.21. Определить количество выделяющейся влаги и расход энергии на охлаждение 3000 кг/ч воздуха (считая на сухой воздух), насыщенного водяными парами при \(\rho_{абс} = 6 \text{ кгс/см}^2 \). Воздух охлаждается (за счет кипящего аммиака) от 0 до \(-40^\circ\text{C} \). Холодопроизводительность аммиачной холодильной установки 5130 кДж/(кВт·ч).

Решение. При охлаждении сухого воздуха потребуется отвести теплоты:
\[
Q_1 = G_{в} c_{p} (t_{нач} - t_{кон}) = 3000 \cdot 1,03 \cdot 10^3 (0 + 40)/3600 = 34 300 \text{ Вт}.
\]
Здесь \(c_{p} = 1,03 \cdot 10^3 \text{ Дж/(кг·К)} \) — удельная теплоемкость сухого воздуха при \(\rho_{абс} = 6 \text{ кгс/см}^2 \) в данном интервале температур.

Найдем количество влаги, выпадающей из воздуха при охлаждении.

Количество влаги в воздухе при входе в холодильник:
\[
G_\text{вл}' = G_\text{в} 0,622 \frac{\Phi_{т.н}}{\Pi - \Phi_{т.н}} = 3000 \frac{0,622 \cdot 1,4,6}{0,760 - 4,6} = 1,89 \text{ кг/ч},
\]
где \(P_{т.н} = 4,6 \text{ мм рт. ст.} \) — давление насыщенного водяного пара при 0°C (табл. XXXVIII).

Количество влаги в воздухе, выходящем из холодильника:
\[
G_\text{вл}'' = 3000 \cdot 0,622 \frac{0,09}{6,760 - 0,09} = 0,038 \text{ кг/ч},
\]
где \(P_{т.н} = 0,09 \text{ мм рт. ст.} \) — давление насыщенного водяного пара при \(-40^\circ\text{C} \).

Количество влаги, выпадающей в холодильнике:
\[
G_\text{вл} = G_\text{вл}' - G_\text{вл}'' = 1,89 - 0,038 = 1,852 \text{ кг/ч}.
\]
Количество теплоты, выделяющейся при конденсации и замерзании влаги:

\[Q_2 = G_{вл} (r + q + c (t_{нач} - t_{нон})) = \]
\[= 1,852 [2490 \cdot 10^3 + 335 \cdot 10^3 + 2,09 \cdot 10^3 (0 + 40)] / 3600 = 1490 \text{ Вт}. \]

Здесь \(r = 2490 \cdot 10^3 \text{ Джен/кг} \) — удельная теплота конденсации при 0 \(^{0}C\); \(q = 335 \cdot 10^3 \text{ Джен/кг} \) — удельная теплота плавления; \(c = 2,09 \cdot 10^3 \text{ Джен/(кг} \cdot \text{К}) \) — удельная теплоемкость льда.

Общее количество теплоты, отводимой аммиаком:

\[Q_1 + Q_2 = 34300 + 1490 = 35790 \text{ Вт} \approx 35,8 \text{ кВт}. \]

Мощность, расходуемая аммиачной холодильной установкой

\[N = \frac{35,8 \cdot 3600}{5130} = 25 \text{ кВт}. \]

Пример 11.22. Определить расход перерабатываемого воздуха при получении 100 м\(^3\)/ч кислорода чистотой 99%. Отбросный азот содержит 4% кислорода.

Решение. Обозначим через \(x \) искомое количество воздуха (в м\(^3\)). Тогда

\[0,21x = 100 \cdot 0,99 + (x - 100) 0,04, \]

где 0,21 — объемная доля кислорода в воздухе. Отсюда

\[x = 560 \text{ м}^3/\text{ч}. \]

Пример 11.23. Определить для нижней колонны двухколонного воздухоразделительного аппарата (рис. 11.15) количество образующегося в карманах азота и количество кубовой жидкости, обогащенной кислородом, считая на 1 м\(^3\) поступающего воздуха. Чистота азота в карманах 98%, жидкость куба содержит 40% кислорода.

Решение. Обозначим через \(x \) количество азота (в м\(^3\)), получаемого в карманах, и через \(y \) — количество кубовой жидкости. Тогда

\[x + y = 1 \]

и (по кислороду)

\[0,02x + 0,4y = 0,21 \cdot 1. \]

Решая эти уравнения материального баланса, получим:

\[x = 0,5 \text{ м}^3; \ y = 0,5 \text{ м}^3 \text{ (при } 0^\circ \text{C и } 760 \text{ мм рт. ст.)}. \]

Рис. 11.15 (к примерам 11.23 и 11.24).
Пример 11.24. Определить число флегмы и количество получаемых азота и кислорода (считая на 1 м³ воздуха) в верхней колонне двухколонного воздухоразделительного аппарата (рис. 11.15), учитывая данные предыдущего примера и принимая, что чистота азота 99%, а кислорода 98%.

Решение. Составим уравнения материального баланса. Обозначим через x количество отходящего азота и через y — количество отходящего кислорода. Тогда

$$x + y = 1;$$
$$0,01x + 0,98y = 0,21,$$
откуда $x = 0,794$ м³; $y = 0,206$ м³.

Находим отношение количества жидкости L, стекающей по колонне, к количеству поднимающегося пара G.

Жидкая азотная флегма подается на верх колонны из карманов нижней колонны, причем, как видно из диаграммы состояния для азота, при дросселировании жидкого азота с 6 до 1 кгс/см² образуется ~ 18% пара. В предыдущем примере было найдено, что в карманах нижней колонны получается 0,5 м³ азота. Следовательно, количества жидкого азота, попадающего в верхнюю колонну, составляет:

$$L = (1 - 0,18) \times 0,5 = 0,41 \text{ м}^3.$$

Количество пара, поднимающегося по верхней колонне,

$$G = 0,794 - 0,5 \cdot 0,18 = 0,704 \text{ м}^3,$$

где 0,5·0,18 — количество пара, образующегося после дросселирования жидкого азота из карманов нижней колонны в верхнюю колонну, м³.

Отношение $L/G = 0,41/0,704 = 0,582$.

Определяем число флегмы:

$$\frac{R}{R + 1} = 0,582.$$

Отсюда $R = 1,39$.

Пример 11.25. Определить расход энергии при получении 1 м³ газообразного кислорода чистотой 99,5% на установке с двойной ректификацией, работающей по простому регенеративному циклу без предварительного аммиачного охлаждения. Отбросный азот содержит 5% кислорода. Общие потери холодна составляют 6,3 к Дж на 1 кг перерабатываемого воздуха. Температура сжатого воздуха, поступающего в установку (после компрессора), 25 °C.

Решение. Определяем количество воздуха x, необходимое для получения 1 м³ кислорода:

$$0,21x = 1 - 0,995 + (x - 1) 0,05; x = 5,9 \text{ м}^3.$$

Определяем давление сжатия воздуха при установившемся режиме, когда потери холода составляют 6,3 к Дж/кг:

$$\Delta i = i_1 - i_3; 6,3 \cdot 10^3 = 510 \cdot 10^3 - i_3,$$

где 510·10³ — удельная энтальпия воздуха при 1 кгс/см² и 25 °C, Дж/кг (диаграмма $T—S$, рис. XX1X).
Отсюда

\[t_s = (510 - 6.3) \times 10^3 = 504.7 \times 10^3 \text{ Джен} / \text{кг}. \]

По диаграмме \(T - S \) находим, что этой удельной энталпии воздуха при 25 °C соответствует абсолютное давление 60 кгс/см². Работу на сжатие 1 кг воздуха с 60 до 1 кгс/см² определяем по формуле:

\[L = 1.69 GRT \ln \frac{p_2}{p_1} = 1.69 \times 1.287 \times 298.2 \times 1 \times 60 = 590 \times 10^3 \text{ Джен} / \text{кг} = 590 \text{ кДжен} / \text{кг}. \]

Для получения 1 м³ кислорода требуется 5,9 м³ воздуха. Следовательно, затраты энергии на 1 м³ кислорода составляет:

\[N_{ход} = 590 \times 5.9 \times 1.29/3600 = 1.25 \text{ кВт} \cdot \text{ч} / \text{м³}. \]

Пример 11.26. Через изоляцию резервуара (танка) для хранения жидкого кислорода проникает из окружающей среды теплоты 83,8 кДжен/(м²·ч) (считая на наружную поверхность). Внутренний диаметр резервуара шарообразной формы 1200 мм; наружный диаметр внешнего кожуха, имеющего цилиндрическую форму, 1900 мм, высота 2300 мм. Определить, сколько испаряется в 1 ч кислорода и через какое время испарится весь кислород, если резервуар был заполнен на 0,75 своего объема. Кислород хранится под атмосферным давлением.

Решение. Площадь наружной поверхности цилиндрического кожуха резервуара:

\[F = 2 \frac{\pi D^3}{4} + \pi DH = 2 \frac{3.14 \times 1.9^3}{4} + 3.14 \times 1.9 \times 2.3 = 19,34 \text{ м²}. \]

Проникает теплоты в резервуар!

\[G = 19,34 \times 83,8 \times 10^3 / 3600 = 450 \text{ Вт} = 0,45 \text{ кВт}. \]

Расход испаряемого кислорода:

\[G_0 = \frac{450 \times 3600}{213.7 \times 10^3} = 7.6 \text{ кг/ч}. \]

Здесь 213.7 \times 10^3 \text{ Джен} / \text{кг} — удельная теплота испарения кислорода под атмосферным давлением.

Количество кислорода в резервуаре при заполнении его на 0.75 объема:

\[G = 0.75 \times \frac{\pi D_3^{\text{нар}}}{6} \times 1100 = 0.75 \times \frac{3.14 \times 1.2^3}{6} \times 1100 = 743 \text{ кг}, \]

где 1100 кг/м³ — плотность жидкого кислорода.

Время испарения всего кислорода:

\[\tau_{исп} = 743/7.6 = 98 \text{ ч}. \]
11.1. Вычислить холодильный коэффициент и мощность, потребляемую холодильной установкой, работающей по циклу Карно, если ее холодопроизводительность 6400 Вт при температуре испарения —10 °C. Температура конденсации 22 °C.

11.2. Найти минимальную затрату работы (по циклу Карно) и расход воды в конденсаторе при выработке 100 кг/ч льда из воды, имеющей температуру 0 °C. Хладагент испаряется при —5 °C, а конденсируется при 25 °C. Вода в конденсатор подается при 12 °C, а уходит при 20 °C. Удельная теплота замерзания воды 335 кДж/кг.

11.3. Определить удельную холодопроизводительность хладагента и холодильный коэффициент цикла для: а) аммиака; б) диоксида углерода и в) диэтродихлорметана CF₂Cl₂. Температура испарения —15 °C, температура конденсации 30 °C. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.

11.4. Вычислить теоретический холодильный коэффициент углекислотной холодильной установки, если температура конденсации 20 °C, а температура испарения —40 °C. Цикл сухой, переохлаждение жидкости перед дросселированием отсутствует.

11.5. Сравнить теоретические холодильные коэффициенты аммиачной компрессионной холодильной установки, работающей при температуре испарения —20 °C и температуре конденсации 30 °C: а) для цикла Карно; б) для реального влажного цикла; в) для сухого цикла без переохлаждения жидкого аммиака; г) для сухого цикла с переохлаждением до 25 °C жидкого аммиака после конденсации.

11.6. По условиям предыдущей задачи сравнить теоретические холодильные коэффициенты для фреоновой холодильной установки, пользуясь диаграммой \(i = \lg \rho \) (рис. XXVIII).

11.7. В конденсаторе аммиачной холодильной установки 20 м³/ч воды нагревается на 6 К. Теоретическая мощность, затрачиваемая компрессором, 23,5 кВт. Определить холодопроизводительность установки и холодильный коэффициент.

11.8. Определить часовой объемный расход аммиака, поступающего в компрессор, при следующих условиях: холодопроизводительность установки 58 200 кВт; температура конденсации 25 °C, переохлаждения нет; температура испарения —15 °C; цикл сухой.

11.10. Аммиачный компрессор типа ГД (горизонтальный) имеет холодопроизводительность 697 800 Вт при температуре испарения —15 °C и температуре конденсации 25 °C. Определить холодопроизводительность этого компрессора, если температура испаре-
ния будет —5 °C, а температура конденсации 30 °C.

11.11. Углекислотная холодильная установка производительноностью 116 300 Вт работает при температуре испарения —15 °C, абсолютном давлении в конденсаторе 75 кгс/см² и переохлаждении до 25 °C. Компрессор имеет сухой ход. Определить холодильный коэффициент и теоретическую потребляемую мощность.

11.12. Аммиачная холодильная установка холодопроизводительноностью 116 300 Вт с компрессором вертикального типа работает при температуре испарения —15 °C, температуре конденсации 30 °C и переохлаждении до 25 °C. Компрессор имеет сухой ход. Определить: давление в конденсаторе и испарителе, холодильный коэффициент, часовой объем засасываемых компрессором паров, теоретическую и действительную потребляемую мощность, температуру аммиака на выходе из компрессора, расход воды на конденсатор при нагревании воды в нём на 7 °C.

11.13. Аммиачный двухцилиндровый вертикальный компрессор одноступенчатого сжатия имеет диаметр цилиндров 150 мм, ход поршня 150 мм и частоту вращения 400 об/мин. Вычислить холодопроизводительность этого компрессора при нормальных условиях, а также при рабочих условиях, когда испарение производится при \(p_{або} = 2 \text{ кгс/см}^2 \), а конденсация при \(p_{абс} = 12 \text{ кгс/см}^2 \). Перед дросселированием производится переохлаждение жидкого аммиака на 6 °C. Вычислить также действительную расходную мощность для рабочих условий.

11.14. В каскадной холодильной установке, работающей с фреоновым и этановым циклами (рис. 11.16), этап конденсируется при —14 °C под абсолютным давлением 17 кгс/см². Количество теплоты, передаваемой от конденсирующегося этапа к кипящему фреону (хладону), составляет 23 260 Вт. Температура испарения фреона на 5 °C ниже температуры конденсации этапа. Конденсируется фреон при 30 °C, переохлаждение жидкого фреона нет, цикл сухой. Определить степень сжатия фреона в компрессоре (отношение давления конденсации к давлению испарения) и расход воды в конденсаторе фреона при нагревании ее на 8 °C.

11.15. Сжатый до \(p_{абс} = 10 \text{ МПа} \) воздух охлаждается в испарителе двухступенчатой аммиачной холодильной установки до температуры, на 5 °C превышающей температуру испарения аммиака. После охлаждения сжатый воздух дросселируется до давления \(p_{абс} = 0,4 \text{ МПа} \). Определить температуру воздуха после дросселирования, если аммиак испаряется под давлением \(p_{абс} = 0,042 \text{ МПа} \).
11.16. Определить по диаграмме $T—S$ интегральный дюольтомоновский эффект при дросселировании воздуха до 1 кгс/см²: а) при начальной температуре воздуха 15 °C и начальном давлении 50 кгс/см²; б) при начальной температуре воздуха —50 °C и начальном давлении 50 кгс/см²; б) при начальной температуре воздуха —50 °C и начальном давлении 200 кгс/см².

11.17. Определить затрату энергии на 1 кг жидкого воздуха, получаемого по простому регенеративному цикулу, при следующих условиях: а) начальная температура воздуха 15 °C, давление сжатия 50 кгс/см²; б) начальная температура воздуха 15 °C, давление сжатия 200 кгс/см². Расширение в обоих случаях производится до 1 кгс/см³. Потери холода от недорекуперации и в окружающую среду не учитывать.

11.18. Определить ожидаемую долю воздуха и расход энергии на 1 кг жидкого воздуха в простом регенеративном цикле при начальной температуре воздуха 30 °C и давлении сжатия $p_{абс} = 200$ кгс/см². Общие потери холода 10,5 кДж на 1 кг перерабатываемого воздуха.

11.19. Определить расход энергии на 1 кг жидкого воздуха при дросселировании воздуха с 200 до 1 кгс/см² в цикле с предварительным аммиачным охлаждением до —50 °C. Удельная холодопроизводительность аммиачной холодильной установки 4820 кДж на 1 кВт·ч. Потери холода от недорекуперации и в окружающую среду не учитывать. Начальная температура воздуха 15 °C.

11.20. Определить ожидаемую долю воздуха и расход энергии на 1 кг жидкого воздуха в установке, работающей с циркуляцией воздуха под давлением. Давление сжатия $p_{абс} = 200$ кгс/см²; промежуточное давление $p_{абс} = 50$ кгс/см²; низкое давление 1 кгс/см³; $M = 0,2$; начальная температура воздуха 25 °C. Потери холода не учитывать.

11.21. Определить потребляемую мощность и количество жидкого воздуха, получаемого в цикле среднего давления с отдачей внешней работы, при переработке 300 м³/ч воздуха (при 0 °C и 760 мм рт. ст.). Воздух сжимается до 40 кгс/см²; температура воздуха перед детандером —80 °C; температура воздуха после компрессора (перед входом в теплообменник) 30 °C; доля воздуха, направляемого в детандер 0,8. Определить также расход энергии на 1 кг жидкого воздуха. Общие потери холода принять в размере 11,5 кДж на 1 кг перерабатываемого воздуха.

11.22. Определить расход энергии на 1 кг жидкого воздуха в цикле высокого давления с отдачей внешней работы при сжатии воздуха до 200 кгс/см² и давлении после детандера 8 кгс/см²; $M = 0,5$. Общие потери холода 14,7 кДж на 1 кг перерабатываемого воздуха. Начальная температура воздуха 30 °C.

11.23. При испытании турбодетандера установлено, что воздух в нем расширяется от 4 до 1,2 кгс/см², причем от турбодетандера отводилась мощность в 4 кВт и через него проходило 650 кг/ч.
Определить термодинамический к. п. д. турбодетандера. Сжатый воздух поступал в турбодетандер при 114 К.

11.24. Определить расход энергии на 1 кг жидкого воздуха в цикле низкого давления с турбодетандером, если известно, что компрессором сжимается 6000 м³/ч воздуха (при нормальных условиях) до \(p_{abc} = 7 \) кгс/см². Турбодетандер отдает мощность 55 кВт. Потери от недорекуперации и в окружающую среду составляют 6,3 кДж на 1 м³ сжимаемого воздуха (при нормальных условиях). Для компрессора изотермический к. п. д. принять равным 0,7. Воздух поступает в установку при 35 °C. В турбодетандер направляется 80% перерабатываемого воздуха. Коэффициент испарения \(a = 1,25 \).

11.25. Сколько кубических метров воздуха необходимо переработать для получения 200 м³ кислорода 99% чистоты, если отбортный азот содержит 10% кислорода?

11.26. По практическим данным, потери холода составляют 335 кДж с 1 м² наружной поверхности кожуха теплоизолирующего цилиндрического бака, заполненного жидким метаном. Внутренние размеры бака: \(D = H = 1,1 \) м. Бак окружен со всех сторон изоляцией толщиной 300 мм. Определить время испарения всей жидкости, если вначале бак был заполнен полностью. Плотность жидкого метана 415 кг/м³.

11.27. Определить затрату энергии при получении 1 кг жидкого метана по простому регенеративному циклу. Метан сжимается до давления 150 кгс/см². Температура метана после компрессора 300 К. Диаграмму \(T—S \) для метана см. [11.8].

11.28. Определить расход энергии при получении 1 кг жидкого метана в цикле с предварительным аммиачным охлаждением до -45 °C при давлении сжатия метана 150 кгс/см². Удельная холодопроизводительность аммиачной холодильной установки 4820 кДж/(кВт·ч).

11.29. В установке для получения газообразного кислорода, работающей по циклу среднего давления с отдачей внешней работы, давление поступающего воздуха 20 кгс/см². Недорекуперация составляет 8 °C, потери холода в окружающую среду 8,38 кДж на 1 м³ перерабатываемого воздуха. В детандере воздух расширяется от 20 кгс/см² (при 140 К) до 6 кгс/см², к. п. д. детандера 0,65. Определить долю воздуха, направляемого в детандер, неблагоприятным эффектом дросселирования воздуха от 6 до 1 кгс/см².
Глава 1. Основы гидравлики

1.1. \(M = 15,8; \rho = 0,616 \text{ кг/м}^3. \)
1.2. 4,43 \text{ кг/м}^3.
1.3. 7,3% \text{ CO}_2; 69,2\% \text{ N}_2; 23,5\% \text{ H}_2\text{O}.
1.4. 0,995 \cdot 10^6 \text{ Па}.
1.5. a) 1,8 м; b) 1,1 м.
1.6. 6 болтов; 0,716 \cdot 10^6 \text{ Па или 0,73 кгс/см}^2.
1.7. 3,31 \cdot 10^6 \text{ Н}.
1.8. 0,33 \cdot 10^{-4} \text{ м}^2/\text{с}.
1.9. 1,5 \cdot 10^{-6} \text{ Па} \cdot \text{с}.
1.10. 0,07 \Pi = 0,007 \text{ Па} \cdot \text{с}.
1.11. 0,72 м/с.
1.12. \(\omega_{вх} = 13,1 \text{ м/с}; \omega_{вых} = 10,1 \text{ м/с}. \)
1.13. \(\omega_{в} = 2,0 \text{ м/с}; \omega_{0} = 10,4 \text{ м/с}. \)
1.14. 73 мм.
1.15. 0,105 м.
1.17. Переходный режим.
1.18. a) Переходный режим; b) ламинарный режим.
1.19. 0,056 м/с.
1.20. 2840 \text{ кг/ч}.
1.21. \(\tau = 1 \text{ ч} \cdot 13 \text{ мин}; \alpha = 0,632. \)
1.22. 0,06 м³/с.
1.23. \(\omega = 0,47 \text{ м/с}; G = 47 800 \text{ кг/ч}. \)
1.24. 280 \text{ кг/ч}.
1.25. 2,88 \cdot 10^4 \text{ Па}.
1.26. 1,37 \cdot 10^4 \text{ Па (e = 0,01 мм).}
1.27. 520 \text{ Па (e = 0,8 мм).}
1.28. 1,15 \cdot 10^4 \text{ Па (e = 0,2 мм).}
1.29. a) Уменьшится в 10 раз; b) изменятся в \(\frac{\lambda_1 T_1}{\lambda_0 T_0} \) раз.
1.30. 56,5 кВт/ч.
1.31. 50 мм.
1.32. a) Увеличится в 16 раз; b) увеличится в 32 раза.
1.33. 7,1 м.
1.34. 5,9 л/мин.
1.35. 1,51 кВт.
1.36. 821 Па.
1.37. Для толуола 15,6 Па; для воды 513 Па.
1.39. Масштаб 1 : 13,6; \(\omega = 0,271 \text{ м/с}. \)
1.40. 1,43 кВт.
1.41. Увеличится в 8 раз.
1.42. 4,0 кВт.
1.43. 10,2 кВт.
1.44. 4,7 кВт.
1.45. \(\Delta p = 3360 \text{ Па}, \; N = 0,35 \text{ кВт}. \)
1.46. \(\omega = 1,7 \text{ м/с}; \lambda = 0,0255. \)
1.47. 4,79 \cdot 10^{-2} \text{ кгс/с; режим ламинарный.}
1.49. 21 м³/ч.
1.50. Зимой 1,71 \cdot 10^4 \text{ кг/ч; летом 1,46 \cdot 10^4 \text{ кг/ч.}}
1.51. 776 \text{ Па или 79 мм вод. ст.}
1.52. 36,7 \cdot 10^4 \text{ Па или 3,74 кгс/см}^2.
1.53. 4,84 м.
1.54. 354 Па.

495
Глава 2. Насосы. Вентиляторы. Компрессоры

2.1. 15,6 м.
2.2. 467 м.
2.3. 0,69.
2.4. 18,3 кВт.
2.5. 43°С.
2.6. 0,037 м³/с; большой плунжер 0,0184 м³/с; малый плунжер 0,0186 м³/с.
2.7. 0,89.
2.8. Не более 2,2 м.
2.9. 1,86 кВт.
2.10. \(\eta = 0,59; \quad Q = 71,2 \text{ м³/ч}; \quad H = 68 \text{ м}; \quad N = 22,4 \text{ кВт}. \)
2.11. \(Q_1 = 0,4 \text{ м³/мин}; \quad Q_2 = 0,3 \text{ м³/мин}. \)
2.12. 0,257 м³/мин.
2.13. 18,2 м³/ч.
2.14. 4,2 кВт.
2.15. \(\eta = 0,48; \quad Q = 4170 \text{ м³/ч}; \quad \Delta p = 734 \text{ Па}; \quad N = 1,77 \text{ кВт}. \)
2.16. 940 м³/ч.
2.17. 1650 м³/ч.
2.18. 1800 об/мин.
2.19. 117 °С; 118 кДж/кг.
2.20. 4,6 кВт.
2.21. 0,89.
2.22. 3,25 м³/мин; 13,0 кВт.
2.23. 5,46 м³/мин; 13,2 кВт.
2.24. 20,3 \cdot 10^5 \text{ Па или } 20,7 \text{ кгс/см}^2.
2.25. 3,62 \cdot 10^5 \text{ Па или } 3,69 \text{ кгс/см}^2 — воздуход; 9,20 \cdot 10^8 \text{ Па или } 9,37 \text{ кгс/см}^2 — газ.

2.27. 4 ступени.
2.28. Одноступенчатое сжатие: 4,28 \cdot 10^3 \text{ кДж/кг}; двухступенчатое сжатие: 3,54 \cdot 10^3 \text{ кДж/кг}.
2.29. 10,7 м³/ч (при нормальных условиях).
2.30. Двухступенчатое сжатие: \(N = 83,2 \text{ кВт}, \quad \text{расход воды } 4,13 \text{ м³/ч}; \quad \text{трёхступенчатое сжатие: } N = 80 \text{ кВт}, \quad \text{расход воды } 3,96 \text{ м³/ч}. \)

Глава 3. Гидромеханические методы разделения. Перемешивание
в жидкой среде

3.1. а) \(d_2/d_1 = 1,73; \quad \text{б) } d_4/d_1 = 2,06. \)
3.2. а) \(w_{oo} = 7,65 \cdot 10^{-9} \text{ м/с}; \quad \text{б) при } 15 \text{ °С } w_{oo} = 7,86 \cdot 10^{-9} \text{ м/с, при } 500 \text{ °С } w_{oo} = 3,93 \cdot 10^{-3} \text{ м/с}. \)
3.3. 16,8 м/с.
3.4. 7,63 м/с.
3.5. 226 мм.
3.6. 11,4 мкм.
3.7. 5,14 м.
3.8. В 2 раза.
3.9. 1070 кг/м³.
3.10. 1 ЧН-15; \(\Delta p = 808 \text{ Па или } 82,4 \text{ мм рт. ст.} \)
3.11. 2990 кг.
3.12. 4200 кг.
3.13. 1 ч 36 мин.
3.14. 0,93 мм.
3.15. 2 ч.
3.16. 58,5 мин.
3.17. 20 мин.
3.18. 110 см³/дм³.
3.19. Центрифуга периодического действия вертикальной подвесной конструкции.
3.20. Сверхцентрифуга.
3.28. 1.375×10^4 Па или 1,40 кгс/см².
3.29. ~ 600 об/мин.
3.30. a) 1,04 м; b) 0,082 м.
3.31. В 200 раз.
3.32. 1 мин 18 с.
3.33. 4,8 кВт.
3.34. Увеличится не более чем на 100%.
3.35. 5,63 м³/ч.
3.36. В 27 раз.
3.37. 5,07 м³/ч.
3.38. 6,15 мкм.
3.39. 0,28 м³/с; 2279 Па.
3.40. 0,48; 462 мм.
3.41. 1,3 мм; 50%.
3.42. 137 Вт.
3.43. 240 об/мин.
3.44. Увеличится в 1,3 раза.
3.45. 0,58 м.

Глава 4. Теплопередача в химической аппаратуре

4.1. Увеличится в 10 раз.
4.2. 1,75 кДж.
4.3. 136 кДж/ч.
4.4. Увеличится на $\sim 23\%$.
4.5. 217 °С.
4.6. 0,14 Вт/(м·К); 0,017 Вт/(м·К); 0,48 Вт/(м·К).
4.7. 285 кг/ч; 259 кг/ч; 2820 кг/ч.
4.8. 94,7 °С.
4.9. 92 кВт.
4.10. 582 кг/ч.
4.11. 63,8 кВт/м².
4.12. a) Не изменяется; b) увеличится на 9%.
4.13. a) От 52,55 до 50,28 Вт/(м³·К); b) от 1960 до 730 Вт/(м³·К).
4.14. 28,7 кВт/м².
4.15. Прямой 36,7 °С; противоток 50,5 °С.
4.16. 38,4 °С.
4.17. 4,21 м³/ч.
4.18. Поверхность имеющегося теплообменника недостаточна.
4.19. 9,38 Вт/(м³·К).
4.20. 2140 Вт/(м³·К).
4.21. 3,1 м³; 560 кг/ч.
4.22. a) Расход воды: 39,8 м³/ч; $F = 18$ м³;
b) расход воздуха: 112 000 м³/ч (при нормальных условиях); $F = 341$ м³.
4.23. 112 Вт/(м³·К).
4.24. 1510 Вт/(м³·К).
4.25. 3890 Вт/(м³·К).
4.26. 92 Вт/(м³·К).
4.27. 1) 42,3 Вт/(м³·К); 2) 72,3 Вт/(м³·К).
4.28. Увеличится в 1,94 раза.
4.29. 1100 Вт/(м³·К).
4.30. 266 Вт/(м³·К).
4.31. 268 Вт/(м³·К).
4.32. 266 Вт/(м³·К).
4.33. 156 Вт/(м³·К).
4.34. 117 Вт/(м³·К).
4.35. 141 Вт/(м³·К).
4.36. 287 Вт/(м³·К).
4.37. 113,8 Вт/(м³·К).
4.38. 4140 Вт/(м³·К).
4.39. 3080 Вт/(м²·K).
4.40. 2340 Вт/(м²·K).
4.41. 1017 Вт/(м²·K).
4.42. 1060 Вт/(м²·K).
4.43. 5035 Вт/(м²·K).
4.44. 98 м².
4.45. 66 м².
4.46. 3,61 м; 284,5 кг/ч.
4.47. 40 м; 1512 кг/ч.
4.48. а) 309 Вт/(м²·K); б) 300 Вт/(м²·K).
4.49. 215 Вт/(м²·K).
4.50. 772 кг/сут.
4.51. Уменьшается в 9,7 раз.
4.52. 166 мм.
4.53. 127 Вт/м².

Глава 5. Выпаривание. Кристаллизация

5.1. I. а) 1,184 кг/кг; б) 1,023 кг/кг; II. а) 1,152 кг/кг; б) 1,067 кг/кг.
5.2. 0,141 кг/с.
5.3. Уменьшается на 37,5%.
5.4. 3,47·105 Па или 3,54 кгс/см².
5.5. 1100 кгр.
5.6. W = 530 кгр; V = 0,56 м³.
5.7. 80 кВт.
5.8. 1995 Дж/(кг·К).
5.9. c = 2768 Дж/(кг·К); Г.п = 189 кгр.
5.10. x = 33%; Г.п = 2530 кг/ч.
5.11. 2,1 мм.
5.12. а) 173 кВт; б) 0,026 кВт.
5.13. а) 1430 кг/ч; б) 980 кг/ч; в) 3,8 м².
5.14. r = 305 кДж/кгр; c = 2080 Дж/(кг·К).
5.15. r = 2030 кДж/кгр; c = 2810 Дж/(кг·К).
5.16. tкип = 82 °C; r = 244 кДж/кгр.
5.17. 18,1 кПа или 136,1 мм рт. ст.
5.18. 81,5 °C.
5.19. 149 м².
5.20. ρ0 = 0,317 кгс/см².
5.21. 42 м²; 2150 кг/с.
5.22. Увеличивается в 2 раза.
5.23. 932 кг/ч.
5.24. 85 м²; 1494 кг/ч.
5.25. а) 35 м²/ч; б) 32 м²/ч.
5.27. 35 °C.
5.28. 11,8% (масс.); 18,0% (масс.); 43% (масс.).
5.29. 4 корусус.
5.30. 13,3 кг/ч, т. е. 4,04% от общего количества воды, испарившейся во втор
корусусе.
5.31. 25,9%.
5.32. xнач = 11,3% (масс.); Δt = 20,7 К.
5.33. 88 кг/ч.
5.34. 129 кг/ч; 56 кВт.
5.35. 15 °C.
5.36. 1,3 м.
5.37. F = 23 м²; Gв = 8630 кг/ч.

Глава 6. Основы массопередачи. Абсорбция

6.1. Φсм = 1050 кг/м³; X = 1,333 кг нитробензола/кг бензола; Cд = 4,86 км/м³
нитробензола/м³ смеси.
6.2. 1143 кг/м³.
6.3. 1,59 кг спирта/кг воздуха; \(\rho_{СМ} = 1,08 \text{ кг/м}^3 \).
6.4. 0,634 кг/м³ водорода; 11,59 кг/м³ метана; 4,74 кг/м³ этилена.
6.6. \(\Delta C_y = 5,15 \cdot 10^{-3} \text{ кмоль C}_2\text{H}_5/м³ газа}; \Delta C_{y} = 0,1340 \text{ кг C}_2\text{H}_5/м³ газа};
\(\Delta C_x = 5,26 \cdot 10^{-3} \text{ кмоль C}_2\text{H}_5/м³ жидкости}; \Delta C_{x} = 0,1369 \text{ кг C}_2\text{H}_5/м³ жидкости}.
6.7. \(\Delta x = 0,08 \text{ кмоль хлороформа/кмоль смеси}};
\(\Delta y = 0,10 \text{ кмоль хлороформа/кмоль смеси}}.
6.8. а) 13,8% (масс.); б) 42,5%.
6.9. a) 40,5%; b) 85%.
6.11. 0,00122 кмоль/(м²·ч·кПа).
6.12. \(\Delta Y_{opr} = 0,02 \text{ кмоль бензола/кмоль инертного газа}}; n_{opr} = 1,6.
6.13. \(L = 175 000 \text{ кг/ч}; n_{opr} = 6,02. \Delta \rho_{opr} = 5,67 \text{ мм рт. ст.}}.
6.14. \(L = 1475 \text{ кг/ч}; \ H_{т} = 7,2 \text{ м}}.
6.15. \(L = 760 \text{ кг/ч}; \ H_{т} = 1,93 \text{ м}; n_{opr} = 4,68.
6.17. 0,038 м/с.
6.18. 2,16·10^{-6} м/с.
6.19. 0,0285 м/с.
6.20. \(D = 2,15 \text{ м}; \ H_{т} = 5,4 \text{ м}}.
6.21. \(H_{т} = 5,1 \text{ м; } K_{у} = 0,0132 \text{ кг аммиака/м³ с кг аммиака}} / (\text{кг воздуха})}.
6.22. 5,1 м.
6.23. \(L = 12,3 \text{ т/ч}; \ X_{т} = 0,0611 \text{ кмоль бензола/кмоль масла}; D = 1,59 \text{ м}};
\(H_{т} = 7,02 \text{ м; } \ H_{т} = 4,0 \text{ м}}.
6.24. 30 м³/ч.
6.25. \(D = 1,03 \text{ м; } X_{т} = 0,149 \text{ кмоль бензола/кмоль поглотителя}}.

Глава 7. Перегонка и ректификация

7.1. a) 99 °С; 10,2% (масс.) крезола, 89,8% (масс.) воды; 1,85% (об.) крезола;
14 мм рт. ст.; б) 74 °С; 7,25% (масс.) крезола, 92,75% (масс.) воды; 1,29% (об.) крезола;
3,9 мм рт. ст.
7.2. a) 94 кг; б) 31,3 кг.
7.3. \(x_0 = 0,408; \ P = 962 \text{ мм рт. ст. или 128,3 кПа}}.
7.4. a) \(x = 0,675; y^* = 0,90; \)
б) при 50 °С давление не может превышать 400 мм рт. ст.
7.6. 4,2% (мол.) воды; 13% (мол.) уксусной кислоты; 82,8% (мол.) ацетона.
7.7. 465 кт; 43,8% (масс.) бензола.
7.8. \(W = 22,6 \text{ кт; } D = 2577,4 \text{ кт; } x_D = 73,6\%}.
7.9. 608 кмоль/ч.
7.11. 12,1% (масс.).
7.12. 0,897.
7.13. 7,2% (масс.); 13 000 кг/ч.
7.14. \(G_D = 17 150 \text{ кг/ч; } G_W = 64 700 \text{ кг/ч; } G_V = 68 400 \text{ кг/ч}}.
7.15. 25,4% (масс.); 4330 кг/ч.
7.16. 68,4% (мол.).
7.17. 74,4% (мол.); 80,3% (мол.).
7.18. a) 76,7% (мол.); б) 17,96% (мол.).
7.19. \(n_0 = 9; 720 \text{ кг/ч}}.
7.20. 7,1% (масс.); \(G_V = 4400 \text{ кг/ч; } G_\text{воды} = 97 100 \text{ кг/ч}}.
7.21. 59,2 м³; 2170 кг/ч.
7.22. В дефлегматоре: 4700 кДж/кг; в кубе: 5787 кДж/кг.
7.23. 3,21; 83 т/ч.
7.24. 9,4 м³; 10,75 т/ч.
7.25. \(n = 17 \).
7.27. a) \(G_D = 1760 \text{ кг/ч; } G_W = 4240 \text{ кг/ч; } б) \rho = 328 \text{ мм рт. ст.}; в) \rho = 13 ;\)
г) \(G_\text{тр. ст} = 1435 \text{ кг/ч; } G_\text{в} = 46,5 \text{ т/ч}}.
7.28. \(D = 800 \text{ мм; } H_{т. ч} = 3300 \text{ мм}}.
Глава 8. Экстрагирование

8.2. $x_{A_1} = 62,2; x_{B_1} = 24,8; x_{A_2} = 18,9; x_{B_2} = 25,1\%$ (масс.); 1,74 кг.

8.3. $G_{E_1} = 1940; G_{E_1} = 180$ кг; $x_{E_1} \approx 55\%$ (масс.) (после удаления растворителя);

$G_{E_2} = 1735; G_{E_2} = 99$ кг; $x_{E_2} = 38\%$ (масс.) (после удаления растворителя);

$G_{R_2} = 915; G_{R_2} = 850$ кг; $x_{R_2} = 4\%$ (масс.) (после удаления растворителя).

8.4. $G_s = 1334$ кг/ч; $n_s = 4$.

8.5. $n_s = 3; x_E = 4\text{ г/л}; 1,2\text{ г/л}; 0,6\text{ г/л}$.

8.6. $G_{B_\text{min}} = 99$ кг; $n_s = 8$.

8.7. 63\% (масс.); 70\% (масс.).

8.8. 38,9 кг; 256 кг.

8.9. 77,8 кг; 450 кг; $n_s = 7$.

8.10. Экстракт 58\% (масс.); рафинат $\sim 0\%$; $n_{B_\text{min}} = 11$.

8.11. $n_s = 18; G_{B_s} = 1718$ кг; $G_{B_s} = 1734$ кг.

8.12. а) 7,7 кг; б) 99,6\%; в) 24,9\% (масс.).

8.13. $n_s = 3$.

8.15. а) 0,1 т или 2\%; б) 28,8 т; в) I — 10%, II — 7,9%; III — 6,1%; IV — 4,7%; V — 3,6%.

8.16. 565 кг; $n_s = 3$.

Глава 9. Адсорбция

9.1. 1430 кг; 2,55 м; 4 ч 22 мин.

9.2. $\tau = 225$ мин; $\tau_s = 65$ мин.

9.3. $u = 0,08$ м/с; $H_0 = 0,4$ м.

9.5. $q = 228 \text{ кДж/кг угл.}; Q = 1,21 \cdot 10^6 \text{ кДж}$.

9.6. 2,94 \cdot 10^{-8}$ м/с.

Глава 10. Сушка

10.1. В 33 раза.

10.2. $x = 0,060 \text{ кг/кг}; l = 209 \text{ кДж/кг}; t_m = 43^\circ C; t_p = 42^\circ C$.

10.3. $x = 0,020 \text{ кг/кг}; l = 105 \text{ кДж/кг}; t_p = 24^\circ C; \varphi = 0,25; \rho_p = 23 \text{ мм рт. ст.}$

10.4. $x = 0,069 \text{ кг/кг}; \varphi = 0,8$.

10.5. а) 0,0159 \text{ кг/кг}; б) 0,231 \text{ кг/кг}; в) 0,0154 \text{ кг/кг}.

10.6. $l_\varphi = 36,4 \text{ кг/кг}; q_\varphi = 4350 \text{ кДж/кг}; t_\varphi = 47,6 \text{ кг/кг}; q_\varphi = 3710 \text{ кДж/кг}$.

10.7. $p = 372,5 \text{ мм рт. ст.; } p_{\text{водян}} = 372,5 \text{ мм рт. ст.; } x = 0,622 \text{ кг/кг}$.

10.8. $x = 0,083 \text{ кг/кг}; p_B = 6,173 \text{ кгс/см}^2; 6,06 \cdot 10^6 \text{ Па}; p = 5,68 \text{ кг/м}^3$.

10.9. 4,6 \text{ кг/ч}; 43,5 \text{ кг/кг}.

10.10. $G_p = 2,755 \text{ кгс/см}^2; 270,3 \text{ кПа}; \rho = 5,05 \text{ кг/м}^3; x = 0,404 \text{ кг/кг}$.

10.11. 3230 \text{ м}^3 влажного воздуха/ч.

10.12. 25°C.

10.13. 9700 кг/ч; 566 кВт.

10.15. 71,3\%.

10.16. 35,8°C.

10.17. 7,4 кПа и 56 мм рт. ст.; 7,4\%.

10.18. 16,5 ч.

10.19. 5,81 \text{ м}^3.

10.20. 33°C; 0,39.

10.21. 38°C.

10.22. $L = 20800 \text{ кг/ч}; G_{B, p} = 950 \text{ кг/ч}$.

10.23. 320 \text{ кг/ч}; 132 м\text{м}.

10.24. $L = 1710 \text{ кг/ч}; G_{B} = 1315 \text{ кг/ч}; p_p = 30 \text{ мм рт. ст.; 3,95\%}$.

10.25. $\varphi = 38^\circ C; t_\varphi = 53^\circ C; x_2 = 0,035 \text{ кг/кг}$.

500
10.26. $127 \degree C$.
10.27. $L = 7400 \text{ кг/ч}; \quad G_{T, \pi} = 590 \text{ кг/ч}; \quad P_{\text{абс}} = 8 \text{ кгс/см}^2$.
10.28. $L = 16200 \text{ кг/ч}; \quad G_{T, \pi} = 960 \text{ кг/ч}$.
10.29. $34 \text{ Вт/(м}^2\cdot\text{К}); \quad 156 \text{ кг/ч}$.
10.30. $868 \text{ м}^3; \quad 1865 \text{ кг/ч}$.
10.31. а) $2545 \text{ кДж/кг}; \quad$ б) 3685 кДж/кг.
10.32. $150 \text{ м}^3; \quad 401 \text{ кг/ч}$.
10.33. $L = 6840 \text{ кг/ч}; \quad G_{T, \pi} = 565 \text{ кг/ч}; \quad P_{\text{абс}} = 10 \text{ кгс/см}^2; \quad F = 135 \text{ м}^2$.
10.34. $G_{\text{конв}} = 423 \text{ кг/ч}; \quad F = 70 \text{ м}^2; \quad$ доля возвращаемого отработанного воздуха 60.8%.

Глава 11. Умеренное и глубокое охлаждение

11.1. $\varepsilon = 8.22; \quad N = 0.78 \text{ кВт}$.
11.2. $L = 1042 \text{ кВт}; \quad G_{B} = 0.31 \text{ кг/с}$.
11.3. а) $q_0 = 1110 \text{ кДж/кг}; \quad \varepsilon = 4.84; \quad$ б) $q_0 = 119.6 \text{ кДж/кг}; \quad \varepsilon = 1.96; \quad$ в) $q_0 = 118.5 \text{ кДж/кг}; \quad \varepsilon = 4.87$.
11.4. 1.89.
11.5. а) $5.06; \quad$ б) $4.38; \quad$ в) $4.16; \quad$ г) 4.27.
11.6. а) $5.06; \quad$ б) $4.50; \quad$ в) $4.00; \quad$ г) 4.13.
11.7. $Q_0 = 116.5 \text{ кВт}; \quad \varepsilon = 4.96$.
11.8. $99.5 \text{ м}^3/\text{ч}$.
11.9. 5.82 кВт.
11.10. 1098 кВт.
11.11. $3.08; \quad 37.8 \text{ кВт}$.
11.12. $\rho_{\text{T}} = 1166.9 \text{ кПа или 11,895 кгс/см}^2; \quad \rho_{\text{T}} = 206.4 \text{ кПа или 2,41 кгс/см}^2; \quad \varepsilon = 4.94; \quad V = 189 \text{ м}^3/\text{ч}; \quad N_{\text{теор}} = 23.6 \text{ кВт}; \quad N = 36.3 \text{ кВт}; \quad t = 97 \degree C; \quad V_B = 14.3 \text{ м}^3/\text{ч}$.
11.13. $Q_0 = 85950 \text{ Вт}; \quad Q' = 53730 \text{ Вт}; \quad N = 23.2 \text{ кВт}$.
11.14. $\rho/\rho_0 = 4.75; \quad G_B = 3125 \text{ кг/ч}$.
11.15. $-82 \degree C$.
11.16. а) $11 \degree C; \quad$ б) $73 \degree C$.
11.17. а) $4.92 \text{ кВт} \cdot \text{ч}/\text{кг}; \quad$ б) $2.10 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.18. $0.0545 \text{ кг/кг}, \quad$ расход энергии на 1 кг жидкого воздуха 4 кВт·ч/кг.
11.19. $1.084 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.20. $0.066 \text{ кг/кг}, \quad$ расход энергии на 1 кг жидкого воздуха 1,31 кВт·ч/кг.
11.21. $N = 46.7 \text{ кВт}; \quad G_Ж = 46.6 \text{ кг/ч}, \quad$ расход энергии на 1 кг жидкого воздуха $\sim 1 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.22. $1.07 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.23. 0.69.
11.24. $0.995 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.25. 1618 м^3.
11.26. 113 е..
11.27. $2.2 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.28. $1.15 \text{ кВт} \cdot \text{ч}/\text{кг}$.
11.29. 0.67.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Общая

7. Кафаров В. В. Методы кибернетики в химии и химической технологии. 4-е изд., пер. и доп. — М.: Химия, 1985. 443 с.

18. Мухленов И. П. Общая химическая технология. Т. 1, 2. 4-е изд. — М.: Высшая школа, 1984. 256+263 с.

32. Расчет и конструирование машин и аппаратов химических производств=Примеры и задачи/М. Ф. Михалев, Н. П. Петричук, А. И. Мильченко, В. В. Зобин; Под ред. М. Ф. Михалева. — Л.: Машиностроение, 1984. 300 с.
33. Дыннерский Ю. И. Основные процессы и аппараты химической технологии; Пособие по курсовому проектированию. — М.: Химия, 1983. 272 с.
34. Романов П. Г., Курочкина М. И. Расчетные диаграммы и номограммы по курсу «Процессы и аппараты химической промышленности». — Л.: Химия, 1985. 56 с.

К главе 1. Основы прикладной гидравлики
1.3. Романков П. Г., Курочкина М. И. Гидродинамические процессы химической технологии. 3-е изд., пер. — Л.: Химия, 1982. 288 с.
1.4. Протодьяконов И. О., Сычков Ю. В. Трубопроводность в процессах химической технологии. Л.: Наука, 1984. 343 с.
1.5. Протодьяконов И. О., Ганский В. А. Экспериментальные методы исследования гидродинамики двухфазных систем в инженерной химии. — Л.: Изд-во ЛГУ, 1982. 192 с.

503

К главе 2. Насосы. Вентиляторы. Компрессоры

К главе 3. Гидромеханические методы разделения. Гидродинамика взвешенного слоя. Перемешивание в жидкой среде
3.4. Очистка промышленных газов от пыли/В. Н. Ужов, А. Ю Вальдберг, Б. И. Мятков, И. К. Решидов. — М.: Химия, 1981. 392 с.
3.7. Монтгов А. Э. Многокамерные густители в производстве глинозема. — М.; Л.: Металлургиздат 1952. 56 с.
3.15. Азеров М. Э., Тодес О. М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем. — М.; Л.: Химия, 1968. 510 с.
8.16. Разумов И. М. Пневмо- и гидротранспорт в химической промышленности.— М.: Химия, 1979. 245 с.

K главе 4. Теплопередача в химической аппаратуре

4.2. Кутателадзе С. С. Основы теории теплообмена. 5-е изд.— М.: Атомиздат, 1979. 415 с.
4.3. Кутателадзе С. С. Анализ подобий в теплофизике.— Новосибирск: Наука, 1982. 280 с.
4.4. Гухман А. А. Применение теории подобия к исследованию процессов теплообмена.—Процессы переноса в движущихся средах. 2-е изд., пер. и доп.— М.: Высшая школа, 1974. 328 с.
4.6. Романко П. Г., Фролов В. Ф. Теплообменные процессы химической технологии.— Л.: Химия, 1982. 266 с.
4.8. Чечеткин А. В. Высокотемпературные теплоносители. 3-е изд., пер. и доп.— М.: Энергия, 1971. 496 с.
4.10. Петухов Б. С. Теплообмен и сопротивление при ламинарном течении жидкости в трубах.— М.: Энергия, 1967. 411 с.
4.11. Кишельников В. Н. Основы теплопередачи и расчета тепловых аппаратов химической промышленности.— Иваново: ИХТИ, 1977. 103 с.
4.22. Климченко А. П., Каневец Г. Е. Расчет теплообменных аппаратов на ЭВМ. — М.; Л.: Энергия, 1966 140 с.

К главе 5. Выпаривание. Кристаллизация
5.3. Федотовкин И. М., Ткаченко С. И. Теплодинамические процессы в выпарных аппаратах. — Киев: Техника, 1975. 212 с.
5.10. Вершин Н. Н. и др. Кристаллизация в дисперсных системах/А. Н. Вершин, И. А. Шуляк, М. Ф. Михалев. — Л.: Химия, 1986. 256 с.

К главе 6. Основы массопередачи. Аборбция

К главе 7. Перегонка и ректификация

К главе 8. Экстрагирование

8.5. Романков П. Г., Куракина М. И. Экстрагирование из твердых материалов. — Л.: Химия, 1983. 256 с.
К главе 9. Адсорбция

К главе 10. Сушка

К главе 11. Умеренное и глубокое охлаждение

11.2. Комаров Н. С. Холод. 5-е изд., пер. и доп. М.: Гизлегпиплерм, 1953. 704 с.
11.3. Орехов И. И., Обрежков В. Д. Холод в процессах химической технологии. — Л.: Изд-во ЛГУ, 1980. 256 с.

Таблица I

Атомные массы некоторых элементов по Международной таблице 1977 г.

Точность последней цифры ±1 или ±3, если она выделена мелким шрифтом.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Символ</th>
<th>Атомная масса</th>
<th>Наименование</th>
<th>Символ</th>
<th>Атомная масса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td>N</td>
<td>14,0067</td>
<td>Марганец</td>
<td>Mn</td>
<td>54,9380</td>
</tr>
<tr>
<td>Алюминий</td>
<td>Al</td>
<td>26,98154</td>
<td>Медь</td>
<td>Cu</td>
<td>63,549</td>
</tr>
<tr>
<td>Аргон</td>
<td>Ar</td>
<td>39,944</td>
<td>Молибден</td>
<td>Mo</td>
<td>95,94</td>
</tr>
<tr>
<td>Барий</td>
<td>Ba</td>
<td>137,33</td>
<td>Мышьк</td>
<td>As</td>
<td>74,9216</td>
</tr>
<tr>
<td>Бериллий</td>
<td>Be</td>
<td>9,01218</td>
<td>Натрий</td>
<td>Na</td>
<td>22,98977</td>
</tr>
<tr>
<td>Бор</td>
<td>B</td>
<td>10,81</td>
<td>Никель</td>
<td>Ni</td>
<td>58,70</td>
</tr>
<tr>
<td>Бром</td>
<td>Br</td>
<td>79,904</td>
<td>Олово</td>
<td>Sn</td>
<td>118,694</td>
</tr>
<tr>
<td>Ванадий</td>
<td>V</td>
<td>50,9415</td>
<td>Платина</td>
<td>Pt</td>
<td>195,087</td>
</tr>
<tr>
<td>Висмут</td>
<td>Bi</td>
<td>208,9804</td>
<td>Радий</td>
<td>Ra</td>
<td>226,0254</td>
</tr>
<tr>
<td>Водород</td>
<td>H</td>
<td>1,0079</td>
<td>Ртуть</td>
<td>Hg</td>
<td>200,547</td>
</tr>
<tr>
<td>Гелий</td>
<td>He</td>
<td>4,00260</td>
<td>Свинец</td>
<td>Pb</td>
<td>207,2</td>
</tr>
<tr>
<td>Железо</td>
<td>Fe</td>
<td>55,849</td>
<td>Серебро</td>
<td>Ag</td>
<td>107,868</td>
</tr>
<tr>
<td>Золото</td>
<td>Au</td>
<td>196,9655</td>
<td>Сера</td>
<td>S</td>
<td>32,06</td>
</tr>
<tr>
<td>Йод</td>
<td>I</td>
<td>126,9045</td>
<td>Стронций</td>
<td>Sr</td>
<td>87,62</td>
</tr>
<tr>
<td>Кадмий</td>
<td>Cd</td>
<td>112,41</td>
<td>Сурьма</td>
<td>Sb</td>
<td>121,76</td>
</tr>
<tr>
<td>Калий</td>
<td>K</td>
<td>39,0983</td>
<td>Титан</td>
<td>Ti</td>
<td>47,90</td>
</tr>
<tr>
<td>Кальций</td>
<td>Ca</td>
<td>40,08</td>
<td>Углерод</td>
<td>C</td>
<td>12,011</td>
</tr>
<tr>
<td>Кислород</td>
<td>O</td>
<td>15,9994</td>
<td>Уран</td>
<td>U</td>
<td>238,029</td>
</tr>
<tr>
<td>Кобальт</td>
<td>Co</td>
<td>58,9332</td>
<td>Фосфор</td>
<td>P</td>
<td>30,97376</td>
</tr>
<tr>
<td>Кремний</td>
<td>Si</td>
<td>28,0855</td>
<td>Фтор</td>
<td>F</td>
<td>18,998403</td>
</tr>
<tr>
<td>Криптон</td>
<td>Kr</td>
<td>83,80</td>
<td>Хлор</td>
<td>Cl</td>
<td>35,453</td>
</tr>
<tr>
<td>Ксенон</td>
<td>Xe</td>
<td>131,30</td>
<td>Хром</td>
<td>Cr</td>
<td>51,996</td>
</tr>
<tr>
<td>Литий</td>
<td>Li</td>
<td>6,941</td>
<td>Цинк</td>
<td>Zn</td>
<td>65,38</td>
</tr>
<tr>
<td>Магний</td>
<td>Mg</td>
<td>24,305</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица II

Плотность твердых материалов

<table>
<thead>
<tr>
<th>Материал</th>
<th>Плотность, кг/м³</th>
<th>Насыпная плотность, кг/м³</th>
<th>Материал</th>
<th>Плотность, кг/м³</th>
<th>Насыпная плотность, кг/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алебастр</td>
<td>2500</td>
<td>—</td>
<td>Бетон</td>
<td>2300</td>
<td>—</td>
</tr>
<tr>
<td>Антрацит</td>
<td>1600</td>
<td>—</td>
<td>Винилпласт</td>
<td>1380</td>
<td>—</td>
</tr>
<tr>
<td>Апатит</td>
<td>3190</td>
<td>1850</td>
<td>Гипс кристаллический</td>
<td>2240</td>
<td>1300</td>
</tr>
<tr>
<td>Асбест</td>
<td>2600</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

510
<table>
<thead>
<tr>
<th>Материал</th>
<th>Плотность, кг/м³</th>
<th>Насыпная плотность, кг/м³</th>
<th>Материал</th>
<th>Плотность, кг/м³</th>
<th>Насыпная плотность, кг/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глина сухая</td>
<td>— 1380</td>
<td></td>
<td>Сода кристаллическая</td>
<td>1 450</td>
<td>800</td>
</tr>
<tr>
<td>Гранит</td>
<td>2700</td>
<td>—</td>
<td>Соль каменная</td>
<td>2 350</td>
<td>1020</td>
</tr>
<tr>
<td>Зола</td>
<td>2200</td>
<td>680</td>
<td>Сосна</td>
<td>500</td>
<td>—</td>
</tr>
<tr>
<td>Земля сухая</td>
<td>1800</td>
<td>1300</td>
<td>Стекло</td>
<td>2 500</td>
<td>—</td>
</tr>
<tr>
<td>Известняк</td>
<td>2650</td>
<td>1800</td>
<td>Текстолит</td>
<td>1 380</td>
<td>—</td>
</tr>
<tr>
<td>Каолин</td>
<td>2200</td>
<td>—</td>
<td>Уголь древесный</td>
<td>1 450</td>
<td>200</td>
</tr>
<tr>
<td>Кашуцк</td>
<td>930</td>
<td>—</td>
<td>Уголь каменный</td>
<td>1 350</td>
<td>800</td>
</tr>
<tr>
<td>Кварц</td>
<td>2650</td>
<td>1500</td>
<td>Фаолит</td>
<td>1 730</td>
<td>—</td>
</tr>
<tr>
<td>Керамика кислотоупорная</td>
<td>2600</td>
<td>—</td>
<td>Фосфорит</td>
<td>—</td>
<td>1600</td>
</tr>
<tr>
<td>Кирпич обыкновенный</td>
<td>1500</td>
<td>—</td>
<td>Цемент</td>
<td>2 900</td>
<td>—</td>
</tr>
<tr>
<td>Кокс</td>
<td>1300</td>
<td>500</td>
<td>Эмаль</td>
<td>2 350</td>
<td>—</td>
</tr>
<tr>
<td>Косицедан серый</td>
<td>5000</td>
<td>3300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кожа сухая</td>
<td>860</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Литье каменное</td>
<td>3000</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мел кусковой</td>
<td>2200</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мрамор</td>
<td>2600</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Парафин</td>
<td>900</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Парофит</td>
<td>1200</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Песок сухой</td>
<td>1500</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поташ</td>
<td>2260</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пробка</td>
<td>240</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Резина</td>
<td>1500</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Селитра натриевая</td>
<td>2260</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Металлы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сталь</td>
<td>7 850</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чугун серый</td>
<td>7 250</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Медь катаная</td>
<td>8 800</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Латунь</td>
<td>8 500</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алюминий</td>
<td>2 700</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Свинец</td>
<td>11 400</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Огнеупоры</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Динас</td>
<td>1 900</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Магnezит</td>
<td>2 900</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Шамот</td>
<td>1 900</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица III

Плотность некоторых жидкостей при 0—20 °C

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>Плотность, кг/м³</th>
<th>Жидкость</th>
<th>Плотность, кг/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азотная кислота, 92 %</td>
<td>1 500</td>
<td>Сера кислота, 30 %</td>
<td>1 220</td>
</tr>
<tr>
<td>Аммиак, 26 %</td>
<td>910</td>
<td>Соляная кислота, дымящая</td>
<td>1 210</td>
</tr>
<tr>
<td>Бензин</td>
<td>760</td>
<td>Уксусная кислота, 70 %</td>
<td>1 070</td>
</tr>
<tr>
<td>Глицерин, 100 %</td>
<td>1 270</td>
<td>» 30 %</td>
<td>1 040</td>
</tr>
<tr>
<td>» 80 %</td>
<td>1 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>710</td>
<td>Хлороформ</td>
<td>1 530</td>
</tr>
<tr>
<td>Керосин</td>
<td>850</td>
<td>Четырехлористый углерод</td>
<td>1 630</td>
</tr>
<tr>
<td>Ксилол</td>
<td>880</td>
<td>Этилацетат</td>
<td>900</td>
</tr>
<tr>
<td>Мазут</td>
<td>890—950</td>
<td>Этиленхлорид</td>
<td>1 280</td>
</tr>
<tr>
<td>Метиловый спирт, 90 %</td>
<td>820</td>
<td>» 70 %</td>
<td>850</td>
</tr>
<tr>
<td>» 30 %</td>
<td>950</td>
<td>» 40 %</td>
<td>920</td>
</tr>
<tr>
<td>Наптоловин (расплавленный)</td>
<td>1 100</td>
<td>» 10 %</td>
<td>980</td>
</tr>
<tr>
<td>Нефть</td>
<td>790—950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ртуть</td>
<td>13 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вещество</td>
<td>Плотность, кг/м³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20 °C</td>
<td>0 °C</td>
<td>20 °C</td>
</tr>
<tr>
<td>Азотная кислота, 100%</td>
<td>1582</td>
<td>1547</td>
<td>1513</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1334</td>
<td>1310</td>
</tr>
<tr>
<td>Аммиак жидкый</td>
<td>605</td>
<td>639</td>
<td>610</td>
</tr>
<tr>
<td>Аммиачная вода, 25%</td>
<td>312</td>
<td>418</td>
<td>500</td>
</tr>
<tr>
<td>Аннилин</td>
<td>1039</td>
<td>1022</td>
<td>1004</td>
</tr>
<tr>
<td>Ацетон</td>
<td>835</td>
<td>813</td>
<td>791</td>
</tr>
<tr>
<td>Бензол</td>
<td>900</td>
<td>879</td>
<td>858</td>
</tr>
<tr>
<td>Бутанол</td>
<td>838</td>
<td>824</td>
<td>810</td>
</tr>
<tr>
<td>Вода</td>
<td>1000</td>
<td>998</td>
<td>992</td>
</tr>
<tr>
<td>Гексан</td>
<td>693</td>
<td>677</td>
<td>660</td>
</tr>
<tr>
<td>Глицерин, 50%</td>
<td>1136</td>
<td>1126</td>
<td>1116</td>
</tr>
<tr>
<td>Диоксид серы (жидк.)</td>
<td>1404</td>
<td>1434</td>
<td>1383</td>
</tr>
<tr>
<td>Диоксиретан</td>
<td>1310</td>
<td>1282</td>
<td>1254</td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>758</td>
<td>736</td>
<td>714</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>817</td>
<td>801</td>
<td>785</td>
</tr>
<tr>
<td>Кальциевый хлористый, 25%</td>
<td>1248</td>
<td>1239</td>
<td>1230</td>
</tr>
<tr>
<td>раствор</td>
<td>882</td>
<td>865</td>
<td>847</td>
</tr>
<tr>
<td>Метиловый спирт, 100%</td>
<td>928</td>
<td>810</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>946</td>
<td>935</td>
</tr>
<tr>
<td>Муравьиная кислота</td>
<td>1244</td>
<td>1220</td>
<td>1195</td>
</tr>
<tr>
<td>Натр едкий, 50% раствор</td>
<td>1540</td>
<td>1525</td>
<td>1511</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>1443</td>
<td>1430</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>1340</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>1230</td>
<td>1219</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1117</td>
<td>1109</td>
</tr>
<tr>
<td>Натрий хлористый, 20% раствор</td>
<td>1157</td>
<td>1148</td>
<td>1139</td>
</tr>
<tr>
<td>Нитробензол</td>
<td>1223</td>
<td>1203</td>
<td>1183</td>
</tr>
<tr>
<td>Окта</td>
<td>734</td>
<td>718</td>
<td>702</td>
</tr>
<tr>
<td>Олеум, 20%</td>
<td>1922</td>
<td>1896</td>
<td>1870</td>
</tr>
<tr>
<td>Пропиленовый спирт</td>
<td>819</td>
<td>804</td>
<td>788</td>
</tr>
<tr>
<td>Серная кислота, 98%</td>
<td>1857</td>
<td>1837</td>
<td>1817</td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>1866</td>
<td>1845</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>1709</td>
<td>1689</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>1532</td>
<td>1515</td>
</tr>
<tr>
<td>Серауглерод</td>
<td>1323</td>
<td>1293</td>
<td>1263</td>
</tr>
<tr>
<td>Соляная кислота, 30%</td>
<td>1173</td>
<td>1161</td>
<td>1149</td>
</tr>
<tr>
<td>Толуол</td>
<td>902</td>
<td>884</td>
<td>866</td>
</tr>
<tr>
<td>Уксусная кислота, 100%</td>
<td>1072</td>
<td>1048</td>
<td>1027</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1074</td>
<td>1058</td>
</tr>
<tr>
<td>Фенол (расплавленный)</td>
<td>1075</td>
<td>1058</td>
<td>1040</td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>1150</td>
<td>1128</td>
<td>1107</td>
</tr>
<tr>
<td>Хлорформ</td>
<td>1563</td>
<td>1526</td>
<td>1489</td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>1670</td>
<td>1633</td>
<td>1594</td>
</tr>
<tr>
<td>Этилобетат</td>
<td>947</td>
<td>924</td>
<td>901</td>
</tr>
<tr>
<td>Этиловый спирт, 100%</td>
<td>823</td>
<td>806</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>857</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>904</td>
<td>891</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>947</td>
<td>935</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>977</td>
<td>969</td>
</tr>
<tr>
<td>Название</td>
<td>Формула</td>
<td>Плотность при 0°С, кг/м³</td>
<td>Молекулярная масса</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Азот</td>
<td>N₂</td>
<td>1,25</td>
<td>28</td>
</tr>
<tr>
<td>Аммиак</td>
<td>NH₃</td>
<td>0,77</td>
<td>17</td>
</tr>
<tr>
<td>Аргон</td>
<td>Ar</td>
<td>1,78</td>
<td>39,9</td>
</tr>
<tr>
<td>Ацетилен</td>
<td>C₂H₂</td>
<td>1,171</td>
<td>26,9</td>
</tr>
<tr>
<td>Бензол</td>
<td>C₆H₆</td>
<td>-</td>
<td>78,1</td>
</tr>
<tr>
<td>Бутан</td>
<td>C₄H₁₀</td>
<td>2,673</td>
<td>58,1</td>
</tr>
<tr>
<td>Воздух</td>
<td></td>
<td>-</td>
<td>1,293 (29,0)</td>
</tr>
<tr>
<td>Водород</td>
<td>H₂</td>
<td>0,0899</td>
<td>2,02</td>
</tr>
<tr>
<td>Гелий</td>
<td>He</td>
<td>0,179</td>
<td>4,0</td>
</tr>
<tr>
<td>Диоксид азота</td>
<td>NO₂</td>
<td>-</td>
<td>46,0</td>
</tr>
<tr>
<td>Диоксид серы</td>
<td>SO₂</td>
<td>2,93</td>
<td>64,1</td>
</tr>
<tr>
<td>Диоксид углерода</td>
<td>CO₂</td>
<td>1,98</td>
<td>44,0</td>
</tr>
<tr>
<td>Кислород</td>
<td>O₂</td>
<td>1,429</td>
<td>32</td>
</tr>
<tr>
<td>Метан</td>
<td>CH₄</td>
<td>0,72</td>
<td>16,0</td>
</tr>
<tr>
<td>Оксид углерода</td>
<td>CO</td>
<td>1,25</td>
<td>28,0</td>
</tr>
<tr>
<td>Пентан</td>
<td>C₅H₁₂</td>
<td>-</td>
<td>72,2</td>
</tr>
<tr>
<td>Пропан</td>
<td>C₃H₆</td>
<td>2,02</td>
<td>44,1</td>
</tr>
<tr>
<td>Пропилен</td>
<td>C₃H₆</td>
<td>1,91</td>
<td>42,1</td>
</tr>
<tr>
<td>Сероводород</td>
<td>H₂S</td>
<td>1,54</td>
<td>34,1</td>
</tr>
<tr>
<td>Хлор</td>
<td>Cl₂</td>
<td>3,22</td>
<td>70,9</td>
</tr>
<tr>
<td>Хлористый метил</td>
<td>CH₃Cl</td>
<td>2,3</td>
<td>50,5</td>
</tr>
<tr>
<td>Этиан</td>
<td>C₂H₆</td>
<td>1,36</td>
<td>30,1</td>
</tr>
<tr>
<td>Этилен</td>
<td>C₂H₄</td>
<td>1,26</td>
<td>28,1</td>
</tr>
</tbody>
</table>
Таблица VI

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,792</td>
<td>33</td>
<td>0,7523</td>
<td>67</td>
<td>0,4233</td>
</tr>
<tr>
<td>1</td>
<td>1,731</td>
<td>34</td>
<td>0,7371</td>
<td>68</td>
<td>0,4174</td>
</tr>
<tr>
<td>2</td>
<td>1,673</td>
<td>35</td>
<td>0,7295</td>
<td>69</td>
<td>0,4117</td>
</tr>
<tr>
<td>3</td>
<td>1,619</td>
<td>36</td>
<td>0,7085</td>
<td>70</td>
<td>0,4061</td>
</tr>
<tr>
<td>4</td>
<td>1,567</td>
<td>37</td>
<td>0,6947</td>
<td>71</td>
<td>0,4006</td>
</tr>
<tr>
<td>5</td>
<td>1,519</td>
<td>38</td>
<td>0,6814</td>
<td>72</td>
<td>0,3952</td>
</tr>
<tr>
<td>6</td>
<td>1,473</td>
<td>39</td>
<td>0,6685</td>
<td>73</td>
<td>0,3900</td>
</tr>
<tr>
<td>7</td>
<td>1,428</td>
<td>40</td>
<td>0,6560</td>
<td>74</td>
<td>0,3849</td>
</tr>
<tr>
<td>8</td>
<td>1,386</td>
<td>41</td>
<td>0,6439</td>
<td>75</td>
<td>0,3799</td>
</tr>
<tr>
<td>9</td>
<td>1,346</td>
<td>42</td>
<td>0,6321</td>
<td>76</td>
<td>0,3750</td>
</tr>
<tr>
<td>10</td>
<td>1,308</td>
<td>43</td>
<td>0,6207</td>
<td>77</td>
<td>0,3702</td>
</tr>
<tr>
<td>11</td>
<td>1,271</td>
<td>44</td>
<td>0,6097</td>
<td>78</td>
<td>0,3655</td>
</tr>
<tr>
<td>12</td>
<td>1,236</td>
<td>45</td>
<td>0,5988</td>
<td>79</td>
<td>0,3610</td>
</tr>
<tr>
<td>13</td>
<td>1,203</td>
<td>46</td>
<td>0,5883</td>
<td>80</td>
<td>0,3565</td>
</tr>
<tr>
<td>14</td>
<td>1,171</td>
<td>47</td>
<td>0,5782</td>
<td>81</td>
<td>0,3521</td>
</tr>
<tr>
<td>15</td>
<td>1,140</td>
<td>48</td>
<td>0,5683</td>
<td>82</td>
<td>0,3478</td>
</tr>
<tr>
<td>16</td>
<td>1,111</td>
<td>49</td>
<td>0,5588</td>
<td>83</td>
<td>0,3436</td>
</tr>
<tr>
<td>17</td>
<td>1,083</td>
<td>50</td>
<td>0,5494</td>
<td>84</td>
<td>0,3395</td>
</tr>
<tr>
<td>18</td>
<td>1,056</td>
<td>51</td>
<td>0,5404</td>
<td>85</td>
<td>0,3355</td>
</tr>
<tr>
<td>19</td>
<td>1,030</td>
<td>52</td>
<td>0,5315</td>
<td>86</td>
<td>0,3315</td>
</tr>
<tr>
<td>20</td>
<td>1,005</td>
<td>53</td>
<td>0,5229</td>
<td>87</td>
<td>0,3276</td>
</tr>
<tr>
<td>20,2</td>
<td>1,000</td>
<td>54</td>
<td>0,5146</td>
<td>88</td>
<td>0,3239</td>
</tr>
<tr>
<td>21</td>
<td>0,9810</td>
<td>55</td>
<td>0,5064</td>
<td>89</td>
<td>0,3202</td>
</tr>
<tr>
<td>22</td>
<td>0,9579</td>
<td>56</td>
<td>0,4985</td>
<td>90</td>
<td>0,3165</td>
</tr>
<tr>
<td>23</td>
<td>0,9358</td>
<td>57</td>
<td>0,4907</td>
<td>91</td>
<td>0,3130</td>
</tr>
<tr>
<td>24</td>
<td>0,9142</td>
<td>58</td>
<td>0,4832</td>
<td>92</td>
<td>0,3095</td>
</tr>
<tr>
<td>25</td>
<td>0,8937</td>
<td>59</td>
<td>0,4759</td>
<td>93</td>
<td>0,3060</td>
</tr>
<tr>
<td>26</td>
<td>0,8737</td>
<td>60</td>
<td>0,4688</td>
<td>94</td>
<td>0,3027</td>
</tr>
<tr>
<td>27</td>
<td>0,8545</td>
<td>61</td>
<td>0,4618</td>
<td>95</td>
<td>0,2994</td>
</tr>
<tr>
<td>28</td>
<td>0,8360</td>
<td>62</td>
<td>0,4550</td>
<td>96</td>
<td>0,2962</td>
</tr>
<tr>
<td>29</td>
<td>0,8180</td>
<td>63</td>
<td>0,4483</td>
<td>97</td>
<td>0,2930</td>
</tr>
<tr>
<td>30</td>
<td>0,8007</td>
<td>64</td>
<td>0,4418</td>
<td>98</td>
<td>0,2899</td>
</tr>
<tr>
<td>31</td>
<td>0,7840</td>
<td>65</td>
<td>0,4355</td>
<td>99</td>
<td>0,2868</td>
</tr>
<tr>
<td>32</td>
<td>0,7679</td>
<td>66</td>
<td>0,4293</td>
<td>100</td>
<td>0,2838</td>
</tr>
</tbody>
</table>

Таблица VII

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
<th>Температура, °C</th>
<th>Динамический коэффициент вязкости, мПа·с (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12 100</td>
<td>40</td>
<td>330</td>
<td>100</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>7 050</td>
<td>50</td>
<td>180</td>
<td>120</td>
<td>5,2</td>
</tr>
<tr>
<td>10</td>
<td>3 930</td>
<td>60</td>
<td>102</td>
<td>140</td>
<td>1,8</td>
</tr>
<tr>
<td>15</td>
<td>2 380</td>
<td>70</td>
<td>59</td>
<td>160</td>
<td>1,0</td>
</tr>
<tr>
<td>20</td>
<td>1 480</td>
<td>80</td>
<td>35</td>
<td>180</td>
<td>0,45</td>
</tr>
<tr>
<td>30</td>
<td>600</td>
<td>90</td>
<td>21</td>
<td>200</td>
<td>0,22</td>
</tr>
</tbody>
</table>

514
<table>
<thead>
<tr>
<th>Растворенное вещество</th>
<th>Концентрация, % (масс)</th>
<th>0 °C</th>
<th>20 °C</th>
<th>30 °C</th>
<th>40 °C</th>
<th>60 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>5</td>
<td>1,3</td>
<td>1,05</td>
<td>0,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2,78</td>
<td>2,19</td>
<td>1,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7,42</td>
<td>5,25</td>
<td>3,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl *</td>
<td>5</td>
<td>1,86</td>
<td>1,07</td>
<td>0,87</td>
<td>0,71</td>
<td>0,51</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2,27</td>
<td>1,36</td>
<td>1,07</td>
<td>0,89</td>
<td>0,64</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3,31</td>
<td>1,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaNO₃</td>
<td>10</td>
<td>1,07</td>
<td>0,88</td>
<td>0,72</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,18</td>
<td>1,03</td>
<td>0,86</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1,33</td>
<td>1,3</td>
<td>1,07</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>10</td>
<td>1,74</td>
<td>1,38</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4,02</td>
<td>2,91</td>
<td>2,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8,35</td>
<td>5,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOH</td>
<td>10</td>
<td>1,23</td>
<td>1,0</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,63</td>
<td>1,33</td>
<td>1,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2,36</td>
<td>1,93</td>
<td>1,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>5</td>
<td>1,7</td>
<td>0,99</td>
<td>0,8</td>
<td>0,66</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1,58</td>
<td>1,0</td>
<td>0,83</td>
<td>0,69</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>1,02</td>
<td>0,85</td>
<td>0,72</td>
<td>0,54</td>
</tr>
<tr>
<td>KNO₃</td>
<td>5</td>
<td>1,68</td>
<td>0,98</td>
<td>0,8</td>
<td>0,66</td>
<td>0,49</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>0,98</td>
<td>0,8</td>
<td>0,69</td>
<td>0,51</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>0,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>10</td>
<td>1,58</td>
<td>0,96</td>
<td>0,79</td>
<td>0,66</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1,51</td>
<td>1,0</td>
<td>0,84</td>
<td>0,73</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>1,33</td>
<td>1,14</td>
<td>0,99</td>
<td>0,77</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>10</td>
<td>2,8</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5,3</td>
<td>2,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>19,3</td>
<td>10,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCl₂ **</td>
<td>10</td>
<td>2,17</td>
<td>1,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3,14</td>
<td>1,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>8,9</td>
<td>5,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* См. также табл. L.
** См. также табл. LII.
<table>
<thead>
<tr>
<th>Вещество</th>
<th>Динамический коэффициент вязкости, мПа·с (cП)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20 °C</td>
</tr>
<tr>
<td>Азотная кислота, 100 %</td>
<td>1,49</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Аммиак жидкий</td>
<td>0,258</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Бензол</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,3</td>
</tr>
<tr>
<td>Вода</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,479</td>
</tr>
<tr>
<td>Глицерина, 50 %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,455</td>
</tr>
<tr>
<td>Дихлорэтан</td>
<td>1,54</td>
</tr>
<tr>
<td></td>
<td>0,364</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>10,1</td>
</tr>
<tr>
<td>Кальциев хлористый, 25 %</td>
<td>16,6</td>
</tr>
<tr>
<td>раствор</td>
<td></td>
</tr>
<tr>
<td>Метиловый спирт, 100 %</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Муравьиная кислота</td>
<td>-</td>
</tr>
<tr>
<td>Натрий сульфат, 50 % раствор</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Вещество</td>
<td>Динамический коэффициент вязкости, мПа·с (сП)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>—20 °C</td>
</tr>
<tr>
<td>Натр едкий, 10 % раствор</td>
<td>—</td>
</tr>
<tr>
<td>Натрий хлористый, 20 % раствор</td>
<td>—</td>
</tr>
<tr>
<td>Нитробензол</td>
<td>—</td>
</tr>
<tr>
<td>Октан</td>
<td>0,968</td>
</tr>
<tr>
<td>Олеум, 20 %</td>
<td>—</td>
</tr>
<tr>
<td>Серная кислота, 98 %</td>
<td>—</td>
</tr>
<tr>
<td>» » 92 %</td>
<td>130</td>
</tr>
<tr>
<td>» » 75 %</td>
<td>95</td>
</tr>
<tr>
<td>» » 60 %</td>
<td>20</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>0,556</td>
</tr>
<tr>
<td>Соляная кислота, 30 %</td>
<td>—</td>
</tr>
<tr>
<td>Тoluol</td>
<td>1,06</td>
</tr>
<tr>
<td>Уксусная кислота, 100 %</td>
<td>—</td>
</tr>
<tr>
<td>» » 50 %</td>
<td>—</td>
</tr>
<tr>
<td>Фенол (расплывший)</td>
<td>—</td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>1,48</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>0,9</td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>1,9</td>
</tr>
<tr>
<td>Этилацетат</td>
<td>0,79</td>
</tr>
<tr>
<td>Этиловый спирт, 100 %</td>
<td>2,38</td>
</tr>
<tr>
<td>» » 80 %</td>
<td>—</td>
</tr>
<tr>
<td>» » 60 %</td>
<td>—</td>
</tr>
<tr>
<td>» » 40 %</td>
<td>—</td>
</tr>
<tr>
<td>» » 20 %</td>
<td>—</td>
</tr>
<tr>
<td>Номер п/п</td>
<td>Характер связи и группировок</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Двойная связь</td>
</tr>
<tr>
<td>2</td>
<td>Пятичленное кольцо</td>
</tr>
<tr>
<td>3</td>
<td>Шестичленное кольцо</td>
</tr>
<tr>
<td>4</td>
<td>Боковая группа шестичленного кольца:</td>
</tr>
<tr>
<td></td>
<td>мол. масса < 17</td>
</tr>
<tr>
<td></td>
<td>мол. масса > 16</td>
</tr>
<tr>
<td>5</td>
<td>Орто- и пара-положения вторых заместителей</td>
</tr>
<tr>
<td>6</td>
<td>Мета-положение вторых заместителей</td>
</tr>
<tr>
<td>7</td>
<td>$\text{CH} = \text{CH}$</td>
</tr>
<tr>
<td>8</td>
<td>$\text{R} - \text{C} - \text{R}$</td>
</tr>
<tr>
<td>9</td>
<td>$\text{R} - \text{C} - \text{H}$</td>
</tr>
<tr>
<td>10</td>
<td>$\text{R} - \text{C} - \text{CH}_3$</td>
</tr>
<tr>
<td>11</td>
<td>$-\text{CH} = \text{CHCH}_2X$ (X — отрицательная группа)</td>
</tr>
<tr>
<td>12</td>
<td>$\text{R} - \text{CH} - X$ (X — отрицательная группа)</td>
</tr>
<tr>
<td>13</td>
<td>OH</td>
</tr>
<tr>
<td>14</td>
<td>COO</td>
</tr>
<tr>
<td>15</td>
<td>COOH</td>
</tr>
<tr>
<td>16</td>
<td>NO_2</td>
</tr>
</tbody>
</table>
Таблица XI

Значение \(\sqrt{MT_{kr}} \) для некоторых газов

<table>
<thead>
<tr>
<th>Газ</th>
<th>(M)</th>
<th>(T_{kr}, K)</th>
<th>(\sqrt{MT_{kr}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водяной пар</td>
<td>18</td>
<td>647</td>
<td>108</td>
</tr>
<tr>
<td>Воздух</td>
<td>29</td>
<td>132,7</td>
<td>61,9</td>
</tr>
<tr>
<td>Диоксид углерода</td>
<td>44</td>
<td>304</td>
<td>115,5</td>
</tr>
<tr>
<td>Азот</td>
<td>28</td>
<td>126</td>
<td>59,5</td>
</tr>
<tr>
<td>Кислород</td>
<td>32</td>
<td>154</td>
<td>70,2</td>
</tr>
<tr>
<td>Водород</td>
<td>2</td>
<td>33</td>
<td>8,13</td>
</tr>
<tr>
<td>Оксид углерода</td>
<td>28</td>
<td>134</td>
<td>61,4</td>
</tr>
<tr>
<td>Метан</td>
<td>16</td>
<td>190</td>
<td>55,1</td>
</tr>
<tr>
<td>Этилен</td>
<td>28</td>
<td>283</td>
<td>89,0</td>
</tr>
<tr>
<td>Этан</td>
<td>30</td>
<td>305</td>
<td>95,6</td>
</tr>
<tr>
<td>Пропан</td>
<td>44</td>
<td>370</td>
<td>128</td>
</tr>
<tr>
<td>Бутан</td>
<td>58</td>
<td>426</td>
<td>157</td>
</tr>
<tr>
<td>Пентан</td>
<td>72</td>
<td>470</td>
<td>184</td>
</tr>
<tr>
<td>Гексан</td>
<td>86</td>
<td>508</td>
<td>209</td>
</tr>
</tbody>
</table>

Таблица XII

Средние значения шероховатости стенок труб

<table>
<thead>
<tr>
<th>Грубопроводы</th>
<th>(s,) мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Трубы стальные цельнотянутые и сварные при незначительной коррозии</td>
<td>0,2</td>
</tr>
<tr>
<td>Старые заржавеленные стальные трубы</td>
<td>0,67 и выше</td>
</tr>
<tr>
<td>Трубы из кровельной стали проошлифованные</td>
<td>0,125</td>
</tr>
<tr>
<td>Чугунные трубы водопроводные, бывшие в эксплуатации</td>
<td>1,1</td>
</tr>
<tr>
<td>Алюминиевые технически гладкие трубы</td>
<td>0,015—0,05</td>
</tr>
<tr>
<td>Чистые цельнотянутые трубы из латуни, меди и свинца; стеклянные трубы</td>
<td>0,0015—0,01</td>
</tr>
<tr>
<td>Бетонные трубы; хорошая поверхность с затиркой</td>
<td>0,3—0,8</td>
</tr>
<tr>
<td>Бетонные трубы; грубая (шероховатая) поверхность</td>
<td>3—9</td>
</tr>
<tr>
<td>Нефтепроводы при средних условиях эксплуатации и паропроводы насыщенного пара</td>
<td>0,2</td>
</tr>
<tr>
<td>Паропроводы, работающие периодически</td>
<td>0,5</td>
</tr>
<tr>
<td>Воздухопроводы сжатого воздуха от компрессора</td>
<td>0,8</td>
</tr>
<tr>
<td>Конденсаторопроводы, работающие периодически</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Таблица XIII

Коэффициенты местных сопротивлений

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>Значение коэффициента местного сопротивления ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вход в трубу</td>
<td></td>
</tr>
<tr>
<td>С острыми краями: $\zeta = 0,5$</td>
<td></td>
</tr>
<tr>
<td>С закругленными краями: $\zeta = 0,2$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Выход из трубы</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>При расчете Δp по формуле (1,49) это сопротивление ζ для выхода из трубы учитывать не надо</td>
<td></td>
</tr>
<tr>
<td>$\zeta = 1$</td>
<td></td>
</tr>
</tbody>
</table>

Диффрагма (отверстие)

<table>
<thead>
<tr>
<th>Отверстие в прямой трубе</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
</tr>
<tr>
<td>ω_0</td>
</tr>
<tr>
<td>ω_T</td>
</tr>
</tbody>
</table>

Диаметр отверстия диффрагмы, d_0, толщина диффрагмы, δ, средняя скорость потока в отверстии, ω_0, средняя скорость потока в трубе, ω_T.

При $\frac{\delta}{d_0} = 0 \div 0,015$ потеря давления $\Delta p = \zeta \frac{\rho \omega_0^2}{2}$

Значение ζ определяется по таблице:

<table>
<thead>
<tr>
<th>m</th>
<th>0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,20 0,22</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>7000 1670 730 400 245 165 117 86,0 65,5 51,5 40,0</td>
</tr>
<tr>
<td>ω_0</td>
<td>0,24 0,26 0,28 0,30 0,34 0,4 0,5 0,6 0,7 0,8 0,9</td>
</tr>
<tr>
<td>ω_T</td>
<td>8,25 4,00 2,00 0,97 0,42 0,13</td>
</tr>
</tbody>
</table>

$\zeta = \left(\frac{d_0}{D} \right)^2$; D — диаметр трубы, м
Продолжение

<table>
<thead>
<tr>
<th>Вид сопротивления</th>
<th>Значение коэффициента местного сопротивления ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отвод круглого или квадратного сечения</td>
<td>Коэффициент сопротивления $\zeta = AB$ определяется по таблицам:</td>
</tr>
<tr>
<td>d — внутренний диаметр трубопровода, м; R_0 — радиус изгиба трубы, м</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Угол ϕ, градусы</th>
<th>A</th>
<th>$0,31$</th>
<th>$0,45$</th>
<th>$0,6$</th>
<th>$0,78$</th>
<th>$1,0$</th>
<th>$1,13$</th>
<th>$1,20$</th>
<th>$1,28$</th>
<th>$1,40$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0/d</td>
<td>$1,0$</td>
<td>$2,0$</td>
<td>$4,0$</td>
<td>$6,0$</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$0,21$</td>
<td>$0,15$</td>
<td>$0,11$</td>
<td>$0,09$</td>
<td>$0,06$</td>
<td>$0,04$</td>
<td>$0,03$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Колено (уголник) 90° стандартный чугунный |

<table>
<thead>
<tr>
<th>Условный проход, мм</th>
<th>$12,5$</th>
<th>25</th>
<th>37</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>$2,2$</td>
<td>2</td>
<td>$1,6$</td>
<td>$1,1$</td>
</tr>
</tbody>
</table>

| Бензин нормальный |

<table>
<thead>
<tr>
<th>D, мм</th>
<th>13</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>$10,8$</td>
<td>$8,9$</td>
<td>$4,9$</td>
<td>$4,0$</td>
<td>$4,1$</td>
<td>$4,4$</td>
<td>$4,7$</td>
<td>$5,1$</td>
<td>$5,5$</td>
</tr>
</tbody>
</table>

| Бензин прямоточный |

<table>
<thead>
<tr>
<th>D, мм</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>65</th>
<th>76</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>$1,04$</td>
<td>$0,85$</td>
<td>$0,79$</td>
<td>$0,65$</td>
<td>$0,60$</td>
<td>$0,50$</td>
<td>$0,42$</td>
<td>$0,36$</td>
<td>$0,32$</td>
</tr>
</tbody>
</table>

При $Re = \frac{wD}{v} \geq 3 \cdot 10^6$ значение ζ определяется по таблице:

<table>
<thead>
<tr>
<th>D, мм</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>65</th>
<th>76</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>33</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

При $Re \ll 3 \cdot 10^6$ коэффициент сопротивления $\zeta = \zeta_1 K$. Значение ζ_1 определяется так же, как и при $Re \geq 3 \cdot 10^6$, а значение K приведено в таблице:

<table>
<thead>
<tr>
<th>Re</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
<th>50000</th>
<th>100000</th>
<th>200000</th>
<th>200000</th>
<th>300000</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>$1,40$</td>
<td>$1,07$</td>
<td>$0,94$</td>
<td>$0,88$</td>
<td>$0,91$</td>
<td>$0,93$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Кран пробочный |

<table>
<thead>
<tr>
<th>Условный проход, мм</th>
<th>13</th>
<th>19</th>
<th>25</th>
<th>32</th>
<th>38</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

| Задвижка |

<table>
<thead>
<tr>
<th>Условный проход, мм</th>
<th>$15-10$</th>
<th>$175-200$</th>
<th>300 и выше</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>$0,5$</td>
<td>$0,25$</td>
<td>$0,15$</td>
</tr>
</tbody>
</table>
Внезапное расширение

{\text{\[Re = \frac{w_0^2 d_3}{v}\]}}

\Delta p_{\text{расп}} = \zeta \left(\frac{\rho w_0^2}{2} \right)

Внезапное сужение

{\text{\[Re = \frac{w_0^2 d_3}{v}\]}}

\Delta p_{\text{сулк}} = \zeta \left(\frac{\rho w_0^2}{2} \right)
Таблица XIV

Значения эквивалентного диаметра и коэффициента \(A \) при ламинарном режиме для различных сечений

<table>
<thead>
<tr>
<th>Форма сечения</th>
<th>(d_g)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Круг диаметром (d)</td>
<td>(d)</td>
<td>64</td>
</tr>
<tr>
<td>Квадрат со стороной (a)</td>
<td>(a)</td>
<td>57</td>
</tr>
<tr>
<td>Равносторонний треугольник со стороной (a)</td>
<td>0,58a</td>
<td>53</td>
</tr>
<tr>
<td>Кольцо шириной (a)</td>
<td>2a</td>
<td>96</td>
</tr>
<tr>
<td>Прямоугольник со сторонами (a) и (b):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a/b \approx 0)</td>
<td>2a</td>
<td>96</td>
</tr>
<tr>
<td>(a/b = 0,1)</td>
<td>1,81a</td>
<td>85</td>
</tr>
<tr>
<td>(a/b = 0,25)</td>
<td>1,6a</td>
<td>73</td>
</tr>
<tr>
<td>(a/b = 0,5)</td>
<td>1,3a</td>
<td>62</td>
</tr>
<tr>
<td>Эллипс ((a) — малая полуось, (b) — большая полуось):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a/b = 0,1)</td>
<td>1,55a</td>
<td>78</td>
</tr>
<tr>
<td>(a/b = 0,3)</td>
<td>1,4a</td>
<td>73</td>
</tr>
<tr>
<td>(a/b = 0,5)</td>
<td>1,3a</td>
<td>68</td>
</tr>
</tbody>
</table>

Таблица XV

Значения коэффициентов расхода диафрагмы \(\alpha \)

<table>
<thead>
<tr>
<th>(\text{Re} = \frac{w d_p}{u})</th>
<th>(m = 0,05)</th>
<th>(m = 0,1)</th>
<th>(m = 0,2)</th>
<th>(m = 0,3)</th>
<th>(m = 0,4)</th>
<th>(m = 0,5)</th>
<th>(m = 0,6)</th>
<th>(m = 0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 000</td>
<td>0,6032</td>
<td>0,6110</td>
<td>0,6341</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10 000</td>
<td>0,6026</td>
<td>0,6092</td>
<td>0,6261</td>
<td>0,6530</td>
<td>0,6890</td>
<td>0,7367</td>
<td>0,7975</td>
<td>—</td>
</tr>
<tr>
<td>20 000</td>
<td>0,5996</td>
<td>0,6050</td>
<td>0,6212</td>
<td>0,6454</td>
<td>0,6765</td>
<td>0,7186</td>
<td>0,7753</td>
<td>0,8540</td>
</tr>
<tr>
<td>30 000</td>
<td>0,5990</td>
<td>0,6038</td>
<td>0,6187</td>
<td>0,6403</td>
<td>0,6719</td>
<td>0,7124</td>
<td>0,7650</td>
<td>0,8404</td>
</tr>
<tr>
<td>50 000</td>
<td>0,5984</td>
<td>0,6032</td>
<td>0,6168</td>
<td>0,6384</td>
<td>0,6666</td>
<td>0,7047</td>
<td>0,7553</td>
<td>0,8276</td>
</tr>
<tr>
<td>100 000</td>
<td>0,5980</td>
<td>0,6026</td>
<td>0,6162</td>
<td>0,6359</td>
<td>0,6626</td>
<td>0,7092</td>
<td>0,7472</td>
<td>0,8155</td>
</tr>
<tr>
<td>400 000</td>
<td>0,5978</td>
<td>0,6020</td>
<td>0,6150</td>
<td>0,6340</td>
<td>0,6600</td>
<td>0,6950</td>
<td>0,7398</td>
<td>0,8019</td>
</tr>
</tbody>
</table>

\(d \) — внутренний диаметр трубопровода, м; \(w \) — средняя скорость жидкости или газа в трубопроводе, м/с; \(d _0 \) — диаметр отверстия нормальной диафрагмы, м; \(m = (d_0/d)^2 \).

Таблица XVI

Значения поправочного множителя \(k \)

<table>
<thead>
<tr>
<th>Диаметр трубопровода, м</th>
<th>(m = 0,1)</th>
<th>(m = 0,2)</th>
<th>(m = 0,3)</th>
<th>(m = 0,4)</th>
<th>(m = 0,5)</th>
<th>(m = 0,6)</th>
<th>(m = 0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>1,0037</td>
<td>1,0063</td>
<td>1,0082</td>
<td>1,0118</td>
<td>1,0144</td>
<td>1,0172</td>
<td>1,02</td>
</tr>
<tr>
<td>0,10</td>
<td>1,0024</td>
<td>1,0045</td>
<td>1,0064</td>
<td>1,0065</td>
<td>1,0108</td>
<td>1,013</td>
<td>1,0148</td>
</tr>
<tr>
<td>0,20</td>
<td>1,0017</td>
<td>1,0023</td>
<td>1,0034</td>
<td>1,004</td>
<td>1,0052</td>
<td>1,006</td>
<td>1,007</td>
</tr>
<tr>
<td>0,30</td>
<td>1,0005</td>
<td>1,001</td>
<td>1,001</td>
<td>1,001</td>
<td>1,001</td>
<td>1,001</td>
<td>1,001</td>
</tr>
</tbody>
</table>

\(m = (d_0/d)^2 \).
Таблица XVII

Характеристика скрубберных насадок из колец и кускового материала

<table>
<thead>
<tr>
<th>Вид насадки</th>
<th>Размеры элемента насадки мм</th>
<th>Число элементов в 1 м³</th>
<th>Объем, занимаемый насадкой, м³</th>
<th>Свободный объем, м³</th>
<th>Удельная поверхность, м²/м³</th>
<th>Масса 1 м³ насадки, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кольца фарфоровые</td>
<td>8×8×1,5</td>
<td>1 465 000</td>
<td>0,64</td>
<td>570</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>» керамические</td>
<td>15×15×2</td>
<td>250 000</td>
<td>0,70</td>
<td>330</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>» 25×25×3</td>
<td>53 200</td>
<td>0,74</td>
<td>204</td>
<td>532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» 35×35×4</td>
<td>20 200</td>
<td>0,78</td>
<td>140</td>
<td>505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» 50×50×5</td>
<td>6 000</td>
<td>0,785</td>
<td>87,5</td>
<td>530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» стальные</td>
<td>35×35×2,5</td>
<td>19 000</td>
<td>0,83</td>
<td>147</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>» 50×50×1</td>
<td>6 000</td>
<td>0,95</td>
<td>110</td>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гравий круглый</td>
<td>42</td>
<td>14 400</td>
<td>0,388</td>
<td>80,5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Андезит кусковой</td>
<td>43,2</td>
<td>12 600</td>
<td>0,563</td>
<td>68</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Кокс кусковой</td>
<td>42,6</td>
<td>14 000</td>
<td>0,56</td>
<td>77</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>» 40,8</td>
<td>15 250</td>
<td>0,545</td>
<td>86</td>
<td>585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» 28,6</td>
<td>27 700</td>
<td>0,535</td>
<td>110</td>
<td>660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» 24,4</td>
<td>64 800</td>
<td>0,532</td>
<td>120</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Катализатор синтеза аммиака в кусочках</td>
<td>6,1</td>
<td>5 200 000</td>
<td>0,465</td>
<td>960</td>
<td>2420</td>
<td></td>
</tr>
<tr>
<td>Катализатор конверсии</td>
<td>d = 11,5; h = 6</td>
<td>1 085 000</td>
<td>0,38</td>
<td>460</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>CO в таблетках</td>
<td>d = 11; h = 6,5</td>
<td>1 000 000</td>
<td>0,43</td>
<td>415</td>
<td>614</td>
<td></td>
</tr>
</tbody>
</table>

Таблица XVIII

Характеристика хордовых насадок (деревянные рейки)

<table>
<thead>
<tr>
<th>Сечение рейки</th>
<th>Размеры сечения, мм</th>
<th>Расстояние между рейками, мм</th>
<th>Расстояние между рядами, мм</th>
<th>Удельная поверхность, м²/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прямоугольное</td>
<td>12,5×100</td>
<td>25,0</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>12,5×100</td>
<td>12,5</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>12,5×100</td>
<td>10,0</td>
<td>20</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Треугольное</td>
<td>30×30×30</td>
<td>30</td>
<td>12,5</td>
<td>78</td>
</tr>
</tbody>
</table>

Таблица XIX

Зависимость атмосферного давления от высоты над уровнем моря

Пересчет в СИ: 1 м вод. ст. = 9810 Па.

<table>
<thead>
<tr>
<th>Высота над уровнем моря, м</th>
<th>600</th>
<th>0</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Атмосферное давление, мм вод. ст.</td>
<td>11,3</td>
<td>10,3</td>
<td>10,2</td>
<td>10,1</td>
<td>10,0</td>
<td>9,8</td>
<td>9,7</td>
<td>9,6</td>
<td>9,5</td>
<td>9,4</td>
<td>9,3</td>
<td>9,2</td>
</tr>
</tbody>
</table>

524
Таблица XX

Допустимая высота всасывания (в м) при перекачивании воды поршневыми насосами

<table>
<thead>
<tr>
<th>Частота вращения насоса, об/мин</th>
<th>Геометрия воды, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>6,5</td>
</tr>
<tr>
<td>90</td>
<td>5,5</td>
</tr>
<tr>
<td>120</td>
<td>4,5</td>
</tr>
<tr>
<td>150</td>
<td>3,5</td>
</tr>
<tr>
<td>180</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Таблица XXI

Значения постоянных c и m для различных типов мешалок

<table>
<thead>
<tr>
<th>Тип мешалки</th>
<th>Геометрическая характеристика</th>
<th>Значения постоянных</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_o/d</td>
<td>D/d</td>
<td>b/d</td>
</tr>
<tr>
<td>Двухлопастная</td>
<td>2</td>
<td>2</td>
<td>0,36</td>
</tr>
<tr>
<td>Двухлопастная с лопастями под углом 45°</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Четырехлопастная</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Четырехлопастная с лопастями, наклонными вверх под углом 45°</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Четырехлопастная с лопастями, наклонными вверх под углом 60°</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Якорная двухлопастная</td>
<td>1,11</td>
<td>1,11</td>
<td>0,11</td>
</tr>
<tr>
<td>Якорная четырехлопастная</td>
<td>1,11</td>
<td>1,11</td>
<td>0,11</td>
</tr>
<tr>
<td>Пропеллерная двухлопастная с углом наклона 22,5°</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Пропеллерная трехлопастная</td>
<td>3,5</td>
<td>3,8</td>
<td>1</td>
</tr>
<tr>
<td>Пропеллерная трехлопастная</td>
<td>3,5</td>
<td>3,8</td>
<td>1</td>
</tr>
<tr>
<td>Трубинная трехлопастная с входным отверстием 37 мм</td>
<td>3</td>
<td>3</td>
<td>0,33</td>
</tr>
<tr>
<td>Трубинная шестилопастная с направляющим аппаратом</td>
<td>1,78</td>
<td>2,4</td>
<td>0,25</td>
</tr>
</tbody>
</table>
Таблица XXII

Поверхностное натяжение жидкостей

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>Температура, °C</th>
<th>Поверхностное натяжение, σ·10², Н/м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот жидкй</td>
<td>-196</td>
<td>8,5</td>
</tr>
<tr>
<td>Кислород жидкй</td>
<td>-183</td>
<td>13,2</td>
</tr>
<tr>
<td>Оливковое масло</td>
<td>+20</td>
<td>32,0</td>
</tr>
<tr>
<td>Парафиновое масло</td>
<td>+25</td>
<td>26,4</td>
</tr>
<tr>
<td>Скипидар</td>
<td>+15</td>
<td>27,3</td>
</tr>
</tbody>
</table>

Таблица XXIII

Поверхностное натяжение водных растворов

<table>
<thead>
<tr>
<th>Растворенное вещество</th>
<th>Температура, °C</th>
<th>Значение σ·10² (Н/м) при различных концентрациях [% (масс.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>18</td>
<td>73,8</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>30</td>
<td>72,1</td>
</tr>
<tr>
<td>KCl</td>
<td>18</td>
<td>73,6</td>
</tr>
<tr>
<td>KNO₃</td>
<td>18</td>
<td>73,0</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>18</td>
<td>75,8</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>18</td>
<td>66,5</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>18</td>
<td>73,3</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>18</td>
<td>59,2</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>18</td>
<td>73,8</td>
</tr>
</tbody>
</table>

Таблица XXIV

Поверхностное натяжение жидкых веществ и водных растворов в зависимости от температуры

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Поверхностное натяжение σ·10², Н/м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20 °C</td>
</tr>
<tr>
<td>Азотная кислота, 100 %</td>
<td>48,3</td>
</tr>
<tr>
<td>«</td>
<td>50 %</td>
</tr>
<tr>
<td>Аммиак жидкй</td>
<td>38</td>
</tr>
<tr>
<td>Аммиачная вода, 25 %</td>
<td>—</td>
</tr>
<tr>
<td>Ацетан</td>
<td>—</td>
</tr>
<tr>
<td>Ацетон</td>
<td>28,7</td>
</tr>
<tr>
<td>Бензол</td>
<td>—</td>
</tr>
<tr>
<td>Бутиловый спирт</td>
<td>28</td>
</tr>
<tr>
<td>Вода</td>
<td>—</td>
</tr>
<tr>
<td>Гексан</td>
<td>22,6</td>
</tr>
<tr>
<td>Глицерин, 50 %</td>
<td>—</td>
</tr>
<tr>
<td>Диоксид серы (жидк.)</td>
<td>31</td>
</tr>
</tbody>
</table>
Средняя удельная теплоемкость некоторых твердых материалов при 0—100 °C, кДж/(кг·К)
<table>
<thead>
<tr>
<th>Металлы</th>
<th>Стекло</th>
<th>0,42—0,84</th>
</tr>
</thead>
<tbody>
<tr>
<td>нафталин</td>
<td>текстолит</td>
<td>1,47</td>
</tr>
<tr>
<td>парафин</td>
<td>целлюлоза</td>
<td>1,55</td>
</tr>
<tr>
<td>пек</td>
<td>цинк</td>
<td>0,38</td>
</tr>
<tr>
<td>пробковый</td>
<td>чугун</td>
<td>0,50</td>
</tr>
<tr>
<td>резина</td>
<td>шерсть</td>
<td>1,63</td>
</tr>
<tr>
<td>свинец</td>
<td>шлак</td>
<td>0,75</td>
</tr>
<tr>
<td>сталь</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица XXVI

Средняя удельная теплоемкость некоторых жидкостей, кДж/(кг·К)
(отсутствующих на рис. XI)

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>Теплоемкость, кДж/(кг·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>азот жидк.</td>
<td>2,01</td>
</tr>
<tr>
<td>азотная кислота</td>
<td>2,77</td>
</tr>
<tr>
<td>аммиак</td>
<td>4,19</td>
</tr>
<tr>
<td>бензин</td>
<td>1,84</td>
</tr>
<tr>
<td>гексан</td>
<td>2,51</td>
</tr>
<tr>
<td>керосин</td>
<td>2,10</td>
</tr>
<tr>
<td>кислород жидк.</td>
<td>1,68</td>
</tr>
<tr>
<td>машинное масло</td>
<td>1,68</td>
</tr>
<tr>
<td>нитробензол</td>
<td>1,38</td>
</tr>
<tr>
<td>серный ангидрид</td>
<td>1,34</td>
</tr>
<tr>
<td>спирт</td>
<td>1,76</td>
</tr>
<tr>
<td>фенол</td>
<td>2,35</td>
</tr>
</tbody>
</table>

Таблица XXVII

Мольная теплоемкость газов, кДж/(моль·К) (при \(p_{абс} = 1\) атм) *
Пересчет в СИ: 1 атм = 760 мм рт. ст. = 101 325 Па.

<table>
<thead>
<tr>
<th>Газ</th>
<th>Температура, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>азот, кислород, воздух, оксид углерода</td>
<td>29,0</td>
</tr>
<tr>
<td>аммиак</td>
<td>35,3</td>
</tr>
<tr>
<td>водяной пар</td>
<td>35,0</td>
</tr>
<tr>
<td>диоксид углерода</td>
<td>38,6</td>
</tr>
<tr>
<td>метан</td>
<td>35,7</td>
</tr>
<tr>
<td>сероводород</td>
<td>34,3</td>
</tr>
<tr>
<td>хлор</td>
<td>36,3</td>
</tr>
</tbody>
</table>

* С допустимым приближением данными таблицы можно пользоваться и при давлении порядка нескольких атмосфер.
Коэффициенты теплопроводности некоторых материалов при 0—100 °C

<table>
<thead>
<tr>
<th>Материал</th>
<th>Плотность (для сыпучих материалов насыщенная плотность), кг/м³</th>
<th>Коэффициент теплопроводности, Вт/(м·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асбест</td>
<td>600</td>
<td>0,151</td>
</tr>
<tr>
<td>Бетон</td>
<td>2 300</td>
<td>1,28</td>
</tr>
<tr>
<td>Винипласт</td>
<td>1 380</td>
<td>0,163</td>
</tr>
<tr>
<td>Войлок шерстяной</td>
<td>300</td>
<td>0,047</td>
</tr>
<tr>
<td>Дерево (сосна) поперек волокон</td>
<td>600</td>
<td>0,140—0,174</td>
</tr>
<tr>
<td>Дерево (сосна) по направлению волокон</td>
<td>600</td>
<td>0,384</td>
</tr>
<tr>
<td>Кладка из обычного кирпича</td>
<td>1 700</td>
<td>0,698—0,814</td>
</tr>
<tr>
<td>Кладка из огнеупорного кирпича</td>
<td>1 840</td>
<td>1,05 *</td>
</tr>
<tr>
<td>Кладка из изоляционного кирпича</td>
<td>600</td>
<td>0,116—0,209</td>
</tr>
<tr>
<td>Краска масляная</td>
<td>—</td>
<td>0,233</td>
</tr>
<tr>
<td>Лед</td>
<td>920</td>
<td>2,33</td>
</tr>
<tr>
<td>Литье каменное</td>
<td>3 000</td>
<td>0,698</td>
</tr>
<tr>
<td>Магнезия 85 % в порошке</td>
<td>216</td>
<td>0,070</td>
</tr>
<tr>
<td>Накипь, водной камень</td>
<td>—</td>
<td>1,163—3,49</td>
</tr>
<tr>
<td>Опилки древесные</td>
<td>230</td>
<td>0,070—0,093</td>
</tr>
<tr>
<td>Пенопласт</td>
<td>30</td>
<td>0,047</td>
</tr>
<tr>
<td>Песок сухой</td>
<td>1 500</td>
<td>0,319—0,814</td>
</tr>
<tr>
<td>Пробковая мелочь</td>
<td>160</td>
<td>0,047</td>
</tr>
<tr>
<td>Ржавчина (охалина)</td>
<td>—</td>
<td>1,16</td>
</tr>
<tr>
<td>Советит</td>
<td>450</td>
<td>0,098</td>
</tr>
<tr>
<td>Стекло</td>
<td>2 500</td>
<td>0,698—0,814</td>
</tr>
<tr>
<td>Стеклянная вата</td>
<td>200</td>
<td>0,035—0,070</td>
</tr>
<tr>
<td>Текстолит</td>
<td>1 380</td>
<td>0,244</td>
</tr>
<tr>
<td>Торфоплиты</td>
<td>220</td>
<td>0,064</td>
</tr>
<tr>
<td>Фасолит</td>
<td>1 730</td>
<td>0,419</td>
</tr>
<tr>
<td>Шлаковая вата</td>
<td>250</td>
<td>0,076</td>
</tr>
<tr>
<td>Эмаль</td>
<td>2 350</td>
<td>0,872—1,163</td>
</tr>
</tbody>
</table>

Металлы

<table>
<thead>
<tr>
<th>Металл</th>
<th>Плотность</th>
<th>Коэффициент теплопроводности, Вт/(м·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алюминий</td>
<td>2 700</td>
<td>203,5</td>
</tr>
<tr>
<td>Бронза</td>
<td>8 000</td>
<td>64,0</td>
</tr>
<tr>
<td>Латун</td>
<td>8 500</td>
<td>93,0</td>
</tr>
<tr>
<td>Медь</td>
<td>8 800</td>
<td>384</td>
</tr>
<tr>
<td>Свинец</td>
<td>11 400</td>
<td>34,9</td>
</tr>
<tr>
<td>Сталь</td>
<td>7 850</td>
<td>46,5</td>
</tr>
<tr>
<td>Нержавеющая</td>
<td>7 900</td>
<td>17,5</td>
</tr>
<tr>
<td>Чугун</td>
<td>7 500</td>
<td>46,5—93,0</td>
</tr>
</tbody>
</table>

* При температуре 800—1100 °C.
Таблица XXIX

Коэффициенты теплопроводности жидкостей и водных растворов (не приведенных на рис. X)

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Концентрация, % (масс.)</th>
<th>Температура, ºС</th>
<th>Коэффициент теплопроводности, Вт/(м·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCl₂</td>
<td>21</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>KBr</td>
<td>40</td>
<td>32</td>
<td>0,50</td>
</tr>
<tr>
<td>KOH</td>
<td>21</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>10</td>
<td>32</td>
<td>0,60</td>
</tr>
<tr>
<td>KCl</td>
<td>15</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>22</td>
<td>32</td>
<td>0,59</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>11</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>18</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>NaBr</td>
<td>20</td>
<td>32</td>
<td>0,57</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>10</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>NaCl</td>
<td>12,5</td>
<td>32</td>
<td>0,58</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>30</td>
<td>32</td>
<td>0,52</td>
</tr>
<tr>
<td>HCl</td>
<td>12,5</td>
<td>32</td>
<td>0,52</td>
</tr>
<tr>
<td>Аммиак жидк.</td>
<td>100</td>
<td>0</td>
<td>0,541</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0,314</td>
</tr>
<tr>
<td>Дихлорэтан</td>
<td>100</td>
<td>0</td>
<td>0,1396</td>
</tr>
<tr>
<td>Уксусная кислота</td>
<td>50</td>
<td>0</td>
<td>0,314</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>100</td>
<td>0,477</td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>100</td>
<td>0</td>
<td>0,132</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0,1128</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>100</td>
<td>0</td>
<td>0,142</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0,0919</td>
</tr>
</tbody>
</table>

Таблица XXX

Коэффициенты теплопроводности газов при Pабо = 1 атм * [в Вт/(м·К)]

<table>
<thead>
<tr>
<th>Газ</th>
<th>Температура, ºС</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td></td>
<td>0,0233</td>
<td>0,0267</td>
<td>0,0314</td>
<td>0,0384</td>
</tr>
<tr>
<td>Аммиак</td>
<td></td>
<td>0,0209</td>
<td>0,0256</td>
<td>0,0314</td>
<td></td>
</tr>
<tr>
<td>Водород</td>
<td></td>
<td>0,1628</td>
<td>0,1861</td>
<td>0,2210</td>
<td>0,2559</td>
</tr>
<tr>
<td>Водяной пар</td>
<td></td>
<td>0,0163</td>
<td>0,0198</td>
<td>0,0244</td>
<td>0,0326</td>
</tr>
<tr>
<td>Воздух</td>
<td></td>
<td>0,0244</td>
<td>0,0279</td>
<td>0,0326</td>
<td>0,0395</td>
</tr>
<tr>
<td>Кислород</td>
<td></td>
<td>0,0244</td>
<td>0,0291</td>
<td>0,0326</td>
<td>0,0407</td>
</tr>
<tr>
<td>Метан</td>
<td></td>
<td>0,0302</td>
<td>0,0361</td>
<td>0,0465</td>
<td></td>
</tr>
<tr>
<td>Оксид углерода</td>
<td></td>
<td>0,0221</td>
<td>0,0244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диоксид углерода</td>
<td></td>
<td>0,0140</td>
<td>0,0186</td>
<td>0,0233</td>
<td>0,0314</td>
</tr>
<tr>
<td>Этан</td>
<td></td>
<td>0,0174</td>
<td>0,0233</td>
<td>0,0314</td>
<td></td>
</tr>
<tr>
<td>Этилен</td>
<td></td>
<td>0,0163</td>
<td>0,0209</td>
<td>0,0267</td>
<td></td>
</tr>
</tbody>
</table>

* Пересчет в СИ и примечание см. табл. XXVII

530
Таблица XXXI

<table>
<thead>
<tr>
<th>Теплоноситель</th>
<th>Тепловая проводимость загрязнённых стенок $\frac{1}{r_{zagr}}$, Bt/(м²·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вода загрязненная</td>
<td></td>
</tr>
<tr>
<td>» среднего качества</td>
<td>1 400—1 860 *</td>
</tr>
<tr>
<td>» хорошего качества</td>
<td>1 860—2 900 *</td>
</tr>
<tr>
<td>» очищенная</td>
<td>2 900—5 800 *</td>
</tr>
<tr>
<td>» дистилированная</td>
<td>2 900—5 800 *</td>
</tr>
<tr>
<td>Нефтепродукты чистые, масла, пары хладагентов</td>
<td>2 900</td>
</tr>
<tr>
<td>Нефтепродукты сырье</td>
<td>1 160</td>
</tr>
<tr>
<td>Органические жидкости, рассолы, жидкись хладагенты</td>
<td>5 800</td>
</tr>
<tr>
<td>Водяной пар (с содержанием масла)</td>
<td>5 800</td>
</tr>
<tr>
<td>Органические пары</td>
<td>11 600</td>
</tr>
<tr>
<td>Воздух</td>
<td>2 800</td>
</tr>
</tbody>
</table>

* Для воды меньшие значения тепловой проводимости загрязнений соответствуют более высоким температурам.

Таблица XXXII

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>β·10⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бензин</td>
<td>125</td>
</tr>
<tr>
<td>Гликоль</td>
<td>53</td>
</tr>
<tr>
<td>Керосин</td>
<td>100</td>
</tr>
<tr>
<td>m-Ксилоол</td>
<td>101</td>
</tr>
<tr>
<td>Масло оливковое</td>
<td>70</td>
</tr>
<tr>
<td>» парафиновое</td>
<td>90</td>
</tr>
<tr>
<td>Пентан</td>
<td>159</td>
</tr>
<tr>
<td>Раствор CaCl₂, 6 % *</td>
<td>25</td>
</tr>
<tr>
<td>CaCl₂, 41 %</td>
<td>46</td>
</tr>
<tr>
<td>НaCl, 26 % *</td>
<td>44</td>
</tr>
<tr>
<td>Скипидар</td>
<td>94</td>
</tr>
<tr>
<td>Спирт амиловый</td>
<td>93</td>
</tr>
</tbody>
</table>

Таблица XXXIII

<table>
<thead>
<tr>
<th>Вещество</th>
<th>β·10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20°C</td>
</tr>
<tr>
<td>Азотная кислота, 50 %</td>
<td>—</td>
</tr>
<tr>
<td>Аммиак жидкий</td>
<td>1,84</td>
</tr>
<tr>
<td>Анилин</td>
<td>—</td>
</tr>
<tr>
<td>Ацетон</td>
<td>1,31</td>
</tr>
<tr>
<td>Бензол</td>
<td>—</td>
</tr>
</tbody>
</table>

531
<table>
<thead>
<tr>
<th>Вещество</th>
<th>20 %</th>
<th>0 °C</th>
<th>0,0 °C</th>
<th>20 °C</th>
<th>40 °C</th>
<th>60 °C</th>
<th>80 °C</th>
<th>100 °C</th>
<th>120 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бутановый спирт</td>
<td>0,83</td>
<td>0,85</td>
<td>0,88</td>
<td>0,91</td>
<td>0,94</td>
<td>0,98</td>
<td>1,03</td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td>Вода</td>
<td>—</td>
<td>—</td>
<td>0,06</td>
<td>0,21</td>
<td>0,39</td>
<td>0,53</td>
<td>0,63</td>
<td>0,75</td>
<td>0,86</td>
</tr>
<tr>
<td>Гексан</td>
<td>1,16</td>
<td>1,22</td>
<td>1,37</td>
<td>1,48</td>
<td>1,57</td>
<td>1,7</td>
<td>1,85</td>
<td>1,97</td>
<td></td>
</tr>
<tr>
<td>Диоксид серы (жидк.)</td>
<td>1,64</td>
<td>1,75</td>
<td>1,92</td>
<td>2,23</td>
<td>2,61</td>
<td>3,15</td>
<td>3,9</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>Дихлорэтан</td>
<td>1,07</td>
<td>1,11</td>
<td>1,16</td>
<td>1,21</td>
<td>1,26</td>
<td>1,31</td>
<td>1,37</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>1,45</td>
<td>1,51</td>
<td>1,63</td>
<td>1,76</td>
<td>1,85</td>
<td>2,16</td>
<td>2,6</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>0,98</td>
<td>1,01</td>
<td>1,05</td>
<td>1,08</td>
<td>1,12</td>
<td>1,16</td>
<td>1,2</td>
<td>1,27</td>
<td></td>
</tr>
<tr>
<td>Кальций хлористый, 25 % раствор</td>
<td>0,35</td>
<td>0,35</td>
<td>0,39</td>
<td>0,43</td>
<td>0,46</td>
<td>0,49</td>
<td>0,51</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Метиловый спирт</td>
<td>1,09</td>
<td>1,14</td>
<td>1,19</td>
<td>1,27</td>
<td>1,3</td>
<td>1,42</td>
<td>1,61</td>
<td>1,81</td>
<td></td>
</tr>
<tr>
<td>Муравьиная кислота</td>
<td>—</td>
<td>0,98</td>
<td>0,99</td>
<td>1,01</td>
<td>1,04</td>
<td>1,08</td>
<td>1,13</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>Натр едкий, 50 % раствор</td>
<td>—</td>
<td>0,48</td>
<td>0,48</td>
<td>0,47</td>
<td>0,47</td>
<td>0,47</td>
<td>0,46</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td>Углерод, 40 %</td>
<td>—</td>
<td>0,47</td>
<td>0,47</td>
<td>0,48</td>
<td>0,49</td>
<td>0,5</td>
<td>0,51</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>Углерод, 30 %</td>
<td>—</td>
<td>0,44</td>
<td>0,46</td>
<td>0,48</td>
<td>0,5</td>
<td>0,52</td>
<td>0,55</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td>Углерод, 20 %</td>
<td>—</td>
<td>0,41</td>
<td>0,45</td>
<td>0,48</td>
<td>0,51</td>
<td>0,55</td>
<td>0,59</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Углерод, 10 %</td>
<td>—</td>
<td>0,34</td>
<td>0,4</td>
<td>0,46</td>
<td>0,51</td>
<td>0,57</td>
<td>0,63</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>Натрий хлористый, 20 % раствор</td>
<td>—</td>
<td>0,36</td>
<td>0,41</td>
<td>0,46</td>
<td>0,5</td>
<td>0,54</td>
<td>0,58</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>Нитробензол</td>
<td>—</td>
<td>0,81</td>
<td>0,82</td>
<td>0,84</td>
<td>0,86</td>
<td>0,88</td>
<td>0,89</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>Октан</td>
<td>1,09</td>
<td>1,11</td>
<td>1,14</td>
<td>1,17</td>
<td>1,22</td>
<td>1,27</td>
<td>1,34</td>
<td>1,42</td>
<td></td>
</tr>
<tr>
<td>Серная кислота, 98 %</td>
<td>—</td>
<td>0,56</td>
<td>0,48</td>
<td>0,53</td>
<td>0,53</td>
<td>0,52</td>
<td>0,51</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Серная кислота, 92 %</td>
<td>0,58</td>
<td>0,58</td>
<td>0,58</td>
<td>0,57</td>
<td>0,56</td>
<td>0,56</td>
<td>0,55</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>Серная кислота, 75 %</td>
<td>0,58</td>
<td>0,61</td>
<td>0,58</td>
<td>0,56</td>
<td>0,55</td>
<td>0,55</td>
<td>0,55</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>Серная кислота, 60 %</td>
<td>0,58</td>
<td>0,58</td>
<td>0,56</td>
<td>0,55</td>
<td>0,55</td>
<td>0,54</td>
<td>0,53</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>1,13</td>
<td>1,14</td>
<td>1,19</td>
<td>1,28</td>
<td>1,41</td>
<td>1,6</td>
<td>1,84</td>
<td>2,05</td>
<td></td>
</tr>
<tr>
<td>Соляная кислота, 30 %</td>
<td>—</td>
<td>0,52</td>
<td>0,52</td>
<td>0,51</td>
<td>0,5</td>
<td>0,52</td>
<td>0,56</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Толуол</td>
<td>1</td>
<td>1,04</td>
<td>1,07</td>
<td>1,11</td>
<td>1,17</td>
<td>1,24</td>
<td>1,33</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>Уксусная кислота</td>
<td>—</td>
<td>1,05</td>
<td>1,07</td>
<td>1,11</td>
<td>1,14</td>
<td>1,18</td>
<td>1,23</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Фенол (расплавленный)</td>
<td>—</td>
<td>0,75</td>
<td>0,79</td>
<td>0,82</td>
<td>0,86</td>
<td>0,9</td>
<td>0,95</td>
<td>0,99</td>
<td></td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>0,92</td>
<td>0,94</td>
<td>0,97</td>
<td>1,0</td>
<td>1,03</td>
<td>1,07</td>
<td>1,11</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>Хлороформ</td>
<td>1,18</td>
<td>1,22</td>
<td>1,27</td>
<td>1,34</td>
<td>1,43</td>
<td>1,53</td>
<td>1,65</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>1,14</td>
<td>1,18</td>
<td>1,22</td>
<td>1,26</td>
<td>1,32</td>
<td>1,37</td>
<td>1,5</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td>Этилкетат</td>
<td>1,2</td>
<td>1,26</td>
<td>1,35</td>
<td>1,46</td>
<td>1,52</td>
<td>1,6</td>
<td>1,76</td>
<td>1,94</td>
<td></td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>1,03</td>
<td>1,05</td>
<td>1,08</td>
<td>1,13</td>
<td>1,22</td>
<td>1,33</td>
<td>1,44</td>
<td>1,87</td>
<td></td>
</tr>
</tbody>
</table>
Таблица XXXIV

Поверхности теплообмена (по $d_{\text{напр}}$) испарителей ИН и ИК и конденсаторов КН и КК с трубами 25×2 мм по ГОСТ 15119—79 и 15121—79

<table>
<thead>
<tr>
<th>Диаметр кожуха (внутренний), мм</th>
<th>Число труб</th>
<th>Длина труб, м</th>
<th>Площадь поверхности теплообмена, м² (по $d_{\text{напр}}$)</th>
<th>Типы аппаратов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>общее</td>
<td>на один ход</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>261</td>
<td>261</td>
<td>40</td>
<td>61</td>
</tr>
<tr>
<td>800</td>
<td>473</td>
<td>473</td>
<td>74</td>
<td>112</td>
</tr>
<tr>
<td>1000</td>
<td>783</td>
<td>783</td>
<td>121</td>
<td>182</td>
</tr>
<tr>
<td>1200</td>
<td>1125</td>
<td>1125</td>
<td>—</td>
<td>260</td>
</tr>
<tr>
<td>1400</td>
<td>1549</td>
<td>1549</td>
<td>—</td>
<td>358</td>
</tr>
</tbody>
</table>

Одноходовые

<table>
<thead>
<tr>
<th>Диаметр кожуха (внутренний), мм</th>
<th>Число труб</th>
<th>Длина труб, м</th>
<th>Площадь поверхности теплообмена, м² (по $d_{\text{напр}}$)</th>
<th>Типы аппаратов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>общее</td>
<td>на один ход</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>244</td>
<td>122</td>
<td>—</td>
<td>57</td>
</tr>
<tr>
<td>800</td>
<td>450</td>
<td>225</td>
<td>—</td>
<td>106</td>
</tr>
<tr>
<td>1000</td>
<td>754</td>
<td>377</td>
<td>—</td>
<td>175</td>
</tr>
<tr>
<td>1200</td>
<td>1090</td>
<td>545</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1400</td>
<td>1508</td>
<td>754</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Двухходовые

<table>
<thead>
<tr>
<th>Диаметр кожуха (внутренний), мм</th>
<th>Число труб</th>
<th>Длина труб, м</th>
<th>Площадь поверхности теплообмена, м² (по $d_{\text{напр}}$)</th>
<th>Типы аппаратов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>общее</td>
<td>на один ход</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>210</td>
<td>52,5</td>
<td>—</td>
<td>49</td>
</tr>
<tr>
<td>800</td>
<td>408</td>
<td>102</td>
<td>—</td>
<td>96</td>
</tr>
<tr>
<td>1000</td>
<td>702</td>
<td>175,5</td>
<td>—</td>
<td>163</td>
</tr>
<tr>
<td>1200</td>
<td>1028</td>
<td>257</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1400</td>
<td>1434</td>
<td>358,5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Четырехходовые

<table>
<thead>
<tr>
<th>Диаметр кожуха (внутренний), мм</th>
<th>Число труб</th>
<th>Длина труб, м</th>
<th>Площадь поверхности теплообмена, м² (по $d_{\text{напр}}$)</th>
<th>Типы аппаратов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>общее</td>
<td>на один ход</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>600</td>
<td>198</td>
<td>33</td>
<td>—</td>
<td>46</td>
</tr>
<tr>
<td>800</td>
<td>392</td>
<td>65,3</td>
<td>—</td>
<td>93</td>
</tr>
<tr>
<td>1000</td>
<td>678</td>
<td>113</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>1200</td>
<td>1000</td>
<td>166,6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1400</td>
<td>1400</td>
<td>233,3</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Количество ходов по трубам K, общее число труб n, площадь проходных сечений одного хода по трубам S_T и в вырезе перегородки $S_{С, ж.}$, расстояния подиагонали до хорды сегмента h_1 и допускаемая разность температур кожуха (t_{K}) и труб (t_T) при $P_T \leq 1,0$ МПа и $t_T \leq 250^\circ$C для труб 25 × 2 мм с шагом 32 мм для стали 10 и 20 (исполнение М1).

<table>
<thead>
<tr>
<th>Диаметр кожуха (внутренний), мм</th>
<th>K</th>
<th>n</th>
<th>$S_T \cdot 10^8$, м2</th>
<th>$S_{С, ж.} \cdot 10^8$, м2</th>
<th>h_1, мм</th>
<th>($t_{K} - t_T$)$_{макс.}$, K (для ТН, ХН, КН, ИН)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1</td>
<td>13</td>
<td>0,4</td>
<td>0,5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>1</td>
<td>37</td>
<td>1,4</td>
<td>1,3</td>
<td>40</td>
<td>ДЛЯ ХН 20</td>
</tr>
<tr>
<td>325</td>
<td>1</td>
<td>61</td>
<td>2,1</td>
<td>1,4</td>
<td>55</td>
<td>ДЛЯ ТН 30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>111</td>
<td>3,8</td>
<td>2,2</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>100</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>1</td>
<td>261(279)</td>
<td>9,0</td>
<td></td>
<td>4,9</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>244(262)</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>210(228)</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>198(216)</td>
<td>1,14</td>
<td></td>
<td>166</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>800</td>
<td>1</td>
<td>473(507)</td>
<td>16,7</td>
<td></td>
<td>7,7</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>450(484)</td>
<td>7,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>408(442)</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>392(426)</td>
<td>2,2</td>
<td></td>
<td>194</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>783(813)</td>
<td>27,0</td>
<td></td>
<td>12,1</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>754(784)</td>
<td>13,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>702(732)</td>
<td>6,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>678(708)</td>
<td>3,8</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1</td>
<td>1125(1175)</td>
<td>39,0</td>
<td></td>
<td>16,8</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1090(1140)</td>
<td>18,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1028(1078)</td>
<td>8,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1000(1050)</td>
<td>5,7</td>
<td></td>
<td>305</td>
<td></td>
</tr>
</tbody>
</table>

Примечания: 1. В скобках указано общее количество труб для случая, когда нет отборников и трубы добавлены с двух сторон, см. ГОСТ 15118—79. 2. Значения h_1 приведены для теплообменников и холодильников.
<table>
<thead>
<tr>
<th>Растворимое вещество</th>
<th>Температура кипения, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>5,66</td>
</tr>
<tr>
<td>KOH</td>
<td>4,49</td>
</tr>
<tr>
<td>KCl</td>
<td>8,42</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>10,31</td>
</tr>
<tr>
<td>KNO₃</td>
<td>13,19</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>4,67</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>14,31</td>
</tr>
<tr>
<td>NaOH</td>
<td>4,12</td>
</tr>
<tr>
<td>NaCl</td>
<td>6,19</td>
</tr>
<tr>
<td>NaN₃</td>
<td>8,26</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>15,26</td>
</tr>
<tr>
<td>Na₃CO₃</td>
<td>9,42</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>26,95</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>20,00</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>9,09</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>6,10</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>13,34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Растворимое вещество</th>
<th>Температура кипения, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>45,80</td>
</tr>
<tr>
<td>KOH</td>
<td>40,23</td>
</tr>
<tr>
<td>KCl</td>
<td></td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>60,40</td>
</tr>
<tr>
<td>KNO₃</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>36,02</td>
</tr>
<tr>
<td>MgSO₄</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>37,58</td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
</tr>
<tr>
<td>NaN₃</td>
<td></td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td></td>
</tr>
<tr>
<td>Na₃CO₃</td>
<td></td>
</tr>
<tr>
<td>CuSO₄</td>
<td></td>
</tr>
<tr>
<td>ZnSO₄</td>
<td></td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>77,11</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td></td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td></td>
</tr>
</tbody>
</table>

535
Таблица XXXVII

Удельная теплота растворения q некоторых солей в воде
(1 кмоль соли в n кмоль воды)

<table>
<thead>
<tr>
<th>Формула соли</th>
<th>Мольная масса, кг/кмоль</th>
<th>q, кДж/кмоль</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>58,5</td>
<td>-4 944</td>
<td>100</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>142</td>
<td>-1 927</td>
<td>400</td>
</tr>
<tr>
<td>Na$_2$SO$_4$·10H$_2$O</td>
<td>322</td>
<td>+78 600</td>
<td>400</td>
</tr>
<tr>
<td>NaN$_O_3$</td>
<td>85</td>
<td>+21 080</td>
<td>200</td>
</tr>
<tr>
<td>K$_2$CO$_3$·1,5H$_2$O</td>
<td>165</td>
<td>+1 590</td>
<td>400</td>
</tr>
<tr>
<td>KCl</td>
<td>74,6</td>
<td>+17 560</td>
<td>100</td>
</tr>
<tr>
<td>KNO$_3$</td>
<td>101</td>
<td>+35 700</td>
<td>200</td>
</tr>
<tr>
<td>KOH·2H$_2$O</td>
<td>92</td>
<td>+126</td>
<td>170+30</td>
</tr>
<tr>
<td>(NH$_4$)$_2$SO$_4$</td>
<td>132</td>
<td>+9 930</td>
<td>400</td>
</tr>
<tr>
<td>CaCl$_2$·6H$_2$O</td>
<td>219</td>
<td>+18 060</td>
<td>400</td>
</tr>
<tr>
<td>MgCl$_2$·6H$_2$O</td>
<td>203</td>
<td>-12 360</td>
<td>400</td>
</tr>
</tbody>
</table>

Примечание. Знак плюс обозначает растворение с поглощением теплоты, знак минус — с выделением теплоты.

Таблица XXXVIII

Давление насыщенного водяного пара при температурах от -20 до 100 °C

Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

<table>
<thead>
<tr>
<th>t, °C</th>
<th>p, мм рт. ст.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>0,772</td>
<td>5</td>
<td>6,54</td>
<td>30</td>
<td>31,82</td>
<td>55</td>
<td>118,0</td>
<td>80</td>
<td>355,1</td>
</tr>
<tr>
<td>19</td>
<td>0,850</td>
<td>6</td>
<td>7,01</td>
<td>31</td>
<td>33,70</td>
<td>56</td>
<td>123,8</td>
<td>81</td>
<td>369,7</td>
</tr>
<tr>
<td>18</td>
<td>0,935</td>
<td>7</td>
<td>7,51</td>
<td>32</td>
<td>35,66</td>
<td>57</td>
<td>129,8</td>
<td>82</td>
<td>384,9</td>
</tr>
<tr>
<td>17</td>
<td>1,027</td>
<td>8</td>
<td>8,05</td>
<td>33</td>
<td>37,73</td>
<td>58</td>
<td>136,1</td>
<td>83</td>
<td>400,6</td>
</tr>
<tr>
<td>16</td>
<td>1,128</td>
<td>9</td>
<td>8,61</td>
<td>34</td>
<td>39,90</td>
<td>59</td>
<td>142,6</td>
<td>84</td>
<td>416,8</td>
</tr>
<tr>
<td>15</td>
<td>1,238</td>
<td>10</td>
<td>9,21</td>
<td>35</td>
<td>42,18</td>
<td>60</td>
<td>149,1</td>
<td>85</td>
<td>433,6</td>
</tr>
<tr>
<td>14</td>
<td>1,357</td>
<td>11</td>
<td>9,84</td>
<td>36</td>
<td>44,56</td>
<td>61</td>
<td>156,4</td>
<td>86</td>
<td>450,9</td>
</tr>
<tr>
<td>13</td>
<td>1,486</td>
<td>12</td>
<td>10,52</td>
<td>37</td>
<td>47,07</td>
<td>62</td>
<td>163,8</td>
<td>87</td>
<td>468,7</td>
</tr>
<tr>
<td>12</td>
<td>1,627</td>
<td>13</td>
<td>11,23</td>
<td>38</td>
<td>49,65</td>
<td>63</td>
<td>171,4</td>
<td>88</td>
<td>487,1</td>
</tr>
<tr>
<td>11</td>
<td>1,780</td>
<td>14</td>
<td>11,99</td>
<td>39</td>
<td>52,44</td>
<td>64</td>
<td>179,3</td>
<td>89</td>
<td>506,1</td>
</tr>
<tr>
<td>10</td>
<td>1,946</td>
<td>15</td>
<td>12,79</td>
<td>40</td>
<td>55,32</td>
<td>65</td>
<td>187,5</td>
<td>90</td>
<td>525,8</td>
</tr>
<tr>
<td>9</td>
<td>2,125</td>
<td>16</td>
<td>13,63</td>
<td>41</td>
<td>58,34</td>
<td>66</td>
<td>196,1</td>
<td>91</td>
<td>546,1</td>
</tr>
<tr>
<td>8</td>
<td>2,321</td>
<td>17</td>
<td>14,53</td>
<td>42</td>
<td>61,50</td>
<td>67</td>
<td>205,0</td>
<td>92</td>
<td>567,0</td>
</tr>
<tr>
<td>7</td>
<td>2,532</td>
<td>18</td>
<td>15,48</td>
<td>43</td>
<td>64,80</td>
<td>68</td>
<td>214,2</td>
<td>93</td>
<td>588,6</td>
</tr>
<tr>
<td>6</td>
<td>2,761</td>
<td>19</td>
<td>16,48</td>
<td>44</td>
<td>68,26</td>
<td>69</td>
<td>223,7</td>
<td>94</td>
<td>610,9</td>
</tr>
<tr>
<td>5</td>
<td>3,008</td>
<td>20</td>
<td>17,54</td>
<td>45</td>
<td>71,88</td>
<td>70</td>
<td>233,7</td>
<td>95</td>
<td>633,9</td>
</tr>
<tr>
<td>4</td>
<td>3,276</td>
<td>21</td>
<td>18,65</td>
<td>46</td>
<td>75,65</td>
<td>71</td>
<td>243,9</td>
<td>96</td>
<td>657,6</td>
</tr>
<tr>
<td>3</td>
<td>3,566</td>
<td>22</td>
<td>19,83</td>
<td>47</td>
<td>79,60</td>
<td>72</td>
<td>254,6</td>
<td>97</td>
<td>682,1</td>
</tr>
<tr>
<td>2</td>
<td>3,879</td>
<td>23</td>
<td>21,07</td>
<td>48</td>
<td>83,71</td>
<td>73</td>
<td>265,7</td>
<td>98</td>
<td>707,3</td>
</tr>
<tr>
<td>-1</td>
<td>4,216</td>
<td>24</td>
<td>22,38</td>
<td>49</td>
<td>88,02</td>
<td>74</td>
<td>277,2</td>
<td>99</td>
<td>733,2</td>
</tr>
<tr>
<td>0</td>
<td>4,579</td>
<td>25</td>
<td>23,76</td>
<td>50</td>
<td>92,51</td>
<td>75</td>
<td>289,1</td>
<td>100</td>
<td>760,0</td>
</tr>
<tr>
<td>+1</td>
<td>4,932</td>
<td>26</td>
<td>25,21</td>
<td>51</td>
<td>97,20</td>
<td>76</td>
<td>301,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5,296</td>
<td>27</td>
<td>26,74</td>
<td>52</td>
<td>102,1</td>
<td>77</td>
<td>314,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5,696</td>
<td>28</td>
<td>28,35</td>
<td>53</td>
<td>107,2</td>
<td>78</td>
<td>327,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6,106</td>
<td>29</td>
<td>30,04</td>
<td>54</td>
<td>112,5</td>
<td>79</td>
<td>341,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_1</td>
<td>t, °C</td>
<td>ρ_0, кг/м3</td>
<td>L_1, кДж/кг</td>
<td>c_1, кДж/кг·К</td>
<td>λ_1, Вт/м·К</td>
<td>a_1, м2/с</td>
<td>μ_1, Па·с</td>
<td>v_1, м/с</td>
<td>β_{10^4}, К$^{-1}$</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1000</td>
<td>4,23</td>
<td>55,1</td>
<td>1,31</td>
<td>1790</td>
<td>1,79</td>
<td>0,63</td>
<td>756</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1000</td>
<td>41,9</td>
<td>4,19</td>
<td>57,5</td>
<td>1,37</td>
<td>1310</td>
<td>1,31</td>
<td>0,70</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>998</td>
<td>83,8</td>
<td>4,19</td>
<td>59,9</td>
<td>1,43</td>
<td>1000</td>
<td>1,01</td>
<td>1,82</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>996</td>
<td>126</td>
<td>4,18</td>
<td>61,8</td>
<td>1,49</td>
<td>804</td>
<td>0,81</td>
<td>3,21</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>992</td>
<td>168</td>
<td>4,18</td>
<td>63,4</td>
<td>1,53</td>
<td>657</td>
<td>0,66</td>
<td>3,87</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>988</td>
<td>210</td>
<td>4,18</td>
<td>64,8</td>
<td>1,57</td>
<td>549</td>
<td>0,556</td>
<td>4,49</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>983</td>
<td>251</td>
<td>4,18</td>
<td>65,9</td>
<td>1,61</td>
<td>470</td>
<td>0,478</td>
<td>5,11</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>978</td>
<td>293</td>
<td>4,19</td>
<td>66,8</td>
<td>1,63</td>
<td>406</td>
<td>0,415</td>
<td>5,70</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>972</td>
<td>335</td>
<td>4,19</td>
<td>67,5</td>
<td>1,66</td>
<td>355</td>
<td>0,365</td>
<td>6,32</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>965</td>
<td>377</td>
<td>4,19</td>
<td>68,0</td>
<td>1,68</td>
<td>315</td>
<td>0,326</td>
<td>6,95</td>
</tr>
<tr>
<td>1,03</td>
<td>100</td>
<td>958</td>
<td>419</td>
<td>4,23</td>
<td>68,3</td>
<td>1,69</td>
<td>282</td>
<td>0,295</td>
<td>7,5</td>
</tr>
<tr>
<td>1,46</td>
<td>110</td>
<td>951</td>
<td>461</td>
<td>4,23</td>
<td>68,5</td>
<td>1,69</td>
<td>256</td>
<td>0,268</td>
<td>8,0</td>
</tr>
<tr>
<td>2,02</td>
<td>120</td>
<td>943</td>
<td>503</td>
<td>4,23</td>
<td>68,6</td>
<td>1,72</td>
<td>231</td>
<td>0,244</td>
<td>8,6</td>
</tr>
<tr>
<td>2,75</td>
<td>130</td>
<td>935</td>
<td>545</td>
<td>4,27</td>
<td>68,6</td>
<td>1,72</td>
<td>212</td>
<td>0,226</td>
<td>9,2</td>
</tr>
<tr>
<td>3,68</td>
<td>140</td>
<td>926</td>
<td>587</td>
<td>4,27</td>
<td>68,5</td>
<td>1,72</td>
<td>196</td>
<td>0,212</td>
<td>9,7</td>
</tr>
<tr>
<td>4,85</td>
<td>150</td>
<td>917</td>
<td>629</td>
<td>4,32</td>
<td>68,4</td>
<td>1,72</td>
<td>185</td>
<td>0,202</td>
<td>10,3</td>
</tr>
<tr>
<td>6,30</td>
<td>160</td>
<td>907</td>
<td>671</td>
<td>4,36</td>
<td>68,3</td>
<td>1,72</td>
<td>174</td>
<td>0,191</td>
<td>10,8</td>
</tr>
<tr>
<td>8,08</td>
<td>170</td>
<td>897</td>
<td>713</td>
<td>4,40</td>
<td>67,9</td>
<td>1,72</td>
<td>163</td>
<td>0,181</td>
<td>11,5</td>
</tr>
<tr>
<td>10,23</td>
<td>180</td>
<td>887</td>
<td>755</td>
<td>4,44</td>
<td>67,5</td>
<td>1,72</td>
<td>153</td>
<td>0,173</td>
<td>12,2</td>
</tr>
</tbody>
</table>

537
<table>
<thead>
<tr>
<th>Наименование пункта</th>
<th>Январь</th>
<th>Июль</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(t, ^\circ C)</td>
<td>(%)</td>
</tr>
<tr>
<td>Алма-Ата</td>
<td>-8,6</td>
<td>87</td>
</tr>
<tr>
<td>Архангельск</td>
<td>-13,3</td>
<td>88</td>
</tr>
<tr>
<td>Астрахань</td>
<td>-7,1</td>
<td>91</td>
</tr>
<tr>
<td>Ашхабад</td>
<td>-0,4</td>
<td>86</td>
</tr>
<tr>
<td>Багуру</td>
<td>-3,4</td>
<td>82</td>
</tr>
<tr>
<td>Благовещенск</td>
<td>-24,2</td>
<td>78</td>
</tr>
<tr>
<td>Брянск</td>
<td>-8,8</td>
<td>88</td>
</tr>
<tr>
<td>Владивосток</td>
<td>-13,7</td>
<td>74</td>
</tr>
<tr>
<td>Волгоград</td>
<td>-9,9</td>
<td>85</td>
</tr>
<tr>
<td>Вологда</td>
<td>-12,0</td>
<td>86</td>
</tr>
<tr>
<td>Воронеж</td>
<td>-9,8</td>
<td>90</td>
</tr>
<tr>
<td>Горький</td>
<td>-12,2</td>
<td>89</td>
</tr>
<tr>
<td>Грозный</td>
<td>-4,9</td>
<td>93</td>
</tr>
<tr>
<td>Днепропетровск</td>
<td>-6,0</td>
<td>88</td>
</tr>
<tr>
<td>Ереван</td>
<td>-5,8</td>
<td>89</td>
</tr>
<tr>
<td>Иваново</td>
<td>-12,0</td>
<td>90</td>
</tr>
<tr>
<td>Иркутск</td>
<td>-20,9</td>
<td>85</td>
</tr>
<tr>
<td>Казань</td>
<td>-13,6</td>
<td>86</td>
</tr>
<tr>
<td>Киев</td>
<td>-6,0</td>
<td>89</td>
</tr>
<tr>
<td>Киров</td>
<td>-15,1</td>
<td>86</td>
</tr>
<tr>
<td>Кировоград</td>
<td>-5,8</td>
<td>88</td>
</tr>
<tr>
<td>Красноводск</td>
<td>-2,4</td>
<td>78</td>
</tr>
<tr>
<td>Краснодар</td>
<td>-2,1</td>
<td>90</td>
</tr>
<tr>
<td>Красноярск</td>
<td>-18,2</td>
<td>81</td>
</tr>
<tr>
<td>Кустанай</td>
<td>-9,3</td>
<td>88</td>
</tr>
<tr>
<td>Кутаиси</td>
<td>-4,4</td>
<td>75</td>
</tr>
<tr>
<td>Ленинград</td>
<td>-7,7</td>
<td>87</td>
</tr>
<tr>
<td>Минск</td>
<td>-6,8</td>
<td>88</td>
</tr>
<tr>
<td>Москва</td>
<td>-10,8</td>
<td>88</td>
</tr>
<tr>
<td>Николаев</td>
<td>-4,0</td>
<td>88</td>
</tr>
<tr>
<td>Новгород</td>
<td>-8,4</td>
<td>88</td>
</tr>
<tr>
<td>Новороссийск</td>
<td>-2,0</td>
<td>75</td>
</tr>
<tr>
<td>Новосибирск</td>
<td>-19,3</td>
<td>83</td>
</tr>
<tr>
<td>Одесса</td>
<td>-3,1</td>
<td>88</td>
</tr>
<tr>
<td>Омск</td>
<td>-19,6</td>
<td>86</td>
</tr>
<tr>
<td>Орел</td>
<td>-9,5</td>
<td>92</td>
</tr>
<tr>
<td>Пермь</td>
<td>-16,0</td>
<td>84</td>
</tr>
<tr>
<td>Псков</td>
<td>-7,1</td>
<td>86</td>
</tr>
<tr>
<td>Ростов и/Д</td>
<td>-6,1</td>
<td>89</td>
</tr>
<tr>
<td>Саратов</td>
<td>-11,3</td>
<td>84</td>
</tr>
<tr>
<td>Свердловск</td>
<td>-1,2</td>
<td>84</td>
</tr>
<tr>
<td>Смоленск</td>
<td>-8,4</td>
<td>88</td>
</tr>
<tr>
<td>Тамбов</td>
<td>-11,1</td>
<td>88</td>
</tr>
<tr>
<td>Ташкент</td>
<td>-1,3</td>
<td>81</td>
</tr>
<tr>
<td>Тбилиси</td>
<td>-0,1</td>
<td>80</td>
</tr>
<tr>
<td>Томск</td>
<td>-19,4</td>
<td>82</td>
</tr>
<tr>
<td>Уральск</td>
<td>-14,0</td>
<td>85</td>
</tr>
<tr>
<td>Уфа</td>
<td>-15,0</td>
<td>86</td>
</tr>
<tr>
<td>Харьков</td>
<td>-7,7</td>
<td>88</td>
</tr>
<tr>
<td>Цециноград</td>
<td>-17,0</td>
<td>85</td>
</tr>
<tr>
<td>Чита</td>
<td>-27,4</td>
<td>2</td>
</tr>
</tbody>
</table>
Таблица ХLI
Значения коэффициента Генри \(E \) для водных растворов некоторых газов (в таблице даны значения \(E \cdot 10^{-8} \) в мм рт. ст.)
Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

<table>
<thead>
<tr>
<th>Газ</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td>40,2</td>
<td>45,4</td>
<td>50,8</td>
<td>56,1</td>
<td>61,1</td>
<td>65,7</td>
<td>70,2</td>
<td>79,2</td>
<td>90,9</td>
<td>95,9</td>
<td>95,9</td>
</tr>
<tr>
<td>Ацетилен</td>
<td>0,55</td>
<td>0,64</td>
<td>0,73</td>
<td>0,82</td>
<td>0,92</td>
<td>1,01</td>
<td>1,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бром</td>
<td>0,0162</td>
<td>0,0209</td>
<td>0,0278</td>
<td>0,0354</td>
<td>0,0451</td>
<td>0,056</td>
<td>0,0688</td>
<td>0,101</td>
<td>0,191</td>
<td>0,307</td>
<td></td>
</tr>
<tr>
<td>Водород</td>
<td>44</td>
<td>46,2</td>
<td>48,3</td>
<td>50,2</td>
<td>51,9</td>
<td>53,7</td>
<td>55,4</td>
<td>57,1</td>
<td>58,1</td>
<td>57,4</td>
<td>56,6</td>
</tr>
<tr>
<td>Воздух</td>
<td>32,8</td>
<td>37,1</td>
<td>41,7</td>
<td>46,1</td>
<td>50,4</td>
<td>54,7</td>
<td>58,6</td>
<td>66,1</td>
<td>76,5</td>
<td>81,7</td>
<td>81,6</td>
</tr>
<tr>
<td>Диоксид углерода</td>
<td>0,553</td>
<td>0,666</td>
<td>0,792</td>
<td>0,93</td>
<td>1,08</td>
<td>1,24</td>
<td>1,41</td>
<td>1,77</td>
<td>2,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кислород</td>
<td>19,3</td>
<td>22,1</td>
<td>24,9</td>
<td>27,7</td>
<td>30,4</td>
<td>33,3</td>
<td>36,1</td>
<td>40,7</td>
<td>47,8</td>
<td>52,2</td>
<td>53,3</td>
</tr>
<tr>
<td>Метан</td>
<td>17</td>
<td>19,7</td>
<td>22,6</td>
<td>25,6</td>
<td>28,5</td>
<td>31,4</td>
<td>34,1</td>
<td>39,5</td>
<td>47,6</td>
<td>51,8</td>
<td>53,3</td>
</tr>
<tr>
<td>Оксид углерода</td>
<td>26,7</td>
<td>30</td>
<td>33,6</td>
<td>37,2</td>
<td>40,7</td>
<td>44</td>
<td>47,1</td>
<td>52,9</td>
<td>62,5</td>
<td>64,3</td>
<td>64,3</td>
</tr>
<tr>
<td>Сероводород</td>
<td>0,203</td>
<td>0,239</td>
<td>0,278</td>
<td>0,321</td>
<td>0,367</td>
<td>0,414</td>
<td>0,463</td>
<td>0,566</td>
<td>0,782</td>
<td>1,03</td>
<td>1,12</td>
</tr>
<tr>
<td>Хлор</td>
<td>0,204</td>
<td>0,25</td>
<td>0,297</td>
<td>0,346</td>
<td>0,402</td>
<td>0,454</td>
<td>0,502</td>
<td>0,6</td>
<td>0,731</td>
<td>0,73</td>
<td></td>
</tr>
<tr>
<td>Этил</td>
<td>9,55</td>
<td>11,8</td>
<td>14,4</td>
<td>17,2</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>32,2</td>
<td>42,9</td>
<td>50,2</td>
<td>52,6</td>
</tr>
<tr>
<td>Этилен</td>
<td>4,19</td>
<td>4,96</td>
<td>5,84</td>
<td>6,8</td>
<td>7,74</td>
<td>8,67</td>
<td>9,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица XLII

<table>
<thead>
<tr>
<th>Газ</th>
<th>(D \cdot 10^6) (m^2/c)</th>
<th>(D) (m^2/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td>13,2</td>
<td>0,0175</td>
</tr>
<tr>
<td>Аммиак</td>
<td>17,0</td>
<td>0,0612</td>
</tr>
<tr>
<td>Бензол</td>
<td>7,7</td>
<td>0,0277</td>
</tr>
<tr>
<td>Водород</td>
<td>61,1</td>
<td>0,22</td>
</tr>
<tr>
<td>Водяной пар</td>
<td>21,9</td>
<td>0,079</td>
</tr>
<tr>
<td>Диоксид серы</td>
<td>10,3</td>
<td>0,037</td>
</tr>
<tr>
<td>... углекисл</td>
<td>13,8</td>
<td>0,0497</td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>7,8</td>
<td>0,028</td>
</tr>
<tr>
<td>Кислород</td>
<td>17,8</td>
<td>0,064</td>
</tr>
<tr>
<td>Метиловый спирт</td>
<td>13,3</td>
<td>0,0478</td>
</tr>
<tr>
<td>Серный ангидрид</td>
<td>9,4</td>
<td>0,034</td>
</tr>
<tr>
<td>Серауглерод</td>
<td>8,9</td>
<td>0,0321</td>
</tr>
<tr>
<td>Хлористый водород</td>
<td>13,0</td>
<td>0,0467</td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>10,2</td>
<td>0,0367</td>
</tr>
</tbody>
</table>

* При других температурах и давлениях \(D = D \cdot \frac{n_o}{p} \left(\frac{T}{T_o} \right)^{3/2} \)

Таблица XLIII

<table>
<thead>
<tr>
<th>Газ</th>
<th>(D \cdot 10^6) (m^2/c)</th>
<th>(D) (m^2/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td>1,9</td>
<td>6,9</td>
</tr>
<tr>
<td>Аммиак</td>
<td>1,8</td>
<td>6,6</td>
</tr>
<tr>
<td>Водород</td>
<td>5,3</td>
<td>19,1</td>
</tr>
<tr>
<td>Диоксид углерода, оксид азота</td>
<td>1,8</td>
<td>6,4</td>
</tr>
<tr>
<td>Кислород</td>
<td>2,1</td>
<td>7,5</td>
</tr>
<tr>
<td>Хлор, сероводород</td>
<td>1,6</td>
<td>5,8</td>
</tr>
<tr>
<td>Хлористый водород (при 12 °C)</td>
<td>2,3</td>
<td>8,3</td>
</tr>
</tbody>
</table>

* При других температурах \(D_t = D_{20} \left(1 + 0.02 (t - 20) \right) \).
Таблица XLIV

Физические свойства некоторых органических жидкостей

Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>Химическая формула</th>
<th>Молярная масса, кг/моль</th>
<th>Плотность, кг/м³</th>
<th>Температура кипячения, °C</th>
<th>Давление насыщенного пара, мм рт. ст. при 20 °C</th>
<th>Температура, °C при замерзании</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ацетон</td>
<td>CH₃COCH₃</td>
<td>58,08</td>
<td>810</td>
<td>56</td>
<td>186</td>
<td>-94,3</td>
</tr>
<tr>
<td>Бензин</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бензол</td>
<td>C₆H₆</td>
<td>78,11</td>
<td>900</td>
<td>80,2</td>
<td>75</td>
<td>5,5</td>
</tr>
<tr>
<td>Дихлорэтан</td>
<td>CH₂Cl—CH₂Cl</td>
<td>98,97</td>
<td>1250</td>
<td>83,7</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Изопропилцетат</td>
<td>CH₃COOC₂H₆</td>
<td>130,18</td>
<td>870</td>
<td>142,5</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>Ксилоны (смесь)</td>
<td>C₆H₅(CH₃)₂</td>
<td>106,16</td>
<td>860</td>
<td>136—145</td>
<td>10</td>
<td>-13,6</td>
</tr>
<tr>
<td>Метилацетат</td>
<td>CH₃COOC₂H₆</td>
<td>74,08</td>
<td>930</td>
<td>57,5</td>
<td>170</td>
<td>—</td>
</tr>
<tr>
<td>Пропилацетат</td>
<td>CH₃COOC₂H₇</td>
<td>102,13</td>
<td>890</td>
<td>101,6</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>CS₂</td>
<td>76,13</td>
<td>1290</td>
<td>46,3</td>
<td>298</td>
<td>-112</td>
</tr>
<tr>
<td>Скипида</td>
<td>C₁₀H₁₆</td>
<td>136,1</td>
<td>850—880</td>
<td>159—190</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>Спирт бутиловый</td>
<td>C₄H₉OH</td>
<td>74,12</td>
<td>810</td>
<td>117,7</td>
<td>4,7</td>
<td>-90</td>
</tr>
<tr>
<td>Спирт изобутиловый</td>
<td>C₄H₈OH</td>
<td>74,12</td>
<td>800</td>
<td>108</td>
<td>8,8</td>
<td>-108</td>
</tr>
<tr>
<td>Спирт изопропиловый</td>
<td>C₃H₇OH</td>
<td>60,09</td>
<td>785</td>
<td>82,4</td>
<td>32,4</td>
<td>-89</td>
</tr>
<tr>
<td>Спирт метиловый</td>
<td>CH₃OH</td>
<td>32,04</td>
<td>800</td>
<td>64,7</td>
<td>9,7</td>
<td>-98</td>
</tr>
<tr>
<td>» пропиловый</td>
<td>C₃H₇OH</td>
<td>60,09</td>
<td>800</td>
<td>97,2</td>
<td>14,5</td>
<td>-126</td>
</tr>
<tr>
<td>» этиловый</td>
<td>C₄H₉OH</td>
<td>46,07</td>
<td>790</td>
<td>78,3</td>
<td>44</td>
<td>-114,5</td>
</tr>
<tr>
<td>Толуол</td>
<td>C₇H₈CH₃</td>
<td>92,13</td>
<td>870</td>
<td>110,8</td>
<td>22,3</td>
<td>-95</td>
</tr>
<tr>
<td>Углерод четыреххлористый</td>
<td>CC₄</td>
<td>153,84</td>
<td>1630</td>
<td>76,7</td>
<td>90,7</td>
<td>-22,8</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>CHCl₃</td>
<td>119,38</td>
<td>1530</td>
<td>61,2</td>
<td>160</td>
<td>—</td>
</tr>
<tr>
<td>Этилацетат</td>
<td>CH₃COOC₂H₆</td>
<td>88,10</td>
<td>900</td>
<td>77,15</td>
<td>73</td>
<td>-83,6</td>
</tr>
<tr>
<td>Эфир диэтиловый</td>
<td>C₂H₅OC₂H₅</td>
<td>74,12</td>
<td>710</td>
<td>34,5</td>
<td>442</td>
<td>-116,3</td>
</tr>
</tbody>
</table>

Таблица XLV

Удельная теплота парообразования некоторых веществ (в кДж/кг)

<table>
<thead>
<tr>
<th>Вещество</th>
<th>0</th>
<th>20</th>
<th>60</th>
<th>100</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аммиак</td>
<td>1265,4</td>
<td>1190,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Амилии</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ацетон</td>
<td>565,7</td>
<td>553,1</td>
<td>519,6</td>
<td>473,5</td>
<td>—</td>
</tr>
<tr>
<td>Бензол</td>
<td>448,3</td>
<td>435,8</td>
<td>408,5</td>
<td>379,2</td>
<td>346,1</td>
</tr>
<tr>
<td>Бутиловый спирт</td>
<td>703,9</td>
<td>687,2</td>
<td>653,6</td>
<td>611,7</td>
<td>561,5</td>
</tr>
<tr>
<td>Вещество</td>
<td>Температура, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20</td>
<td>60</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>Вода</td>
<td>2493,1</td>
<td>2446,9</td>
<td>2359,0</td>
<td>2258,4</td>
<td>2149,5</td>
</tr>
<tr>
<td>Диметиловый эфир</td>
<td>387,6</td>
<td>366,6</td>
<td>325,4</td>
<td>282,4</td>
<td>228,4</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>775,2</td>
<td>750,0</td>
<td>639,7</td>
<td>636,9</td>
<td>557,3</td>
</tr>
<tr>
<td>Метиоловый спирт</td>
<td>1198,3</td>
<td>1173,2</td>
<td>1110,4</td>
<td>1013,9</td>
<td>892,6</td>
</tr>
<tr>
<td>Нитробензол</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>331,9</td>
</tr>
<tr>
<td>Пропиоловый спирт</td>
<td>812,9</td>
<td>791,9</td>
<td>745,8</td>
<td>683,0</td>
<td>595,0</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>374,6</td>
<td>367,0</td>
<td>344,4</td>
<td>316,4</td>
<td>282,4</td>
</tr>
<tr>
<td>Толуол</td>
<td>414,8</td>
<td>407,7</td>
<td>338,8</td>
<td>368,7</td>
<td>344,0</td>
</tr>
<tr>
<td>Уксусная кислота</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>406,4</td>
<td>395,5</td>
</tr>
<tr>
<td>Хлор</td>
<td>266,5</td>
<td>253,1</td>
<td>222,0</td>
<td>176,8</td>
<td>71,23</td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>375,8</td>
<td>369,5</td>
<td>354,4</td>
<td>338,1</td>
<td>320,5</td>
</tr>
<tr>
<td>Хлороформ</td>
<td>271,5</td>
<td>263,1</td>
<td>247,6</td>
<td>231,3</td>
<td>—</td>
</tr>
<tr>
<td>Четыреххлористый углерод</td>
<td>218,3</td>
<td>213,7</td>
<td>201,9</td>
<td>185,6</td>
<td>168,0</td>
</tr>
<tr>
<td>Этилцетат</td>
<td>427,4</td>
<td>411,5</td>
<td>385,9</td>
<td>355,7</td>
<td>317,2</td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>921,8</td>
<td>813,4</td>
<td>879,9</td>
<td>812,9</td>
<td>712,3</td>
</tr>
</tbody>
</table>

Таблица XLVI

Температуры кипения (в °C) некоторых органических жидкостей при давлениях <1 atm

Пересчет: СИ 1 атм = 760 мм рт. ст = 101 325 Пи.

<table>
<thead>
<tr>
<th>Давление (абсолютное), мм рт. ст.</th>
<th>Анилин</th>
<th>Глицерин</th>
<th>m-Ксиolon</th>
<th>Нитробензол</th>
<th>Толуол</th>
<th>Октан</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>69,4</td>
<td>167,2</td>
<td>28,3</td>
<td>84,9</td>
<td>6,1</td>
<td>19,2</td>
</tr>
<tr>
<td>20</td>
<td>82,0</td>
<td>182,2</td>
<td>41,1</td>
<td>99,3</td>
<td>18,4</td>
<td>31,5</td>
</tr>
<tr>
<td>40</td>
<td>96,7</td>
<td>198,0</td>
<td>55,3</td>
<td>115,4</td>
<td>31,8</td>
<td>45,1</td>
</tr>
<tr>
<td>60</td>
<td>106,0</td>
<td>208,0</td>
<td>64,4</td>
<td>123,8</td>
<td>40,3</td>
<td>53,8</td>
</tr>
<tr>
<td>100</td>
<td>119,9</td>
<td>220,1</td>
<td>76,8</td>
<td>139,9</td>
<td>51,9</td>
<td>65,7</td>
</tr>
<tr>
<td>200</td>
<td>140,1</td>
<td>240,0</td>
<td>95,5</td>
<td>161,2</td>
<td>69,5</td>
<td>83,6</td>
</tr>
<tr>
<td>400</td>
<td>161,9</td>
<td>263,0</td>
<td>116,7</td>
<td>185,8</td>
<td>89,5</td>
<td>104,0</td>
</tr>
<tr>
<td>700</td>
<td>184,4</td>
<td>290,0</td>
<td>139,1</td>
<td>210,6</td>
<td>110,6</td>
<td>125,6</td>
</tr>
</tbody>
</table>
Таблица XLVII

Равновесные составы жидкости и пара для некоторых бинарных систем при $P_{абс} = 760$ мм рт. ст.

Метиловый спирт — вода

<table>
<thead>
<tr>
<th>t, °C</th>
<th>% (моль) метилового спирта в жидкости</th>
<th>% (моль) метилового спирта в паре</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>96,4</td>
<td>2</td>
<td>13,4</td>
</tr>
<tr>
<td>93,5</td>
<td>4</td>
<td>23,0</td>
</tr>
<tr>
<td>91,2</td>
<td>6</td>
<td>30,4</td>
</tr>
<tr>
<td>87,7</td>
<td>10</td>
<td>41,8</td>
</tr>
<tr>
<td>81,7</td>
<td>20</td>
<td>57,9</td>
</tr>
<tr>
<td>78,0</td>
<td>30</td>
<td>61,5</td>
</tr>
<tr>
<td>75,3</td>
<td>40</td>
<td>72,9</td>
</tr>
<tr>
<td>73,1</td>
<td>50</td>
<td>77,9</td>
</tr>
<tr>
<td>71,2</td>
<td>60</td>
<td>82,5</td>
</tr>
<tr>
<td>69,3</td>
<td>70</td>
<td>87,0</td>
</tr>
<tr>
<td>67,5</td>
<td>80</td>
<td>91,5</td>
</tr>
<tr>
<td>66,0</td>
<td>90</td>
<td>95,8</td>
</tr>
<tr>
<td>64,5</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Хлороформ — бензол

<table>
<thead>
<tr>
<th>t, °C</th>
<th>% (моль) хлороформа в жидкости</th>
<th>% (моль) хлороформа в паре</th>
</tr>
</thead>
<tbody>
<tr>
<td>80,6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>79,8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>79,0</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>78,2</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>77,3</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>76,4</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>75,3</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>74,0</td>
<td>54</td>
<td>70</td>
</tr>
<tr>
<td>71,9</td>
<td>66</td>
<td>80</td>
</tr>
<tr>
<td>68,9</td>
<td>79</td>
<td>90</td>
</tr>
<tr>
<td>61,4</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Вода — уксусная кислота

<table>
<thead>
<tr>
<th>t, °C</th>
<th>% (моль) воды в жидкости</th>
<th>% (моль) воды в паре</th>
</tr>
</thead>
<tbody>
<tr>
<td>118,1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>115,4</td>
<td>5</td>
<td>9,2</td>
</tr>
<tr>
<td>113,8</td>
<td>10</td>
<td>16,7</td>
</tr>
<tr>
<td>110,1</td>
<td>20</td>
<td>30,2</td>
</tr>
<tr>
<td>107,5</td>
<td>30</td>
<td>42,5</td>
</tr>
<tr>
<td>105,8</td>
<td>40</td>
<td>53,0</td>
</tr>
<tr>
<td>104,4</td>
<td>50</td>
<td>62,6</td>
</tr>
<tr>
<td>103,2</td>
<td>60</td>
<td>71,6</td>
</tr>
<tr>
<td>102,1</td>
<td>70</td>
<td>79,5</td>
</tr>
<tr>
<td>101,3</td>
<td>80</td>
<td>86,4</td>
</tr>
<tr>
<td>100,6</td>
<td>90</td>
<td>93,0</td>
</tr>
<tr>
<td>100,0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Азот — кислород

<table>
<thead>
<tr>
<th>T, K</th>
<th>% (моль) азота в жидкости</th>
<th>% (моль) азота в паре</th>
</tr>
</thead>
<tbody>
<tr>
<td>90,1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>89,5</td>
<td>3,5</td>
<td>13,0</td>
</tr>
<tr>
<td>89</td>
<td>6,2</td>
<td>20,2</td>
</tr>
<tr>
<td>88</td>
<td>11,5</td>
<td>30,4</td>
</tr>
<tr>
<td>87</td>
<td>17,1</td>
<td>39,7</td>
</tr>
<tr>
<td>86</td>
<td>22,2</td>
<td>47,8</td>
</tr>
<tr>
<td>85</td>
<td>27,7</td>
<td>55,7</td>
</tr>
<tr>
<td>84</td>
<td>33,8</td>
<td>63,1</td>
</tr>
<tr>
<td>83</td>
<td>40,5</td>
<td>70,1</td>
</tr>
<tr>
<td>82</td>
<td>47,8</td>
<td>76,4</td>
</tr>
<tr>
<td>81</td>
<td>56,6</td>
<td>82,3</td>
</tr>
<tr>
<td>80</td>
<td>66,6</td>
<td>88,0</td>
</tr>
<tr>
<td>79</td>
<td>78,4</td>
<td>93,2</td>
</tr>
<tr>
<td>78</td>
<td>91,9</td>
<td>97,8</td>
</tr>
<tr>
<td>77,3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Температура, °C</td>
<td>Давление (абсолютное), кгс/см²</td>
<td>Удельный объем</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Жидкость ρ', дм³/кг</td>
<td>Пара ρ'', м³/кг</td>
</tr>
<tr>
<td>-50</td>
<td>0,4168</td>
<td>1,4245</td>
</tr>
<tr>
<td>-45</td>
<td>0,5562</td>
<td>1,4367</td>
</tr>
<tr>
<td>-40</td>
<td>0,7318</td>
<td>1,4493</td>
</tr>
<tr>
<td>-35</td>
<td>0,9503</td>
<td>1,4623</td>
</tr>
<tr>
<td>-30</td>
<td>1,219</td>
<td>1,4757</td>
</tr>
<tr>
<td>-25</td>
<td>1,546</td>
<td>1,4895</td>
</tr>
<tr>
<td>-20</td>
<td>1,940</td>
<td>1,5037</td>
</tr>
<tr>
<td>-15</td>
<td>2,410</td>
<td>1,5185</td>
</tr>
<tr>
<td>-10</td>
<td>2,966</td>
<td>1,5338</td>
</tr>
<tr>
<td>-5</td>
<td>3,619</td>
<td>1,5496</td>
</tr>
<tr>
<td>0</td>
<td>4,379</td>
<td>1,5660</td>
</tr>
<tr>
<td>+5</td>
<td>5,259</td>
<td>1,5831</td>
</tr>
<tr>
<td>+10</td>
<td>6,271</td>
<td>1,6008</td>
</tr>
<tr>
<td>+15</td>
<td>7,431</td>
<td>1,6193</td>
</tr>
<tr>
<td>+20</td>
<td>8,741</td>
<td>1,6386</td>
</tr>
<tr>
<td>+25</td>
<td>10,225</td>
<td>1,6588</td>
</tr>
<tr>
<td>+30</td>
<td>11,895</td>
<td>1,6800</td>
</tr>
<tr>
<td>+35</td>
<td>13,765</td>
<td>1,7023</td>
</tr>
<tr>
<td>+40</td>
<td>15,850</td>
<td>1,7257</td>
</tr>
<tr>
<td>+45</td>
<td>18,165</td>
<td>1,7504</td>
</tr>
<tr>
<td>+50</td>
<td>20,727</td>
<td>1,7766</td>
</tr>
</tbody>
</table>

Таблица XLIX
Физические свойства насыщенного пара дифтордихлорметана (хлода-12)
Пересчет в СИ: 1 кгс/см² = 9,81·10⁴ Па.

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Давление (абсолютное), кгс/см²</th>
<th>Плотность</th>
<th>Удельная теплота испарения, Дж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Жидкость ρ', кг/дм³</td>
<td>Пара ρ'', кг/м³</td>
<td></td>
</tr>
<tr>
<td>+40</td>
<td>9,78</td>
<td>1,25</td>
<td>53,1</td>
</tr>
<tr>
<td>+30</td>
<td>7,59</td>
<td>1,29</td>
<td>41,2</td>
</tr>
<tr>
<td>+25</td>
<td>6,63</td>
<td>1,31</td>
<td>36,1</td>
</tr>
<tr>
<td>+20</td>
<td>5,79</td>
<td>1,33</td>
<td>31,5</td>
</tr>
<tr>
<td>+10</td>
<td>4,32</td>
<td>1,36</td>
<td>23,8</td>
</tr>
<tr>
<td>0</td>
<td>3,15</td>
<td>1,39</td>
<td>17,7</td>
</tr>
<tr>
<td>-10</td>
<td>2,21</td>
<td>1,43</td>
<td>12,8</td>
</tr>
<tr>
<td>-15</td>
<td>1,86</td>
<td>1,44</td>
<td>10,8</td>
</tr>
<tr>
<td>-20</td>
<td>1,54</td>
<td>1,46</td>
<td>9,04</td>
</tr>
<tr>
<td>-25</td>
<td>1,26</td>
<td>1,47</td>
<td>7,52</td>
</tr>
<tr>
<td>-30</td>
<td>1,03</td>
<td>1,49</td>
<td>6,2</td>
</tr>
<tr>
<td>-35</td>
<td>0,824</td>
<td>1,5</td>
<td>5,07</td>
</tr>
<tr>
<td>-40</td>
<td>0,655</td>
<td>1,52</td>
<td>4,1</td>
</tr>
<tr>
<td>-50</td>
<td>0,399</td>
<td>1,54</td>
<td>2,6</td>
</tr>
<tr>
<td>-60</td>
<td>0,231</td>
<td>1,57</td>
<td>1,56</td>
</tr>
<tr>
<td>-70</td>
<td>0,125</td>
<td>1,6</td>
<td>0,888</td>
</tr>
<tr>
<td>-80</td>
<td>0,063</td>
<td>1,63</td>
<td>0,47</td>
</tr>
</tbody>
</table>
Таблица Л

Физические свойства водных растворов хлористого натрия при низких температурах

| Содержание соли в растворе (масс.) | Плотность при 15°С, кг/м³ | Температура замерзания, °C | Динамический коэффициент вязкости μ·10⁴, Па·с | Коэффициент
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>0°С</th>
<th>5°С</th>
<th>10°С</th>
<th>15°С</th>
<th>20°С</th>
<th>теплопроводности λ, Вт/(м·К)</th>
<th>0°С</th>
<th>10°С</th>
<th>20°С</th>
<th>30°С</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>1000</td>
<td>0,0</td>
<td>17,66</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5815</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,5</td>
<td>1010</td>
<td>—0,9</td>
<td>17,85</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5780</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,9</td>
<td>1020</td>
<td>—1,8</td>
<td>18,05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5757</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4,3</td>
<td>1030</td>
<td>—2,6</td>
<td>18,25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5734</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5,6</td>
<td>1040</td>
<td>—3,5</td>
<td>18,44</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5710</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7,0</td>
<td>1050</td>
<td>—4,4</td>
<td>18,74</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5687</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8,3</td>
<td>1060</td>
<td>—5,4</td>
<td>19,13</td>
<td>23,05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5664</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9,6</td>
<td>1070</td>
<td>—6,4</td>
<td>19,62</td>
<td>23,74</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5641</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11,0</td>
<td>1080</td>
<td>—7,5</td>
<td>20,21</td>
<td>24,43</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5616</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12,3</td>
<td>1090</td>
<td>—8,6</td>
<td>20,80</td>
<td>25,21</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5582</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13,6</td>
<td>1100</td>
<td>—9,8</td>
<td>21,48</td>
<td>26,09</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5559</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14,9</td>
<td>1110</td>
<td>—11,0</td>
<td>22,37</td>
<td>27,17</td>
<td>33,45</td>
<td>—</td>
<td>—</td>
<td>0,5536</td>
<td>0,5187</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16,2</td>
<td>1120</td>
<td>—12,2</td>
<td>23,25</td>
<td>28,35</td>
<td>34,92</td>
<td>—</td>
<td>—</td>
<td>0,5513</td>
<td>0,5164</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17,5</td>
<td>1130</td>
<td>—13,6</td>
<td>24,33</td>
<td>29,72</td>
<td>36,79</td>
<td>—</td>
<td>—</td>
<td>0,5489</td>
<td>0,5140</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18,8</td>
<td>1140</td>
<td>—15,1</td>
<td>25,60</td>
<td>31,20</td>
<td>38,75</td>
<td>47,77</td>
<td>—</td>
<td>0,5466</td>
<td>0,5117</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20,0</td>
<td>1150</td>
<td>—16,6</td>
<td>26,88</td>
<td>32,77</td>
<td>40,81</td>
<td>50,13</td>
<td>—</td>
<td>0,5443</td>
<td>0,5094</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21,2</td>
<td>1160</td>
<td>—18,2</td>
<td>28,25</td>
<td>34,43</td>
<td>43,07</td>
<td>52,78</td>
<td>—</td>
<td>0,5420</td>
<td>0,5071</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22,4</td>
<td>1170</td>
<td>—20,0</td>
<td>29,63</td>
<td>36,40</td>
<td>45,62</td>
<td>55,82</td>
<td>68,67</td>
<td>0,5408</td>
<td>0,5069</td>
<td>0,4768</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23,1</td>
<td>1175</td>
<td>—21,2</td>
<td>30,41</td>
<td>37,47</td>
<td>47,09</td>
<td>57,49</td>
<td>70,44</td>
<td>0,5396</td>
<td>0,5047</td>
<td>0,4757</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23,7</td>
<td>1180</td>
<td>—17,2</td>
<td>31,39</td>
<td>38,55</td>
<td>48,66</td>
<td>59,35</td>
<td>—</td>
<td>0,5385</td>
<td>0,5036</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24,9</td>
<td>1190</td>
<td>—9,5</td>
<td>32,96</td>
<td>40,71</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5361</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26,1</td>
<td>1200</td>
<td>—1,7</td>
<td>34,73</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5338</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26,3</td>
<td>1203</td>
<td>0,0</td>
<td>35,02</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,5338</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Таблица LI

Физические свойства водных растворов хлористого кальция при низких температурах

<table>
<thead>
<tr>
<th>Содержание соли в растворе (масс.)</th>
<th>Плотность при 15°С, кг/м³</th>
<th>Температура замерзания, °C</th>
<th>Динамический коэффициент вязкости μ·10⁴, Па·с</th>
<th>Коэффициент теплопроводности λ, Вт/(м·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>1000</td>
<td>0,0</td>
<td>17,76</td>
<td>—</td>
</tr>
<tr>
<td>5,9</td>
<td>1050</td>
<td>—3,0</td>
<td>19,82</td>
<td>—</td>
</tr>
<tr>
<td>11,5</td>
<td>1100</td>
<td>—7,1</td>
<td>22,96</td>
<td>—</td>
</tr>
<tr>
<td>16,8</td>
<td>1150</td>
<td>—12,7</td>
<td>27,66</td>
<td>43,65</td>
</tr>
<tr>
<td>17,8</td>
<td>1160</td>
<td>—14,2</td>
<td>28,74</td>
<td>45,13</td>
</tr>
<tr>
<td>18,9</td>
<td>1170</td>
<td>—15,7</td>
<td>29,92</td>
<td>46,70</td>
</tr>
<tr>
<td>19,9</td>
<td>1180</td>
<td>—17,4</td>
<td>31,20</td>
<td>48,46</td>
</tr>
<tr>
<td>20,9</td>
<td>1190</td>
<td>—19,2</td>
<td>32,77</td>
<td>50,72</td>
</tr>
<tr>
<td>21,9</td>
<td>1200</td>
<td>—21,2</td>
<td>34,43</td>
<td>53,27</td>
</tr>
<tr>
<td>22,8</td>
<td>1210</td>
<td>—23,3</td>
<td>36,20</td>
<td>56,11</td>
</tr>
<tr>
<td>23,8</td>
<td>1220</td>
<td>—25,7</td>
<td>38,16</td>
<td>59,25</td>
</tr>
<tr>
<td>Содержание соединения, %</td>
<td>Плотность при 20 °C, кг/м³</td>
<td>Температура, °C</td>
<td>Динамический коэффициент вязкости, Па·с</td>
<td>Коэффициент теплопроводности, Вт/(м·К)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>24,7</td>
<td>1230</td>
<td>-28,3</td>
<td>40,22</td>
<td>62,6</td>
</tr>
<tr>
<td>25,7</td>
<td>1240</td>
<td>-31,2</td>
<td>42,58</td>
<td>66,8</td>
</tr>
<tr>
<td>26,6</td>
<td>1250</td>
<td>-34,6</td>
<td>45,22</td>
<td>70,8</td>
</tr>
<tr>
<td>27,5</td>
<td>1260</td>
<td>-38,6</td>
<td>48,07</td>
<td>75,2</td>
</tr>
<tr>
<td>28,4</td>
<td>1270</td>
<td>-43,6</td>
<td>51,21</td>
<td>80,2</td>
</tr>
<tr>
<td>29,4</td>
<td>1280</td>
<td>-50,1</td>
<td>54,94</td>
<td>86,3</td>
</tr>
<tr>
<td>29,9</td>
<td>1286</td>
<td>-55,0</td>
<td>56,90</td>
<td>90,4</td>
</tr>
<tr>
<td>30,3</td>
<td>1290</td>
<td>-50,6</td>
<td>58,86</td>
<td>93,3</td>
</tr>
<tr>
<td>31,2</td>
<td>1300</td>
<td>-41,6</td>
<td>63,37</td>
<td>100,6</td>
</tr>
<tr>
<td>32,1</td>
<td>1310</td>
<td>-33,9</td>
<td>68,28</td>
<td>108,7</td>
</tr>
<tr>
<td>33,0</td>
<td>1320</td>
<td>-27,1</td>
<td>73,87</td>
<td>117,3</td>
</tr>
<tr>
<td>33,9</td>
<td>1330</td>
<td>-21,2</td>
<td>80,15</td>
<td>127,2</td>
</tr>
<tr>
<td>34,7</td>
<td>1340</td>
<td>-15,6</td>
<td>86,52</td>
<td>138,1</td>
</tr>
<tr>
<td>35,6</td>
<td>1350</td>
<td>-10,2</td>
<td>93,32</td>
<td>151,9</td>
</tr>
<tr>
<td>36,4</td>
<td>1360</td>
<td>-5,1</td>
<td>100,9</td>
<td>-</td>
</tr>
<tr>
<td>37,3</td>
<td>1370</td>
<td>0,0</td>
<td>109,2</td>
<td>-</td>
</tr>
</tbody>
</table>

Таблица LII

Удельная теплоемкость водных растворов хлористого натрия и хлористого кальция [в кДж/(кг·К)]

<table>
<thead>
<tr>
<th>Плотность при 15 °C, кг/м³</th>
<th>Хлористый натрий</th>
<th>Хлористый кальций</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 °C</td>
<td>-10 °C</td>
</tr>
<tr>
<td>1010</td>
<td>4,077</td>
<td>-</td>
</tr>
<tr>
<td>1020</td>
<td>4,066</td>
<td>-</td>
</tr>
<tr>
<td>1030</td>
<td>3,943</td>
<td>-</td>
</tr>
<tr>
<td>1040</td>
<td>3,884</td>
<td>-</td>
</tr>
<tr>
<td>1050</td>
<td>3,830</td>
<td>-</td>
</tr>
<tr>
<td>1060</td>
<td>3,775</td>
<td>-</td>
</tr>
<tr>
<td>1070</td>
<td>3,725</td>
<td>-</td>
</tr>
<tr>
<td>1080</td>
<td>3,679</td>
<td>-</td>
</tr>
<tr>
<td>1090</td>
<td>3,633</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>3,591</td>
<td>3,582</td>
</tr>
<tr>
<td>1110</td>
<td>3,553</td>
<td>3,541</td>
</tr>
<tr>
<td>1120</td>
<td>3,515</td>
<td>3,503</td>
</tr>
<tr>
<td>1130</td>
<td>3,478</td>
<td>3,469</td>
</tr>
<tr>
<td>1140</td>
<td>3,444</td>
<td>3,432</td>
</tr>
<tr>
<td>1150</td>
<td>3,411</td>
<td>3,398</td>
</tr>
<tr>
<td>1160</td>
<td>3,377</td>
<td>3,365</td>
</tr>
<tr>
<td>1170</td>
<td>3,344</td>
<td>3,335</td>
</tr>
<tr>
<td>1175</td>
<td>3,331</td>
<td>3,323</td>
</tr>
<tr>
<td>1203</td>
<td>3,251</td>
<td>-</td>
</tr>
<tr>
<td>1206</td>
<td>2,740</td>
<td>2,715</td>
</tr>
<tr>
<td>1370</td>
<td>2,531</td>
<td>-</td>
</tr>
</tbody>
</table>
Таблица LIII

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Формула</th>
<th>Техлота аборбции</th>
<th>kДж/кмоль</th>
<th>kДж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бензин</td>
<td>—</td>
<td>50 280</td>
<td>628,5</td>
<td></td>
</tr>
<tr>
<td>Бензол *</td>
<td>C₆H₅-N</td>
<td>61 590</td>
<td>789,8</td>
<td></td>
</tr>
<tr>
<td>Бутил хлористый</td>
<td>CH₃(CH₂)₂Cl</td>
<td>65 360</td>
<td>706,4</td>
<td></td>
</tr>
<tr>
<td>Втор-Бутил хлористый</td>
<td>CH₃CH₂Cl</td>
<td>60 340</td>
<td>652,4</td>
<td></td>
</tr>
<tr>
<td>Трет-Бутил хлористый</td>
<td>(CH₃)₃Cl</td>
<td>56 980</td>
<td>615,9</td>
<td></td>
</tr>
<tr>
<td>Дихлорметан</td>
<td>CH₂Cl₂</td>
<td>51 960</td>
<td>611,3</td>
<td></td>
</tr>
<tr>
<td>Изопропил хлористый</td>
<td>CH₃CH₂Cl</td>
<td>54 890</td>
<td>699,3</td>
<td></td>
</tr>
<tr>
<td>Метан</td>
<td>CH₄</td>
<td>18 860</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td>Метил хлористый</td>
<td>CH₃Cl</td>
<td>38 550</td>
<td>763,4</td>
<td></td>
</tr>
<tr>
<td>Пропил хлористый</td>
<td>CH₃(CH₂)₂Cl</td>
<td>61 170</td>
<td>779,3</td>
<td></td>
</tr>
<tr>
<td>Сорбуглерод *</td>
<td>CS₂</td>
<td>52 380</td>
<td>689,3</td>
<td></td>
</tr>
<tr>
<td>Спирт метиловый</td>
<td>CH₃OH</td>
<td>54 890</td>
<td>1715</td>
<td></td>
</tr>
<tr>
<td>Пропиленовый</td>
<td>C₃H₇OH</td>
<td>68 720</td>
<td>1145</td>
<td></td>
</tr>
<tr>
<td>Этиловый *</td>
<td>C₃H₈OH</td>
<td>62 850</td>
<td>1366</td>
<td></td>
</tr>
<tr>
<td>Углерод четыреххлористый *</td>
<td>CCl₄</td>
<td>64 110</td>
<td>415,2</td>
<td></td>
</tr>
<tr>
<td>Хлороформ *</td>
<td>CHC₂Cl₂</td>
<td>60 760</td>
<td>508,2</td>
<td></td>
</tr>
<tr>
<td>Этил бромистый</td>
<td>C₂H₅Br</td>
<td>58 240</td>
<td>534,6</td>
<td></td>
</tr>
<tr>
<td>Нодистый *</td>
<td>CH₅I</td>
<td>58 660</td>
<td>376,3</td>
<td></td>
</tr>
<tr>
<td>Хлористый *</td>
<td>C₂H₃Cl</td>
<td>50 280</td>
<td>779,3</td>
<td></td>
</tr>
<tr>
<td>Этилформат *</td>
<td>HCOOC₂H₅</td>
<td>60 760</td>
<td>820,8</td>
<td></td>
</tr>
<tr>
<td>Эфир дивиниловый *</td>
<td>(C₂H₅)₂O</td>
<td>64 950</td>
<td>877,8</td>
<td></td>
</tr>
</tbody>
</table>

Примечания. 1. Величины техлоты аборбции даны для условий поглощения 1 кмоль пара на 500 кг угля при 0 °С (за исключением бензина, для которого соотношение между количествами поглощенного вещества и угля не указывается). 2. Звездочкой отмечены вещества, для которых техлота аборбции рассчитана по формуле (9.8) $q = ma^2$ (в Дж/кг угля)

Таблица LIV

Спекнов извлечения экстрагируемого вещества при последовательной обработке одинаковыми порциями свежего растворителя

<table>
<thead>
<tr>
<th>Отношение потоков a</th>
<th>Число промылок</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Степень извлечения, %</td>
<td>общий объем раствора</td>
<td>стебель извлечения, %</td>
<td>объем раствора</td>
<td>степени извлечения, %</td>
<td>общий объем раствора</td>
</tr>
<tr>
<td>масса</td>
<td>масса</td>
<td>масса</td>
<td>масса</td>
<td>масса</td>
<td>масса</td>
</tr>
<tr>
<td>1</td>
<td>50,00</td>
<td>1</td>
<td>75,00</td>
<td>2</td>
<td>87,50</td>
</tr>
<tr>
<td>2</td>
<td>66,67</td>
<td>2</td>
<td>88,80</td>
<td>4</td>
<td>96,30</td>
</tr>
<tr>
<td>3</td>
<td>75,00</td>
<td>3</td>
<td>93,75</td>
<td>6</td>
<td>98,44</td>
</tr>
<tr>
<td>4</td>
<td>84,49</td>
<td>4</td>
<td>96,00</td>
<td>8</td>
<td>99,20</td>
</tr>
<tr>
<td>5</td>
<td>83,33</td>
<td>5</td>
<td>97,22</td>
<td>10</td>
<td>99,54</td>
</tr>
<tr>
<td>6</td>
<td>85,71</td>
<td>6</td>
<td>97,96</td>
<td>12</td>
<td>99,71</td>
</tr>
<tr>
<td>7</td>
<td>87,50</td>
<td>7</td>
<td>98,44</td>
<td>14</td>
<td>99,81</td>
</tr>
<tr>
<td>8</td>
<td>88,89</td>
<td>8</td>
<td>98,76</td>
<td>16</td>
<td>99,86</td>
</tr>
<tr>
<td>9</td>
<td>90,00</td>
<td>9</td>
<td>99,00</td>
<td>18</td>
<td>99,90</td>
</tr>
<tr>
<td>10</td>
<td>90,90</td>
<td>10</td>
<td>99,17</td>
<td>20</td>
<td>99,92</td>
</tr>
</tbody>
</table>

18* 547
Степень извлечения (в % (масс.)) экстрагируемого вещества при обработке твердого материала в противотоке

<table>
<thead>
<tr>
<th>Отношение потоков (n)</th>
<th>Число ступеней экстрагирования (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>50,00</td>
</tr>
<tr>
<td>2</td>
<td>66,67</td>
</tr>
<tr>
<td>3</td>
<td>75,00</td>
</tr>
<tr>
<td>4</td>
<td>80,00</td>
</tr>
<tr>
<td>5</td>
<td>83,33</td>
</tr>
<tr>
<td>6</td>
<td>85,71</td>
</tr>
<tr>
<td>7</td>
<td>87,50</td>
</tr>
<tr>
<td>8</td>
<td>88,89</td>
</tr>
<tr>
<td>9</td>
<td>90,00</td>
</tr>
<tr>
<td>10</td>
<td>90,90</td>
</tr>
</tbody>
</table>

Таблица LVI

Свойства насыщенного водяного пара в зависимости от температуры

Пересчет в СИ: 1 кгс/см² = 9,81·10⁴ Па.

<table>
<thead>
<tr>
<th>Температура °С</th>
<th>Давление (абсолютное), кгс/см²</th>
<th>Удельный объем, м³/кг</th>
<th>Плотность, кг/м³</th>
<th>Удельная энтальпия жидкости (i), кДж/кг</th>
<th>Удельная энтальпия пара (i'), кДж/кг</th>
<th>Удельная теплота парообразования (r), кДж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,0062</td>
<td>206,5</td>
<td>0,00484</td>
<td>0</td>
<td>2493,1</td>
<td>2493,1</td>
</tr>
<tr>
<td>5</td>
<td>0,0089</td>
<td>147,1</td>
<td>0,00680</td>
<td>20,95</td>
<td>2502,7</td>
<td>2481,7</td>
</tr>
<tr>
<td>10</td>
<td>0,0125</td>
<td>106,4</td>
<td>0,00940</td>
<td>41,90</td>
<td>2512,3</td>
<td>2470,4</td>
</tr>
<tr>
<td>15</td>
<td>0,0174</td>
<td>77,9</td>
<td>0,01283</td>
<td>62,85</td>
<td>2522,4</td>
<td>2459,5</td>
</tr>
<tr>
<td>20</td>
<td>0,0238</td>
<td>57,8</td>
<td>0,01729</td>
<td>83,80</td>
<td>2532,0</td>
<td>2448,2</td>
</tr>
<tr>
<td>25</td>
<td>0,0323</td>
<td>43,40</td>
<td>0,02304</td>
<td>104,75</td>
<td>2541,7</td>
<td>2436,9</td>
</tr>
<tr>
<td>30</td>
<td>0,0433</td>
<td>32,93</td>
<td>0,03036</td>
<td>125,70</td>
<td>2551,3</td>
<td>2425,6</td>
</tr>
<tr>
<td>35</td>
<td>0,0573</td>
<td>25,25</td>
<td>0,03690</td>
<td>146,65</td>
<td>2561,0</td>
<td>2414,3</td>
</tr>
<tr>
<td>40</td>
<td>0,0752</td>
<td>19,55</td>
<td>0,05114</td>
<td>167,60</td>
<td>2570,6</td>
<td>2403,0</td>
</tr>
<tr>
<td>45</td>
<td>0,0977</td>
<td>15,28</td>
<td>0,06543</td>
<td>188,55</td>
<td>2579,8</td>
<td>2391,3</td>
</tr>
<tr>
<td>50</td>
<td>0,1258</td>
<td>12,054</td>
<td>0,0830</td>
<td>209,50</td>
<td>2589,5</td>
<td>2380,0</td>
</tr>
<tr>
<td>55</td>
<td>0,1605</td>
<td>9,589</td>
<td>0,1043</td>
<td>230,45</td>
<td>2598,7</td>
<td>2368,2</td>
</tr>
<tr>
<td>60</td>
<td>0,2031</td>
<td>7,687</td>
<td>0,1301</td>
<td>251,40</td>
<td>2608,3</td>
<td>2356,9</td>
</tr>
<tr>
<td>65</td>
<td>0,2550</td>
<td>6,209</td>
<td>0,1611</td>
<td>272,35</td>
<td>2617,5</td>
<td>2345,2</td>
</tr>
<tr>
<td>70</td>
<td>0,3177</td>
<td>5,052</td>
<td>0,1979</td>
<td>293,30</td>
<td>2626,3</td>
<td>2333,0</td>
</tr>
<tr>
<td>75</td>
<td>0,393</td>
<td>4,139</td>
<td>0,2416</td>
<td>314,3</td>
<td>2636</td>
<td>2321</td>
</tr>
<tr>
<td>80</td>
<td>0,483</td>
<td>3,414</td>
<td>0,2929</td>
<td>335,2</td>
<td>2644</td>
<td>2310</td>
</tr>
<tr>
<td>85</td>
<td>0,590</td>
<td>2,832</td>
<td>0,3531</td>
<td>356,2</td>
<td>2653</td>
<td>2297</td>
</tr>
<tr>
<td>90</td>
<td>0,715</td>
<td>2,365</td>
<td>0,4229</td>
<td>377,1</td>
<td>2662</td>
<td>2285</td>
</tr>
<tr>
<td>95</td>
<td>0,862</td>
<td>1,985</td>
<td>0,5039</td>
<td>398,1</td>
<td>2671</td>
<td>2273</td>
</tr>
<tr>
<td>100</td>
<td>1,033</td>
<td>1,675</td>
<td>0,5970</td>
<td>419,0</td>
<td>2679</td>
<td>2260</td>
</tr>
<tr>
<td>105</td>
<td>1,222</td>
<td>1,421</td>
<td>0,7036</td>
<td>440,4</td>
<td>2687</td>
<td>2248</td>
</tr>
<tr>
<td>110</td>
<td>1,461</td>
<td>1,212</td>
<td>0,8254</td>
<td>461,3</td>
<td>2696</td>
<td>2234</td>
</tr>
<tr>
<td>115</td>
<td>1,724</td>
<td>1,038</td>
<td>0,9635</td>
<td>482,7</td>
<td>2704</td>
<td>2221</td>
</tr>
<tr>
<td>120</td>
<td>2,025</td>
<td>0,893</td>
<td>1,1199</td>
<td>504,1</td>
<td>2711</td>
<td>2207</td>
</tr>
<tr>
<td>125</td>
<td>2,367</td>
<td>0,7715</td>
<td>1,296</td>
<td>525,4</td>
<td>2718</td>
<td>2194</td>
</tr>
</tbody>
</table>
Продолжение

<table>
<thead>
<tr>
<th>Температура, °C</th>
<th>Давление (абсолютное), кгс/см²</th>
<th>Удельный объем, м³/кг</th>
<th>Плотность, кг/м³</th>
<th>Удельная энтальпия жидкости γ, кДж/кг</th>
<th>Удельная энтальпия пара γ, кДж/кг</th>
<th>Удельная теплота парообразования γ, кДж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>2,755</td>
<td>0,6693</td>
<td>1,494</td>
<td>546,8</td>
<td>2726</td>
<td>2179</td>
</tr>
<tr>
<td>135</td>
<td>3,192</td>
<td>0,5831</td>
<td>1,715</td>
<td>568,2</td>
<td>2733</td>
<td>2165</td>
</tr>
<tr>
<td>140</td>
<td>3,685</td>
<td>0,5096</td>
<td>1,962</td>
<td>589,5</td>
<td>2740</td>
<td>2150</td>
</tr>
<tr>
<td>145</td>
<td>4,238</td>
<td>0,4469</td>
<td>2,238</td>
<td>611,3</td>
<td>2747</td>
<td>2125</td>
</tr>
<tr>
<td>150</td>
<td>4,855</td>
<td>0,3933</td>
<td>2,543</td>
<td>632,7</td>
<td>2753</td>
<td>2120</td>
</tr>
<tr>
<td>160</td>
<td>6,303</td>
<td>0,3075</td>
<td>3,252</td>
<td>654,1</td>
<td>2765</td>
<td>2089</td>
</tr>
<tr>
<td>170</td>
<td>8,080</td>
<td>0,2431</td>
<td>4,113</td>
<td>719,8</td>
<td>2776</td>
<td>2056</td>
</tr>
<tr>
<td>180</td>
<td>10,23</td>
<td>0,1944</td>
<td>5,145</td>
<td>763,8</td>
<td>2785</td>
<td>2021</td>
</tr>
<tr>
<td>190</td>
<td>12,80</td>
<td>0,1568</td>
<td>6,378</td>
<td>808,3</td>
<td>2792</td>
<td>1984</td>
</tr>
<tr>
<td>200</td>
<td>15,85</td>
<td>0,1276</td>
<td>7,840</td>
<td>852,7</td>
<td>2798</td>
<td>1945</td>
</tr>
<tr>
<td>210</td>
<td>19,53</td>
<td>0,1045</td>
<td>9,567</td>
<td>897,9</td>
<td>2801</td>
<td>1904</td>
</tr>
<tr>
<td>220</td>
<td>23,66</td>
<td>0,0862</td>
<td>11,600</td>
<td>943,2</td>
<td>2803</td>
<td>1860</td>
</tr>
<tr>
<td>230</td>
<td>28,53</td>
<td>0,07155</td>
<td>13,98</td>
<td>989,3</td>
<td>2802</td>
<td>1813</td>
</tr>
<tr>
<td>240</td>
<td>34,13</td>
<td>0,05967</td>
<td>16,76</td>
<td>1035</td>
<td>2799</td>
<td>1763</td>
</tr>
<tr>
<td>250</td>
<td>40,55</td>
<td>0,04998</td>
<td>20,01</td>
<td>1082</td>
<td>2792</td>
<td>1710</td>
</tr>
<tr>
<td>260</td>
<td>47,85</td>
<td>0,04199</td>
<td>23,82</td>
<td>1130</td>
<td>2783</td>
<td>1653</td>
</tr>
<tr>
<td>270</td>
<td>56,11</td>
<td>0,03538</td>
<td>28,27</td>
<td>1178</td>
<td>2770</td>
<td>1593</td>
</tr>
<tr>
<td>280</td>
<td>65,42</td>
<td>0,02988</td>
<td>33,47</td>
<td>1226</td>
<td>2754</td>
<td>1528</td>
</tr>
<tr>
<td>290</td>
<td>75,88</td>
<td>0,02525</td>
<td>39,60</td>
<td>1275</td>
<td>2734</td>
<td>1459</td>
</tr>
<tr>
<td>300</td>
<td>87,6</td>
<td>0,02131</td>
<td>46,93</td>
<td>1327</td>
<td>2710</td>
<td>1384</td>
</tr>
<tr>
<td>310</td>
<td>100,7</td>
<td>0,01799</td>
<td>55,59</td>
<td>1380</td>
<td>2682</td>
<td>1302</td>
</tr>
<tr>
<td>320</td>
<td>115,2</td>
<td>0,01516</td>
<td>65,95</td>
<td>1437</td>
<td>2650</td>
<td>1213</td>
</tr>
<tr>
<td>330</td>
<td>131,3</td>
<td>0,01273</td>
<td>78,53</td>
<td>1498</td>
<td>2613</td>
<td>1117</td>
</tr>
<tr>
<td>340</td>
<td>149,0</td>
<td>0,01064</td>
<td>93,98</td>
<td>1564</td>
<td>2571</td>
<td>1099</td>
</tr>
<tr>
<td>350</td>
<td>168,6</td>
<td>0,00884</td>
<td>113,2</td>
<td>1638</td>
<td>2519</td>
<td>881,2</td>
</tr>
<tr>
<td>360</td>
<td>190,3</td>
<td>0,00716</td>
<td>139,6</td>
<td>1730</td>
<td>2444</td>
<td>713,6</td>
</tr>
<tr>
<td>370</td>
<td>214,5</td>
<td>0,00585</td>
<td>171,0</td>
<td>1890</td>
<td>2304</td>
<td>411,5</td>
</tr>
<tr>
<td>374</td>
<td>225</td>
<td>0,00310</td>
<td>322,6</td>
<td>2100</td>
<td>2100</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица LVII

Свойства насыщенного водяного пара в зависимости от давления

Пересчет в СИ: 1 кгс/см² = 9,81·10⁴ Па.

<table>
<thead>
<tr>
<th>Давление (абсолютное), кгс/см²</th>
<th>Температура, °C</th>
<th>Удельный объем, м³/кг</th>
<th>Плотность, кг/м³</th>
<th>Удельная энтальпия жидкости γ, кДж/кг</th>
<th>Удельная энтальпия пара γ, кДж/кг</th>
<th>Удельная теплота парообразования γ, кДж/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>6,6</td>
<td>131,60</td>
<td>0,00760</td>
<td>27,7</td>
<td>2506</td>
<td>2478</td>
</tr>
<tr>
<td>0,015</td>
<td>12,7</td>
<td>89,64</td>
<td>0,01116</td>
<td>53,2</td>
<td>2518</td>
<td>2465</td>
</tr>
<tr>
<td>0,02</td>
<td>17,1</td>
<td>66,27</td>
<td>0,01465</td>
<td>71,6</td>
<td>2526</td>
<td>2455</td>
</tr>
<tr>
<td>0,025</td>
<td>20,7</td>
<td>55,28</td>
<td>0,01809</td>
<td>86,7</td>
<td>2533</td>
<td>2447</td>
</tr>
<tr>
<td>0,03</td>
<td>23,7</td>
<td>46,53</td>
<td>0,02149</td>
<td>99,3</td>
<td>2539</td>
<td>2440</td>
</tr>
<tr>
<td>0,04</td>
<td>28,6</td>
<td>35,46</td>
<td>0,02820</td>
<td>119,8</td>
<td>2548</td>
<td>2429</td>
</tr>
<tr>
<td>0,05</td>
<td>32,5</td>
<td>28,73</td>
<td>0,03481</td>
<td>136,2</td>
<td>2556</td>
<td>2420</td>
</tr>
<tr>
<td>0,06</td>
<td>35,8</td>
<td>24,19</td>
<td>0,04133</td>
<td>150,0</td>
<td>2562</td>
<td>2413</td>
</tr>
<tr>
<td>Давление (абсолютное), кгс/см²</td>
<td>Температура, °C</td>
<td>Удельный объем, м³/кг</td>
<td>Плотность, кг/м³</td>
<td>Удельная витальная жидкости, кДж/кг</td>
<td>Удельная витальная пара, кДж/кг</td>
<td>Удельная теплота парообразования, кДж/кг</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>0,08</td>
<td>41,1</td>
<td>18,45</td>
<td>0,05420</td>
<td>172,2</td>
<td>2573</td>
<td>2400</td>
</tr>
<tr>
<td>0,10</td>
<td>45,4</td>
<td>14,96</td>
<td>0,06686</td>
<td>190,2</td>
<td>2581</td>
<td>2390</td>
</tr>
<tr>
<td>0,12</td>
<td>49,0</td>
<td>12,60</td>
<td>0,07937</td>
<td>205,3</td>
<td>2588</td>
<td>2382</td>
</tr>
<tr>
<td>0,15</td>
<td>53,6</td>
<td>10,22</td>
<td>0,09799</td>
<td>224,6</td>
<td>2596</td>
<td>2372</td>
</tr>
<tr>
<td>0,20</td>
<td>59,7</td>
<td>7,977</td>
<td>0,1283</td>
<td>250,1</td>
<td>2607</td>
<td>2358</td>
</tr>
<tr>
<td>0,30</td>
<td>68,7</td>
<td>5,331</td>
<td>0,1876</td>
<td>287,9</td>
<td>2620</td>
<td>2336</td>
</tr>
<tr>
<td>0,40</td>
<td>75,4</td>
<td>4,072</td>
<td>0,2456</td>
<td>315,9</td>
<td>2632</td>
<td>2320</td>
</tr>
<tr>
<td>0,50</td>
<td>80,9</td>
<td>3,304</td>
<td>0,3027</td>
<td>339,0</td>
<td>2642</td>
<td>2307</td>
</tr>
<tr>
<td>0,60</td>
<td>85,5</td>
<td>2,785</td>
<td>0,3590</td>
<td>358,2</td>
<td>2650</td>
<td>2296</td>
</tr>
<tr>
<td>0,70</td>
<td>89,3</td>
<td>2,411</td>
<td>0,4147</td>
<td>375,0</td>
<td>2657</td>
<td>2286</td>
</tr>
<tr>
<td>0,80</td>
<td>93,0</td>
<td>2,128</td>
<td>0,4699</td>
<td>398,7</td>
<td>2663</td>
<td>2278</td>
</tr>
<tr>
<td>0,90</td>
<td>96,2</td>
<td>1,906</td>
<td>0,5226</td>
<td>403,1</td>
<td>2668</td>
<td>2270</td>
</tr>
<tr>
<td>1,0</td>
<td>99,1</td>
<td>1,727</td>
<td>0,5790</td>
<td>415,2</td>
<td>2677</td>
<td>2264</td>
</tr>
<tr>
<td>1,2</td>
<td>104,2</td>
<td>1,457</td>
<td>0,6865</td>
<td>437,0</td>
<td>2686</td>
<td>2249</td>
</tr>
<tr>
<td>1,4</td>
<td>108,7</td>
<td>1,261</td>
<td>0,7931</td>
<td>456,3</td>
<td>2693</td>
<td>2237</td>
</tr>
<tr>
<td>1,6</td>
<td>112,7</td>
<td>1,113</td>
<td>0,898</td>
<td>473,1</td>
<td>2703</td>
<td>2227</td>
</tr>
<tr>
<td>1,8</td>
<td>116,3</td>
<td>0,997</td>
<td>1,003</td>
<td>483,6</td>
<td>2709</td>
<td>2217</td>
</tr>
<tr>
<td>2,0</td>
<td>119,6</td>
<td>0,903</td>
<td>1,107</td>
<td>502,4</td>
<td>2710</td>
<td>2208</td>
</tr>
<tr>
<td>3,0</td>
<td>132,9</td>
<td>0,6180</td>
<td>1,618</td>
<td>558,9</td>
<td>2730</td>
<td>2171</td>
</tr>
<tr>
<td>4,0</td>
<td>142,9</td>
<td>0,4718</td>
<td>2,120</td>
<td>601,1</td>
<td>2744</td>
<td>2141</td>
</tr>
<tr>
<td>5,0</td>
<td>151,1</td>
<td>0,3825</td>
<td>2,614</td>
<td>637,7</td>
<td>2754</td>
<td>2117</td>
</tr>
<tr>
<td>6,0</td>
<td>158,1</td>
<td>0,3222</td>
<td>3,104</td>
<td>667,9</td>
<td>2768</td>
<td>2095</td>
</tr>
<tr>
<td>7,0</td>
<td>164,2</td>
<td>0,2785</td>
<td>3,591</td>
<td>694,3</td>
<td>2769</td>
<td>2075</td>
</tr>
<tr>
<td>8,0</td>
<td>169,6</td>
<td>0,2454</td>
<td>4,075</td>
<td>718,4</td>
<td>2776</td>
<td>2057</td>
</tr>
<tr>
<td>9,0</td>
<td>174,5</td>
<td>0,2195</td>
<td>4,576</td>
<td>740,0</td>
<td>2780</td>
<td>2040</td>
</tr>
<tr>
<td>10</td>
<td>179,0</td>
<td>0,1985</td>
<td>5,037</td>
<td>759,6</td>
<td>2784</td>
<td>2024</td>
</tr>
<tr>
<td>11</td>
<td>183,2</td>
<td>0,1813</td>
<td>5,516</td>
<td>778,1</td>
<td>2787</td>
<td>2009</td>
</tr>
<tr>
<td>12</td>
<td>187,1</td>
<td>0,1668</td>
<td>5,996</td>
<td>795,3</td>
<td>2790</td>
<td>1995</td>
</tr>
<tr>
<td>13</td>
<td>190,7</td>
<td>0,1545</td>
<td>6,474</td>
<td>811,2</td>
<td>2793</td>
<td>1984</td>
</tr>
<tr>
<td>14</td>
<td>194,1</td>
<td>0,1438</td>
<td>6,952</td>
<td>826,7</td>
<td>2795</td>
<td>1968</td>
</tr>
<tr>
<td>15</td>
<td>197,4</td>
<td>0,1346</td>
<td>7,431</td>
<td>840,9</td>
<td>2796</td>
<td>1956</td>
</tr>
<tr>
<td>16</td>
<td>200,4</td>
<td>0,1264</td>
<td>7,909</td>
<td>854,8</td>
<td>2798</td>
<td>1943</td>
</tr>
<tr>
<td>17</td>
<td>203,4</td>
<td>0,1192</td>
<td>8,389</td>
<td>867,7</td>
<td>2799</td>
<td>1931</td>
</tr>
<tr>
<td>18</td>
<td>206,2</td>
<td>0,1128</td>
<td>8,868</td>
<td>880,3</td>
<td>2800</td>
<td>1920</td>
</tr>
<tr>
<td>19</td>
<td>208,8</td>
<td>0,1070</td>
<td>9,349</td>
<td>892,5</td>
<td>2801</td>
<td>1909</td>
</tr>
<tr>
<td>20</td>
<td>211,4</td>
<td>0,1017</td>
<td>9,83</td>
<td>904,2</td>
<td>2802</td>
<td>1898</td>
</tr>
<tr>
<td>30</td>
<td>232,8</td>
<td>0,0802</td>
<td>14,70</td>
<td>1002</td>
<td>2801</td>
<td>1800</td>
</tr>
<tr>
<td>40</td>
<td>249,2</td>
<td>0,0509</td>
<td>19,73</td>
<td>1079</td>
<td>2793</td>
<td>1715</td>
</tr>
<tr>
<td>50</td>
<td>262,7</td>
<td>0,0407</td>
<td>24,96</td>
<td>1143</td>
<td>2780</td>
<td>1637</td>
</tr>
<tr>
<td>60</td>
<td>274,3</td>
<td>0,0329</td>
<td>30,41</td>
<td>1199</td>
<td>2763</td>
<td>1585</td>
</tr>
<tr>
<td>70</td>
<td>284,5</td>
<td>0,0276</td>
<td>36,12</td>
<td>1249</td>
<td>2746</td>
<td>1497</td>
</tr>
<tr>
<td>80</td>
<td>293,6</td>
<td>0,0237</td>
<td>42,13</td>
<td>1294</td>
<td>2726</td>
<td>1432</td>
</tr>
<tr>
<td>90</td>
<td>301,9</td>
<td>0,0206</td>
<td>48,45</td>
<td>1337</td>
<td>2705</td>
<td>1369</td>
</tr>
<tr>
<td>100</td>
<td>309,5</td>
<td>0,0185</td>
<td>55,11</td>
<td>1377</td>
<td>2684</td>
<td>1306</td>
</tr>
<tr>
<td>120</td>
<td>323,1</td>
<td>0,0143</td>
<td>69,60</td>
<td>1455</td>
<td>2638</td>
<td>1183</td>
</tr>
<tr>
<td>140</td>
<td>335,0</td>
<td>0,0116</td>
<td>85,91</td>
<td>1531</td>
<td>2592</td>
<td>1061</td>
</tr>
<tr>
<td>160</td>
<td>345,7</td>
<td>0,0096</td>
<td>104,6</td>
<td>1606</td>
<td>2540</td>
<td>934</td>
</tr>
<tr>
<td>180</td>
<td>355,4</td>
<td>0,0078</td>
<td>128,0</td>
<td>1684</td>
<td>2483</td>
<td>799</td>
</tr>
<tr>
<td>200</td>
<td>364,2</td>
<td>0,0061</td>
<td>162,9</td>
<td>1783</td>
<td>2400</td>
<td>617</td>
</tr>
<tr>
<td>225</td>
<td>374,0</td>
<td>0,0031</td>
<td>322,6</td>
<td>2100</td>
<td>2100</td>
<td>0</td>
</tr>
<tr>
<td>Величина</td>
<td>Единицы измерения в СИ</td>
<td>Соотношение между единицами измерения СИ и наиболее часто встречающимися единицами других систем и внесистемными единицами</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Длина | м | 1 мкм = 10⁻⁶ м
1 Å = 10⁻¹⁰ м
1 ft = 0,3048 м
1 in = 25,4 · 10⁻³ м |
| Масса | кг | 1 т = 1000 кг
1 ц = 100 кг
1 lb = 0,454 кг |
| Температура | К | t °C = (t + 273,15) K
t °F = \left[\frac{5}{9} (t - 32) + 273,15 \right] K |
| Угол плоский | рад | 1° = \frac{\pi}{180} рад
1’ = \frac{\pi}{10 800} рад |
| Вес (сила тяжести) | Н | 1 оборот = 2π рад = 6,28 рад
1 кг = 9,81 Н
1 дин = 10⁻⁵ Н
1 стен = 10³ Н
1 lb = 4,45 Н |
| Вязкости коэффициент | Па·с | 1 П = 1 дин·с/см² = 0,1 Па·с
1 сП = \frac{1}{9810} \frac{кгс·с}{м²} = 10⁻³ Па·с = 1 мПа·с |
| Динамический | | |
| Вязкости коэффициент | м²/с | 1 ст = 1 см²/с = 10⁻⁴ м²/с
1 ft²/s = 0,093 м²/с
1 ft²/ч = 25,81 м²/ч |
| Кинематический | | |
| Давление | Па | 1 бар = 10⁵ Па
1 мбар = 100 Па
1 дин/см² = 1 мкбар = 0,1 Па
1 кгс/см² = 1 ат = 9,81 · 10⁴ Па = 735 мм рт. ст. |
| Диффузии коэффициент | м²/с | 1 lb·с/фт³ = 47,88 Па·с
1 Ст = 1 см³/с = 10⁻⁴ м³/с |
| Мощность | Вт | 1 ft²/с = 0,0929 м²/с
1 кгс·м/с = 9,81 Вт
1 эрг/с = 10⁻⁷ Вт
1 ккал/ч = 1,163 Вт
1 lb·с/фт³ = 47,88 Па |
| Натяжение поверхности | Н/м | 1 кгс/м = 9,81 Д/м²
1 эрг/см² = 1 дин/см = 10⁻³ Д/м², м² = 10⁻³ дин/м |
| Объем | м³ | 1 д = 10⁻³ м³ = 1 дм³
1 ft³ = 28,3 дм³ = 2,83 · 10⁻² м³
1 in³ = 16,387 см³ = 16,39 · 10⁻⁶ м³ |
<table>
<thead>
<tr>
<th>Величина</th>
<th>Единицы измерения в СИ</th>
<th>Соотношения между единицами измерения СИ и наиболее часто встречающимися единицами других систем и внесистемными</th>
</tr>
</thead>
</table>
| Объем удельный | м³/кг | 1 м³/т = 10⁻³ м³/кг
1 дм³/кг = 1 см³/г = 10⁻³ м³/кг |
| Плотность | кг/м³ | 1 т/м³ = 1 кг/дм³ = 1 г/см³ = 10³ кг/м³
1 кгс·с²/м⁴ = 9,81 кг/м³
1 lb·ft² ≈ 16,02 кг/м³
1 lb·in² ≈ 27,66·10⁻³ кг/м³ |
| Плотность теплового потока (теплона пряжение, удельная тепловая нагрузка) | Вт/м² | 1 ккал/(м²·ч) = 1,163 Вт/м² |
| Площадь | м² | 1 ft² = 0,0929 м²
1 in² = 6,451·10⁻⁴ м² |
| Работа, энергия, количество теплоты | Дж | 1 кгс·м = 0,1 Дж
1 эрг = 10⁻⁷ Дж
1 кВт·ч = 3,6·10⁶ Дж
1 ккал = 4,1868·10³ Дж = 4,19 кДж
1 лф·ф = 1,356 Дж
1 lb·in = 0,113 Дж
1 BTU = 1055,1 Дж |
| Расход массовый | кг/с | 1 lb/s = 0,454 кг/с
1 lb/h = 1,26·10⁻⁴ кг/с |
| Расход объемный | м³/с | 1 л/мин = 16,67·10⁻⁶ м³/с
1 ft³/s = 28,3·10⁻³ м³/с
1 in³/s = 16,4·10⁻⁶ м³/с |
| Скорость линейная | м/с | 1 ft/s = 0,3048 м/с |
| Скорость угловая | рад/с | 1 об/мин = π/30 рад/с |
| Теплоемкость удельная массовая | Дж/(кг·К) | 1 ккал/(кг·°С) = 4,19 кДж/(кг·К)
1 эрг/(р·К) = 10⁻⁴ Дж/(кг·К)
1 BTU/(lb·deg F) = 4,19 кДж/(кг·К) |
| Теплоотдача коэффициент, теплопередача коэффициент | Вт/(м²·К) | 1 ккал/(м²·ч·°С) = 1,163 Вт/(м²·К)
1 BTU/(ft²·h·deg F) = 5,6 Вт/(м²·К) |
| Теплопроводности коэффициент | Вт/(м·К) | 1 ккал/(м·ч·°С) = 1,163 Вт/(м·К)
1 BTU/(ft·h·deg F) = 1,73 Вт/(м·К) |
| Теплота удельная (фазового превращения) | Дж/кг | 1 ккал/кг = 1 кал/г = 4,19 кДж/кг
1 BTU/lb = 2326 Дж/кг |
| Ускорение линейное | м/с² | 1 in/s² = 25,4·10⁻³ м/с²
1 ft/s² = 0,3048 м/с² |
| Частота | Гц | 1 Гц = 1 с⁻¹
1 об/с = 1 Гц |
| Энталпия удельная | Дж/кг | 1 ккал/кг = 1 кал/г = 4,19 кДж/кг
1 BTU/lb = 2326 Дж/кг |
| Энтропия удельная | Дж/(кг·К) | 1 ккал/(кг·°С) = 4,19 кДж/(кг·К)
1 BTU/(lb·deg F) = 4,19 кДж/(кг·К) |
Рис. 1. Номограмма для определения динамического коэффициента вязкости органических жидкостей.
Рис. II. Расположение отверстий в трубных решетках двухходового кожухотрубчатого теплообменника.

Рис. III. Расположение отверстий в трубных решетках четырехходового кожухотрубчатого теплообменника.
Рис. IV. Номограмма для определения расхода жидкости или газа в трубопроводах круглого сечения.
Рис. V. Номограмма для определения динамического коэффициента вязкости жидкостей при различных температурах. Cм. также табл. VI—IX.

<table>
<thead>
<tr>
<th>Жидкость</th>
<th>Номер точки</th>
<th>Жидкость</th>
<th>Номер точки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Амиловый спирт</td>
<td>11</td>
<td>Пентан</td>
<td>38</td>
</tr>
<tr>
<td>Аммиак</td>
<td>39</td>
<td>Ртуть</td>
<td>15</td>
</tr>
<tr>
<td>Ацетон</td>
<td>34</td>
<td>Сера кислота 111 %</td>
<td>2</td>
</tr>
<tr>
<td>Бензол</td>
<td>25</td>
<td>Сера кислота, 98 %</td>
<td>3</td>
</tr>
<tr>
<td>Бутиловый спирт</td>
<td>14</td>
<td>Серная кислота 60 %</td>
<td>5</td>
</tr>
<tr>
<td>Вода</td>
<td>20</td>
<td>Серный антидр</td>
<td>35</td>
</tr>
<tr>
<td>Гексан</td>
<td>36</td>
<td>Сероуглерод</td>
<td>33</td>
</tr>
<tr>
<td>Гептан</td>
<td>31</td>
<td>Терпентин</td>
<td>16</td>
</tr>
<tr>
<td>Глицирина, 100 %</td>
<td>1</td>
<td>Толуол</td>
<td>27</td>
</tr>
<tr>
<td>Глицирина, 50 %</td>
<td>7</td>
<td>Уксусная кислота, 100 %</td>
<td>18</td>
</tr>
<tr>
<td>Диоксид углерода</td>
<td>40</td>
<td>Уксусная кислота, 70 %</td>
<td>12</td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>37</td>
<td>Фенол</td>
<td>5</td>
</tr>
<tr>
<td>Метиляцетат</td>
<td>32</td>
<td>Хлорбензол</td>
<td>22</td>
</tr>
<tr>
<td>Метиловый спирт, 100 %</td>
<td>26</td>
<td>Хлороформ</td>
<td>29</td>
</tr>
<tr>
<td>Метиловый спирт, 90 %</td>
<td>24</td>
<td>Четыреххлористый углерод</td>
<td>21</td>
</tr>
<tr>
<td>Метиловый спирт 30 %</td>
<td>33</td>
<td>Этилацетат</td>
<td>30</td>
</tr>
<tr>
<td>Нейтрант</td>
<td>9</td>
<td>Этиленгликоль</td>
<td>4</td>
</tr>
<tr>
<td>Нитробензол</td>
<td>14</td>
<td>Этиленхлорид</td>
<td>23</td>
</tr>
<tr>
<td>Октан</td>
<td>28</td>
<td>Этиловый спирт, 10 %</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Этиловый спирт, 49 %</td>
<td>10</td>
</tr>
</tbody>
</table>
Рис. VI. Номограмма для определения динамического коэффициента вязкости газов при $p = 1 \text{ atm}$.

1 — O$_2$; 2 — NO; 3 — CO$_2$; 4 — HCl; 5 — воздух; 6 — N$_2$; 7 — SO$_2$; 8 — CH$_4$; 9 — H$_2$O; 10 — NH$_3$; 11 — C$_2$H$_4$; 12 — H$_2$; 13 — C$_2$H$_6$; 14 — 9Н$_2$ + N$_2$; 15 — 3Н$_2$ + N$_2$; 16 — CO; 17 — Cl$_2$.

Пересчет в СИ: 1 atm = 760 мм рт. ст. = 101 325 Па

* С допустимым приближением данными номограммы можно пользоваться и при давлении порядка нескольких атмосфер (нескольких десятков мегапаскалей).
Рис. VII. Зависимость критерия мощности от критерия Рейнольдса (пояснения, см. на стр. 559):
Рис. VII (продолжение)
1 — открытая турбинная мешалка с шестью прямыми вертикальными лопатками \(b = 0,20 d_M; t = 0,25 d_M \) при \(D/d_M = 3 \) в сосуде с четверьмя перегородками \(B/d_M = 0,17 \); 2 — турбинная мешалка типа 1 при \(B/d_M = 0,10 \); 3 — открытая турбинная мешалка с шестью изогнутыми вертикальными лопатками \(b = 0,20 d_M; t = 0,25 d_M \) при \(D/d_M = 3 \) в сосуде с четверьмя перегородками \(B/d_M = 0,10 \); 4 — турбинная мешалка типа 1 при \(B/d_M = 0,04 \); 5 — открытая турбинная мешалка с шестью прямолинейными лопатками \(b = 0,20 d_M; t = 0,25 d_M \) при \(D/d_M = 3 \) в сосуде с четверьмя перегородками \(B/d_M = 0,10 \); 6 — двойная турбинная мешалка с шестью прямолинейными лопатками \(b = 0,25 d_M; t = 0,25 d_M \) при \(D/d_M = 3 \) в сосуде с четверьмя перегородками \(B/d_M = 0,10 \), 7 — радially-дисковая мешалка с шестью прямолинейными лопатками \(b = 0,20 d_M; t = 0,25 d_M \) под углом 45° при \(D/d_M = 3 \) в сосуде с четверьмя перегородками \(B/d_M = 0,10 \); 8 — двойная лопастная мешалка типа 8 при \(B/d_M = 0,10 \). 9 — закрытая турбинная мешалка с шестью лопатками со статором \(D/d_M = 2,4 \) в сосуде без перегородок; 10 — турбинная мешалка, входящая с типом 11 при \(D/d_M = 3 \) в сосуде \(B/d_M = 0,10 \); 11 — турбинная мешалка типа 12 при \(D/d_M = 3 \) в сосуде с тремя перегородками \(B/d_M = 0,10 \); 12 — турбинная мешалка типа 13 при \(D/d_M = 3 \) в сосуде без перегородок; 13 — турбинная мешалка типа 14 при \(D/d_M = 3 \) в сосуде с тремя перегородками \(B/d_M = 0,10 \); 14 — турбинная мешалка типа 15 при \(D/d_M = 3,5 \) в сосуде без перегородок; 15 — четырехлопастная пропеллерная мешалка \(b = 2,7 d_M \) при \(D/d_M = 3 \) в сосуде с тремя перегородками \(B/d_M = 0,10 \); 16 — четырехлопастная пропеллерная мешалка типа 8 при \(D/d_M = 3 \) в сосуде без перегородок.

Обозначения, принятые для характеристик мешалок: \(D \) — диаметр сосуда; \(d_M \) — диаметр мешалки; \(b \) — ширина лопасти мешалки; \(t \) — длина лопасти; \(B \) — ширина перегородки; \(s \) — шаг пропеллерной мешалки.
Рис. VIII. Поправочные коэффициенты $e_{\Delta t}$ для смешанного тока в многоходовых кожухотрубчатых теплообменниках:

а — с одним ходом в межтрубном пространстве и двумя, четырьмя, шестью и более ходами в трубном пространстве; б — с двумя ходами в межтрубном пространстве в поперечными перегородками и четырьмя ходами в трубном пространстве; $P = (t_2 - t_1)/(T_1 - t_1)$; $R = (T_1 - T_2)/(T_1 - t_1)$.

Рис. IX. Коэффициенты теплопроводности дымовых газов. Состав дымовых газов:

% (об.): СО₂ — 13; O₂ — 5; (N₂ + H₂O) — 82.

Содержание водяного пара (в %): 1 — 0; 2 — 15; 3 — 20.

Пересчет в СИ: 1 ккал/(м·ч·°С) = 1,163 Вт/(м·К).
Рис. X. Коэффициенты теплопроводности некоторых жидкостей.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Номер линии</th>
<th>Вещество</th>
<th>Номер линии</th>
<th>Вещество</th>
<th>Номер линии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аммиак, 26 %</td>
<td>31</td>
<td>Метиловый спирт, 100 %</td>
<td>3</td>
<td>Хлористый натрий, 25 %</td>
<td>18</td>
</tr>
<tr>
<td>Ацетон</td>
<td>6</td>
<td>То же, 40 %</td>
<td>32</td>
<td>Четыреххлористый этиловый спирт, 4</td>
<td></td>
</tr>
<tr>
<td>Бензил</td>
<td>8</td>
<td>Муравьиная кислота, 2</td>
<td>2</td>
<td>Этиловый спирт, 19</td>
<td>19</td>
</tr>
<tr>
<td>Бутанол</td>
<td>9</td>
<td>Нитробензол, 10</td>
<td>20</td>
<td>Этиловый спирт, 20</td>
<td>20</td>
</tr>
<tr>
<td>Вазелиновое масло</td>
<td>15</td>
<td>Окись, 33</td>
<td>21</td>
<td>Этиловый спирт, 21</td>
<td>21</td>
</tr>
<tr>
<td>Вода</td>
<td>16</td>
<td>Серная кислота, 30</td>
<td>22</td>
<td>Этиловый спирт, 22</td>
<td>22</td>
</tr>
<tr>
<td>Гексан</td>
<td>26</td>
<td>98 %</td>
<td>23</td>
<td>Этиловый спирт, 23</td>
<td>23</td>
</tr>
<tr>
<td>Глицерин безводный, 50 %</td>
<td>1</td>
<td>Сероуглерод, 25</td>
<td>24</td>
<td>Этиловый спирт, 24</td>
<td>24</td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>29</td>
<td>Соляная кислота, 27</td>
<td>25</td>
<td>Этиловый спирт, 25</td>
<td>25</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>12</td>
<td>30 %</td>
<td>26</td>
<td>Этиловый спирт, 26</td>
<td>26</td>
</tr>
<tr>
<td>Касторовое масло</td>
<td>5</td>
<td>Толуол, 13</td>
<td>27</td>
<td>Этиловый спирт, 27</td>
<td>27</td>
</tr>
<tr>
<td>Керосин</td>
<td>28</td>
<td>Уксусная кислота, 7</td>
<td>28</td>
<td>Этиловый спирт, 28</td>
<td>28</td>
</tr>
<tr>
<td>Ксилол</td>
<td>14</td>
<td>Хлористый кальций, 25 %</td>
<td>29</td>
<td>Этиловый спирт, 29</td>
<td>29</td>
</tr>
</tbody>
</table>

Пересчет в СИ: 1 ккал/(м·ч·°С) = 1.163 Вт/(м·К)
Рис. XI. Номограмма для определения теплоемкости жидкостей.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Амилацетат</td>
<td>12</td>
<td>Изопропиловый спирт (от -50 до 0 °C)</td>
<td>27</td>
<td>Толуол (от -40 до 0 °C)</td>
<td>30</td>
</tr>
<tr>
<td>Анилин</td>
<td>14</td>
<td>Пропиловый спирт</td>
<td>35</td>
<td>Уксусная кислота, 100 %</td>
<td>16</td>
</tr>
<tr>
<td>Ацетон</td>
<td>18</td>
<td>(от -25 до 0 °C)</td>
<td>10</td>
<td>Хлорбензол</td>
<td>6</td>
</tr>
<tr>
<td>Бензол</td>
<td>29</td>
<td>1- и 2- и-Ксилоол</td>
<td>9</td>
<td>Хлористый кальций, 25 %</td>
<td>35</td>
</tr>
<tr>
<td>Бромистый этил</td>
<td>1</td>
<td>0 °C</td>
<td>10</td>
<td>Хлористый натрий, 25 %</td>
<td>35</td>
</tr>
<tr>
<td>Бутанол</td>
<td>24</td>
<td>80 %</td>
<td>15</td>
<td>Хлористый этил</td>
<td>11</td>
</tr>
<tr>
<td>Вода</td>
<td>26</td>
<td>85 %</td>
<td>23</td>
<td>Хлороформ</td>
<td>3</td>
</tr>
<tr>
<td>Гептан</td>
<td>18</td>
<td>100 %</td>
<td>7</td>
<td>Четыреххлористый углерод</td>
<td>2</td>
</tr>
<tr>
<td>Глицерин</td>
<td>21</td>
<td>Серная кислота</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дифенил</td>
<td>4</td>
<td>Пропиловый спирт</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>17</td>
<td>Сероуглерод</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Изобутиловый</td>
<td>33</td>
<td>Соляная кислота</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>спирт</td>
<td></td>
<td>(от 0 до 50 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Изопентан</td>
<td>20</td>
<td>Толуол (от -60 до 0 °C)</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Изопропиловый</td>
<td>32</td>
<td>Шпаратета</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>спирт от 0 до 50 °C</td>
<td></td>
<td>Спиртовый спирт</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Пересчет в СИ: 1 ккал/(кг·°C) = 4,19·10^7 Дж/(кг·K).
Рис. XII. Номограмма для определения коэффициента теплоотдачи в выравненных трубах при $Re > 10,000$ и $Pr = 10^3$.
1 этап: $AB + \Delta C$. 2 этап: $DC + \Delta E$.

Re Pr Nu
Рис. XII. Значения критерия Pr для жидкостей.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Амилацетат</td>
<td>31</td>
<td>Метиленовый спирт,</td>
<td>20</td>
<td>Толуол</td>
<td>23</td>
</tr>
<tr>
<td>Аммиак, 26 %</td>
<td>14</td>
<td>Метиленовый спирт,</td>
<td>10</td>
<td>Уксусная кислота,</td>
<td>15</td>
</tr>
<tr>
<td>Аналини</td>
<td>6</td>
<td>100 %</td>
<td></td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Ацетон</td>
<td>25</td>
<td>40 %</td>
<td></td>
<td>Уксусная кислота,</td>
<td>9</td>
</tr>
<tr>
<td>Бензол</td>
<td>22</td>
<td>Октаин,</td>
<td>23</td>
<td>50 %</td>
<td></td>
</tr>
<tr>
<td>Бромистый этил</td>
<td>29</td>
<td>Пентан</td>
<td>26</td>
<td>Хлорбензол</td>
<td>35</td>
</tr>
<tr>
<td>Бутиловый спирт</td>
<td>4</td>
<td>Серная кислота,</td>
<td>1</td>
<td>Хлороформ</td>
<td>34</td>
</tr>
<tr>
<td>Вода</td>
<td>17</td>
<td>111 %</td>
<td>2</td>
<td>Четыреххлористый углерод</td>
<td>18</td>
</tr>
<tr>
<td>Гептан</td>
<td>32</td>
<td>Серная кислота,</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диэтиловый эфир</td>
<td>28</td>
<td>98 %</td>
<td>4</td>
<td>Этилацетат</td>
<td>24</td>
</tr>
<tr>
<td>Глицерин, 50 %</td>
<td>6</td>
<td>Серная кислота,</td>
<td>4</td>
<td>Этиленгликоль</td>
<td>36</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>3</td>
<td>60 %</td>
<td>30</td>
<td>Этиловый спирт,</td>
<td>13</td>
</tr>
<tr>
<td>Изопропиловый спирт</td>
<td>7</td>
<td>Сероуглерод</td>
<td>30</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Иодистый этил</td>
<td>27</td>
<td>Соляная кислота,</td>
<td>21</td>
<td>Этиловый спирт,</td>
<td>8</td>
</tr>
<tr>
<td>Ксилол</td>
<td>19</td>
<td>30 %</td>
<td></td>
<td>50 %</td>
<td></td>
</tr>
</tbody>
</table>
Рис. XIV. Номограмма для определения давления насыщенного пара и температур

Температура кипения при атмосферном давлении, °C

NH₃, % (масс.) в водном растворе
<table>
<thead>
<tr>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
<th>Вещество</th>
<th>Номер точки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аллен</td>
<td>6</td>
<td>1,2-Дихлорэтан</td>
<td>26</td>
<td>Пропилен</td>
<td>4</td>
</tr>
<tr>
<td>Аммиак</td>
<td>49</td>
<td>Диэтиловый эфир</td>
<td>15</td>
<td>Пропионовая кислота</td>
<td>56</td>
</tr>
<tr>
<td>Ацетилен</td>
<td>2</td>
<td>Изопрена</td>
<td>14</td>
<td>Ртуть</td>
<td>61</td>
</tr>
<tr>
<td>Ацетон</td>
<td>51</td>
<td>М-Крезол</td>
<td>44</td>
<td>Тетрадин</td>
<td>42</td>
</tr>
<tr>
<td>Бензол</td>
<td>24</td>
<td>о-Крезол</td>
<td>41</td>
<td>Тoluол</td>
<td>30</td>
</tr>
<tr>
<td>Бромбензол</td>
<td>35</td>
<td>М-Ксиол</td>
<td>34</td>
<td>Уксусная кислота</td>
<td>65</td>
</tr>
<tr>
<td>Бромистый этил</td>
<td>18</td>
<td>Изо-Масляная кислота</td>
<td>57</td>
<td>Фторбензол</td>
<td>27</td>
</tr>
<tr>
<td>а-Броманафталин</td>
<td>46</td>
<td>Метиламина</td>
<td>50</td>
<td>Хлорбензол</td>
<td>33</td>
</tr>
<tr>
<td>1,3-Бутадиен</td>
<td>10</td>
<td>Метилимонилан</td>
<td>3</td>
<td>Хлористый винил</td>
<td>8</td>
</tr>
<tr>
<td>Бутан</td>
<td>11</td>
<td>Метилюксилан</td>
<td>3</td>
<td>метилилен</td>
<td>7</td>
</tr>
<tr>
<td>а-Бутилен</td>
<td>9</td>
<td>Метилюксилан</td>
<td>52</td>
<td>метилилен</td>
<td>19</td>
</tr>
<tr>
<td>β-Бутилен</td>
<td>12</td>
<td>Метилюксилан</td>
<td>16</td>
<td>этан</td>
<td>13</td>
</tr>
<tr>
<td>Бутилен:ноколь</td>
<td>58</td>
<td>Нафталин</td>
<td>43</td>
<td>Хлороформ</td>
<td>21</td>
</tr>
<tr>
<td>Вода</td>
<td>54</td>
<td>α-Нафталин</td>
<td>47</td>
<td>Четыреххлористый углерод</td>
<td>23</td>
</tr>
<tr>
<td>Гексан</td>
<td>22</td>
<td>β-Нафталин</td>
<td>46</td>
<td>углерод</td>
<td>1</td>
</tr>
<tr>
<td>Гептан</td>
<td>28</td>
<td>Нитробензол</td>
<td>37</td>
<td>этан</td>
<td>1</td>
</tr>
<tr>
<td>Глицерин</td>
<td>60</td>
<td>Октан</td>
<td>31</td>
<td>Этилцетат</td>
<td>25</td>
</tr>
<tr>
<td>Декан</td>
<td>38</td>
<td>Пентан</td>
<td>17</td>
<td>Этиленгликоль</td>
<td>59</td>
</tr>
<tr>
<td>Диноксан</td>
<td>29</td>
<td>Пропан</td>
<td>6</td>
<td>Этиловый спирт</td>
<td>53</td>
</tr>
<tr>
<td>Дифенил</td>
<td>45</td>
<td>Ethylformiat</td>
<td>20</td>
<td>Ethylformiat</td>
<td>20</td>
</tr>
</tbody>
</table>

Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

* По данным разных авторов

Рис. XV. Диаграмма линейности для определения температуры кипения (по воде):
1 — диэтиловый эфир; 2 — сероуглерод; 3 — ацетон; 4 — хлороформ; 5 — четыреххлористый углерод; 6 — бензол; 7 — толуол; 8 — хлорбензол; 9 — о-ксиол; 10 — бромбензол; 11 — бензальдегид; 12 — аммиак.
Рис. XVI. Диаграмма линейности для определения температуры кипения (по гексану):
1 — диэтиловый эфир; 2 — сероуглерод; 3 — хлороформ; 4 — четыреххлористый углерод; 5 — бензол; 6 — толуол.

Рис. XVII. Зависимость давления насыщенного пара гексана от температуры.
Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.
Рис. XVIII. Зависимость удельной теплоты парообразования гексана от температуры. Пересчет в СИ: 1 ккал/кг = 4,19 кДж/кг

Рис. XIX. Повышение температуры кипения водных растворов (при атмосферном давлении) в зависимости от концентрации.
Рис. XX. Растворимость некоторых солей в воде в зависимости от температуры.

Рис. XXI. Кривые равновесия при $P = 760$ мм рт. ст.
1 — ацетон—вода; 2 — четыреххлористый углерод—толуол.
Пересчет в СИ: 760 мм рт. ст. = 1 атм = 101 325 Па.
Рис. XXII. Кривые равновесия (с азеотропной точкой) при П = 760 мм рт. ст.:
1 — вода — муравьиная кислота; 2 — метиловый спирт — бензол.
Пересчет в СИ: 760 мм рт. ст. = 1 атм = 101325 Па.

Рис. XXIII. Давление насыщенного пара некоторых органических жидкостей в зависимости от температуры:
1 — диэтиловый эфир; 2 — ацетон; 3 — метиловый спирт; 4 — этиловый спирт; 5 — муравьиная кислота; 6 — уксусная кислота.
Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

Рис. XXIV. Давление насыщенного пара органических жидкостей, не смешивающихся с водой, в зависимости от температуры:
1 — сероуглерод; 2 — гексан; 3 — четыреххлористый углерод; 4 — бензол; 5 — толуол;
6 — скипидар; 7 — апилли; 8 — крезол; 9 — нитробензол; 10 — нитробензол.
Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.
Рис. XXV. $l - S$ диаграмма для водяного пара.
Пересчет в СИ: 1 ккал/кг = 4,19 кДж/кг; 1 кгс/см = 9,81 10^9 Па.
Рис. XXVI. T—S диаграмма для аммиака.
Пересчет в СИ: 1 ккал/кг = 4,19·10⁴ Дж/кг;
1 кгс/см² = 9,81·10⁴ Па.
Рис. XXVII. T—S диаграмма диметилового эфира.
Пересчет в СИ: 1 ккал/кг = 4.19·10^5 Дж/кг; 1 кгс/см^2 = 9.81·10^4 Па.
Рис. XXIX. \(T-S \) диаграмма для воздуха.
Пересчет в СИ: 1 ккал/кг = 4,19 \(\cdot \) 10^8 Дж/кг;
1 кгс/см² = 9,81 \(\cdot \) 10^4 Па.
УЧЕБНОЕ ПОСОБИЕ

Константин Феофанович Павлов,
Петр Григорьевич Романков,
Анатолий Алексеевич Носков

ПРИМЕРЫ И ЗАДАЧИ
ПО КУРСУ ПРОЦЕССОВ И АППАРАТОВ
ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Редактор Ю. К. Кузнецов
Техн. редактор Л. Ю. Короленко
Корректор М. З. Басина

ИБ № 2170

Сдано в набор 12.12.86. Подписано в печать 18.05.87. М-24130.
Формат бумаги 60×90 1/16. Бумага тип. № 2. Литературная гарнитура.
Высокая печать. Усл. печ. л. 36,0. Усл. кр.-отт. 36,13. Уч.-изд. л. 40,0.
Тираж 45 500 экз. Заказ № 271. Цена 1 р. 50 к. Изд. № 3039.

Ордена «Знак Почета» издательство «Химия». Ленинградское отделение.
191186, г. Ленинград, Д-186, Невский пр., 28.

Ленинградская типография № 6 ордена Трудового Красного Знамени
Ленинградского объединения «Техническая книга» им. Евгении Соколовой
Союзполиграфпрома при Государственном комитете СССР
по делам издательств, полиграфии и книжной торговли.
193144, г. Ленинград, ул. Моисеенко, 10.
К.Ф. Павлов, П.Г. Романков,
А.А. Носков

Примеры и задачи по курсу процессов и аппаратов химической технологии